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*e aim was to explore the application value of brain image segmentation algorithm based on diffusion kurtosis imaging (DKI) in
the structural remodeling of white matter (WM) in patients with hypoxic-ischemic encephalopathy (HIE). 120 patients with
leukoencephalopathy and hypoxic-ischemic encephalopathy were selected as the research objects. *eir heads were scanned by
conventional magnetic resonance imaging (MRI) and DKI sequence. Besides, DKI based on the image segmentation algorithm
was applied to process DKI images, DKE software was employed to obtain the values of fractional anisotropy (FA) and mean
kurtosis (MK), and the differences in FA and MK were compared between acute and chronic phases. *e results showed that the
proposed algorithm could realize the best values of Jaccard similarity (JS) and Dice similarity coefficient (DSC) in WM, gray
matter (GM), and cerebrospinal fluid (CSF), and the segmentation accuracy was better than other algorithms. FA values at the
acute and chronic phases were compared in the area around lesions (0.421± 0.065 vs. 0.454± 0.052), the posterior limb of internal
capsule on the affected side (0.498± 0.027 vs. 0.504± 0.046), and the pedunculus cerebri on the affected side (0.558± 0.038 vs.
0.568± 0.042), and the differences were statistically substantial (P< 0.05). Moreover, MK values at the acute and chronic phases
were also compared in the area around lesions (1.362± 0.098 vs. 1.407± 0.077), the centrum semiovale on the affected side
(1.305± 0.102 vs. 1.343± 0.076), the posterior limb of internal capsule on the affected side (1.338± 0.543 vs. 1.382± 0.076), and the
pedunculus cerebri on the affected side (1.329± 0.089 vs. 1.398± 0.099), showing a statistical meaning (P< 0.05). *e results
indicated that the changes of FA and MK were related to the structural remodeling of WM. *e DKI image segmentation
algorithm could be applied in the diagnosis of leukoencephalopathy in patients with hypoxic-ischemic encephalopathy, and DKI
technology was of great significance for the research of structural remodeling of WM.

1. Introduction

HIE is the most important cause of morbidity and mortality
in full-term babies [1, 2] and is a brain injury caused by
hypoxia in the perinatal period. If the disease is relatively
mild, timely detection and treatment can achieve a better
prognosis. However, HIE can easily lead to neuro-
developmental delay, cerebral palsy, hearing and visual
impairment, and epilepsy if it is relatively severe [3]. At
present, there is a high incidence of HIE among newborn
babies in China. HIE is a great threat to the lives of newborn
babies, which is related to the overall national quality. It has
become a hot topic of medical research at home and abroad.
Studies have found that HIE may also cause

leukoencephalopathy [4]. Leukoencephalopathy is a general
term for various WM lesions, most of which are caused by
hypoxia and ischemia [5]. *erefore, timely diagnosis and
treatment is of great significance for the prevention and
treatment of HIE and leukoencephalopathy.

Imaging technology can observe human brain structure
and various lesions based on three-dimensional perspec-
tive, which has an important advantage in the research of
brain reorganization and remodeling. Computed tomog-
raphy, ultrasound, and conventional MRI can help diag-
nose brain injury but cannot quantify WM injury [6, 7].
Diffusion tensor imaging (DTI) is a noninvasive exami-
nation method, which can effectively observe, track, and
clearly display the nerve fiber tracts of WM [8]. What is
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more, FA is commonly applied in DTI to represent the
tropism degree of axons, microtubules, and myelin. It is
also adopted to evaluate the damage degree of WM fibers.
However, DTI has some limitations, for example, its
sensitivity is not high and cannot be applied to evaluate the
cross fiber bundle. On the contrary, DKI is a further op-
timization of DTI [9]. DTI analyzes the difference of hu-
man tissue structure based on the Gaussian diffusion
model, while DKI applies the non-Gaussian diffusion
model to evaluate the morphological and pathological
changes of human tissue more accurately. DKI can obtain
parameters such as apparent diffusion coefficient (ADC),
FA, MK, radial kurtosis (RK), and axial kurtosis (AK). MK
is the mean of diffusion kurtosis in all gradient directions
and is highly sensitive to the perception of nerve fiber
lesions. However, there are few reports about DKI in
leukoencephalopathy and HIE. Image segmentation is a
key step in brain image diagnosis technology. Brain
structure is usually composed of WM, GM, and CSF, and
the main segmentation target is to accurately segment the
above three. Common image segmentation algorithms
include fuzzy C-means (FCM), self-organizing mapping
(SOM), fuzzy local information c-means clustering
(FLICM) algorithm, genetic algorithm (GA), and random
forest [10, 11]. Due to the complexity of medical images, a
single algorithm is unable to complete accurate segmen-
tation, and usually multiple algorithms are combined for
segmentation. *erefore, the FLICM algorithm and ran-
dom forest classifier were combined to propose the brain
image segmentation algorithm, which was used for the
evaluation of leukoencephalopathy in patients with HIE.
*e structural recombination of leukoencephalopathy was
investigated by analyzing the differences of FA and MK.

2. Materials and Methods

2.1. Research Objects and Grouping. A total of 120 patients
with leukoencephalopathy and HIE were selected as the
research objects admitted to hospital from September 2019
to October 2020. All subjects met diagnostic criteria for HIE
and suffered from leukoencephalopathy, and there was an
exclusion of patients with traumatic brain injury, cardio-
pulmonary, liver, and kidney dysfunction, and congenital
genetic disease. *is experiment had been approved by the
Ethics Committee of hospital, and all the patients included
in the experiment had known and agreed.

2.2. Magnetic Resonance Imaging Detection. A Siemens
Verio 3.0T superconducting magnetic resonance scanner
was employed to examine the heads of all subjects, and a 12-
channel cranial coil was also applied. Each patient was in
supine position with the head advanced.

After scanning, DTI and color direction-coded DTI
images were generated automatically. DKE software was
adopted to further process the obtained DKI images, so as
to gain the value graphs of FA and MK. *e same patient
was scanned twice, and the images were registered.*e area
of glial hyperplasia, posterior limb of internal capsule,

corpus callosum (including splenium, body part, and
genu), corona radiata, pedunculus cerebri, and bilateral
centrum semiovale around the lesion were selected as the
regions of interest for the FA value graph of the first scan.
*en, Image J software was applied to automatically
generate the MK value graph of the first scan and the FA
and MK value graphs of the second scan in the regions of
interest. In addition, FA and MK were recorded at the
different parts of WM for two scans.

2.3. Brain Diffusion Kurtosis Imaging-Based Image Segmen-
tation Algorithm. *e brain DKI-based image segmenta-
tion algorithm proposed in this study mainly included two
steps, namely, segmentation of H-shape region of CSF in
DKI images and segmentation of WM and GM in DKI
images.

First, brain DKI images were obtained from the database,
and there was the skull separation pretreatment. *en, the
Fourier descriptor in the H-shape region of CSF was cal-
culated. It was assumed that DKI image size wasA×B, so the
coordinate of center pixel was (A/2, B/2). *e rectangular
size was A/3×B/3, and the Canny algorithm [12] was used
for the image edge extraction in the rectangular area. *e
gray histogram is further calculated, and the initial threshold
value is the gray data with the lowest frequency. *e gray
value> pixel gray of initial threshold value was set as 0, and
gray value< pixel gray of initial threshold value was set as 1,
so as to obtain the preliminary segmentation image. *en,
the Fourier descriptor of the initial segmentation image was
calculated.*e Fourier descriptor of the initial segmentation
image was compared with the Fourier descriptor of the
H-shape region. If the Euclidean distance between the two
was <0.02, the segmentation image was of H shape; oth-
erwise, the threshold value was adjusted until the Euclidean
distance <0.02 was met.

*e FLICM algorithm [13] was used for the initial
classification labels to pixels in other regions, and six ei-
genvalues of pixel points were calculated as follows.

*e pixel gray value (I) was expressed in the following
equation:

I � f(i, j), (1)

where i and j referred to the vertical and horizontal coor-
dinate of the pixel of any point in the image.

*e neighborhood means (μ) could be calculated as
follows:

μ �
1
k
2 

k−1

i�0


k−1

j�0
f(i, j). (2)

*e gradient (G) could be calculated as the following
equation:

G(i, j) �
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(f(i + 1, j) − f(i, j))
2

+(f(i, j + 1) − f(i, j))
2



.

(3)

*e neighborhood standard deviation (Std) could be
calculated as follows:
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*e calculation of local entropy (E) is as follows:

E � − 
L−1

i�0
pilog2pi. (5)

*eMODE value referred to the grayscale value with the
current pixel as the center and the highest frequency pixel in
the k× k neighborhood near the center.

In the above equations, f (I, j) stood for the sum of the
gray values of pixels in the k× k neighborhood near the
central pixel point; k expressed the odd number; Ci repre-
sented the number of pixels with the same gray value as pixel
i in the k× k neighborhood; and L stood for the total number
of pixels.

*en, the initial classification label and the calculated
eigenvalues were input into the random forest classifier for
normalization processing:

D �
D

D(max)

, (6)

where D and Dmax stand for the input and maximum ei-
genvectors, respectively.

Half of the image pixel points were regarded as training
samples, and the other half were considered as test samples,
which were input into the random forest classifier for testing,
respectively, so that the segmentation results were obtained.

JS and DSC were adopted to evaluate the performance of
the image segmentation algorithm. DSC was applied to
evaluate the accuracy of the algorithm and describe the
image coincidence degree, and JS ranged from 0 to 1. *e
higher the JS, the better the coincidence between the seg-
mentation and standard images:

JS �
Mi ∩Ni




Mi ∪Ni



, (7)

DSC �
2 Mi ∩Ni




Mi


 + Ni



, (8)

where Mi and Ni represent the parts of category i in the
standard segmentation image and the algorithm segmen-
tation image, respectively.

2.4. Statistical Analysis. SPSS20.0 statistical software was
used for analysis, measurement data were expressed as
mean± standard deviation, and FA and MK values were
tested by paired t-test. If P< 0.05, the difference was sta-
tistically obvious.

3. Results

3.1. SegmentationResults of BrainDiffusionKurtosis Imaging-
Based Image Segmentation Algorithm. Image data from
simulated brain database (SBD) were employed to evaluate

the performance of the segmentation algorithm. *e data-
base images had proton density (PD) weighted, T1-weighted,
and T2-weighted sequence patterns. In this study, the image
size was 180× 217, T1-weighted image was applied, slice
thickness was 1mm, nonuniformity of intensity was 50%,
and noise level was 9%. JS and DSC indexes were applied to
quantitatively evaluate the performance of the image seg-
mentation algorithm. *e segmentation results of FCM,
FLICM, SOM+GA, and the algorithm in this study are
shown in Table 1. *e JS coefficients of the algorithm
proposed in this study for the segmentation of WM, GM,
and CSF were 0.8408, 0.7417, and 0.6882, respectively, and
the DSC coefficients for the segmentation of WM, GM, and
CSF were 0.9106, 0.8507, and 0.8025, respectively. *erefore,
the JS and DSC indexes of WM, GM, and CSF in this al-
gorithm were all the best compared with FCM, FLICM, and
SOM+GA, indicating that the segmentation accuracy of this
algorithm was better than other traditional algorithms.

3.2. Comparison on FA Values of WM in the Different Parts.
*e FA values of patients with HIE were compared at the
acute phase (2–7 days) and the chronic phase (2-3 months),
and the results are shown in Figures 1–3. *ere were
statistically great differences of FA values at the acute phase
and chronic phase in the area around lesions (0.421 ± 0.065
vs. 0.454± 0.052), posterior limb of internal capsule on the
affected side (0.498 ± 0.027 vs. 0.504 ± 0.046), and pedun-
culus cerebri on the affected side (0.558± 0.038 vs.
0.568 ± 0.042) (P< 0.05). However, FA values at the acute
phase and chronic phase were compared in the genu of the
corpus callosum (0.482± 0.054 vs. 0.518 ± 0.053), the body
part of corpus callosum (0.531± 0.062 vs. 0.539± 0.042),
the splenium of corpus callosum (0.538± 0.052 vs.
0.528 ± 0.038), and the centrum semiovale on the affected
side (0.387± 0.028 vs. 0.387 ± 0.028), the corona radiata on
the affected side (0.492± 0.025 vs. 0.483 ± 0.025), the
centrum semiovale on the normal side (0.395± 0.033 vs.
0.399 ± 0.041), the corona radiata on the normal side
(0.508± 0.036 vs. 0.509± 0.036), and the posterior limb of
internal capsule on the normal side (0.507± 0.029 vs.
0.501 ± 0.034), and the pedunculus cerebri on the normal
side (0.564± 0.044 vs.0.568± 0.039), and the differences
were not statistically obvious (P> 0.05). Except for the
three parts of the splenium of corpus callosum, the corona
radiata on the affected side, and the posterior limb of in-
ternal capsule on the normal side, the FA value at the
chronic phase of WM in patients with HIE was higher than
that at the acute phase.

3.3. Comparison on MK Values of WM in the Different
Parts. *e MK values of patients with HIE were compared
between the acute stage (2–7 days) and the chronic stage (2-3
months), and Figures 4–6 reveal the results. *e MK values at
the acute phase and chronic phase were compared in the area
around lesions (1.362± 0.098 vs. 1.407± 0.077), the centrum
semiovale on the affected side (1.305± 0.102 vs. 1.343± 0.076),
the posterior limb of internal capsule on the affected side
(1.338± 0.543 vs. 1.382± 0.076), and the pedunculus cerebri on
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the affected side (1.329± 0.089 vs. 1.398± 0.099), and the
differences were statistically obvious (P< 0.05). However,
there were no statistically huge differences in MK values at the
acute phase and chronic phase in the genu of the corpus
callosum (1.168± 0.108 vs. 1.176± 0.109), the body part of
corpus callosum (1.203± 0.127 vs. 1.228± 0.122), the splenium
of corpus callosum (1.206± 0.113 vs. 1.231± 0.089), the corona
radiata on the affected side (1.376± 0.154 vs. 1.452± 0.078),
and the centrum semiovale on the normal side (1.242± 0.098
vs. 1.274± 0.097), the corona radiata on the normal side
(1.483± 0.112 vs. 1.494± 0.116), and the posterior limb of

internal capsule on the normal side (1.359± 0.087 vs.
1.390± 0.096), and the pedunculus cerebri on the normal side
(1.398± 0.105 vs. 1.394± 0.107) (P> 0.05). Except for the
pedunculus cerebri on the normal side, the MK value at the
chronic phase of WM in patients with HIE was higher than
that at the acute phase.

Table 1: Performance comparison of different image segmentation
algorithms.

JS DSC
WM GM CSF WM GM CSF

FCM 0.7567 0.7313 0.6427 0.8614 0.8389 0.7736
FLICM 0.8325 0.7402 0.6423 0.9102 0.8506 0.7910
SOM+GA 0.8373 0.7406 0.6675 0.9106 0.8507 0.8025
Algorithm in
this study 0.8408 0.7417 0.6882 0.9137 0.8518 0.8156
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Figure 1: Comparison on FA values of WM in the different parts
(I). Note: 1–4 stand for the area around the lesions, genu of corpus
callosum, body part of corpus callosum, and splenium of corpus
callosum, respectively; and ∗ means that the difference was sta-
tistically considerable compared with the acute phase (P< 0.05).
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Figure 2: Comparison on FA values of WM in the different parts
(II). Note: 5–8 stand for the centrum semiovale on the affected side,
corona radiate on the affected side, body part of corpus callosum on
the affected side, and the pedunculus cerebri on the affected side,
respectively; and ∗ expresses that there was a statistically consid-
erable difference in contrast to the acute phase (P< 0.05).
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Figure 4: Comparison on MK values of WM in the different parts
(I). Note: 1–4 stand for the area around the lesions, genu of corpus
callosum, body part of corpus callosum, and splenium of corpus
callosum, respectively; and ∗ means that the difference was sta-
tistically obvious compared to the acute phase (P< 0.05).
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Figure 3: Comparison on FA values of WM in the different parts
(III). Note: 9–12 represented the centrum semiovale on the normal
side, corona radiate on the normal side, posterior limb of internal
capsule on the normal side, and pedunculus cerebri on the normal
side, respectively.
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Figure 5: Comparison on MK values of WM in the different parts
(II). Note: 5–8 stand for the centrum semiovale on the affected side,
corona radiate on the affected side, body part of corpus callosum on
the affected side, and the pedunculus cerebri on the affected side,
respectively; and ∗ expresses that there was a statistically marked
difference in contrast to the acute phase (P< 0.05).
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4. Discussion

*e brain DKI-based image segmentation algorithm was ap-
plied to the DKI image processing, and the results showed that
the JS andDSCof this algorithmwere the best for segmentation
of brain WM, GM, and CSF. *e segmentation accuracy was
better than that of other algorithms. It was consistent with the
research results of Chen et al. [14], which showed that the
FLICM algorithm combined with random forest classifier
could improve the medical image segmentation accuracy.

Hypoxic-ischemic brain damage is themain cause of death
in children, with high mortality and morbidity, including
cerebral palsy, epilepsy, and cognitive impairment [3]. WM
lesions include the cystic and noncystic (with focal necrosis)
ventricular leukomalacia and nonnecrotic diffuse WM dam-
age. Multiple causes are associated with these damages. *e
anatomical and physiological characteristics of periventricular
vascular structures result in WM to be liable to cerebral is-
chemia, to interact with infection/inflammatory factors, to
activate microglia, to produce oxidative stress, proin-
flammatory cytokines, and glutamate toxicity, and to have
energy failure and vascular integrity impairment. Hypoxic-
ischemia may also produce selective neuronal necrosis in
different brain regions [15]. Besides, DKI is further optimized
on the basis of DTI. *e research results of Gao et al. [16]
suggested that DKI showed higher specificity for the micro-
structure changes of WM, which was better than DTI index,
and could be applied in the diagnosis of leukoencephalopathy
and HIE. In this study, DKI technology was applied to the
structural remodeling of WM in patients with HIE. It was
found that there were statistically marked differences in the FA
andMK values of the area around lesions, the posterior limb of
internal capsule on the affected side, and the pedunculus
cerebri on the affected side, and in the MK value of the
centrum semiovale on the affected side (P< 0.05). *is was in
accord with the research findings of Li et al. [17], and they
employed DTI to scan 10 full-term babies without brain
damage and 22 full-term babies with HIE. It was found that
there were different FA, volume of voxel, and number of fiber

tracts in some brain regions between the babies with brain
damage and those without brain damage. *e correlation
between FA and neonatal behavioral neurological assessment
score wasmost consistent with the results of the posterior limb
of internal capsule.*ere was a reliable recombination ofWM
in corpus callosum in relevant experiments [18]. However,
there was no statistically remarkable change in theMK and FA
values of the corpus callosum (P> 0.05), which might be
related to the course of disease and the location of lesion. In
addition, the causes should be further explored and verified.
MK value of the centrum semiovale on the affected side was
statistically obvious (P< 0.05) in this study, but there was no
statistically huge difference in the FA value (P> 0.05), indi-
cating that DKI was more sensitive to diagnosis than DTI.

5. Conclusion

*e brain image segmentation algorithm based on DKI was
applied in the research of WM structural remodeling in
patients with HIE. Comparative analysis showed that both
FA value and MK value in the acute and chronic phases
around the lesion, the hindlimb of the internal capsule on
the affected side, and the pedunculus cerebri of the affected
side were statistically different. *us, the WM structural
remodeling might exist, and the changes of FA andMKwere
correlated with WM structural remodeling, showing that
DKI technology had great significance to the research on
WM structural remodeling. However, there were still some
deficiencies in this study. For example, the number of
samples was limited, and the brain structure features were
applied only to the H-shaped region of CSF. In the future,
the algorithm should be further optimized, and the brain
structure characteristics that could be combined with the
algorithm should be explored to increase the number of
samples, so as to further analyze the structural remodeling of
WM in patients with HIE. To sum up, the results of this
study could provide reference for imaging diagnosis and
clinical treatment of HIE.
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