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.e study aimed to explore the relationship between cerebral ischemic stroke (CIS) and the patient’s limb movement through the
blood oxygenation level-dependent functional magnetic resonance imaging (BOLD-fMRI) based on multilevel clustering-
evolutionary random support vector machine cluster (MCRSVMC). Specifically, 20 CIS patients were defined as the experimental
group; another 20 healthy volunteers were defined as the control group. All subjects performed finger movement and verb
association task. .e performance of support vector machine (SVM) and MCRSVMC algorithm was compared and applied to
functional magnetic resonance imaging (fMRI) of blood oxygen level in all subjects. .e results showed that the average accuracy
of MCRSVMC algorithm was significantly higher than that of support vector machine (86.75%, 65.84%; P< 0.05). .e sensitivity
of MCRSVMC algorithm was significantly higher than that of support vector machine (92.52%, 75.41%; P< 0.05). In addition, the
specificity of MCRSVMC algorithm was significantly higher than that of support vector machine (86.39%, 68.24%; P< 0.05).
When CIS patients performed finger exercise, the sensory motor areas on both sides were significantly activated, and the activated
sensory motor areas on both sides were significantly bigger than the ipsilateral area. .e activation rate of the left-sensory motor
area (L-SM1) was 87.5%, the activation rate of the right-sensory motor area (R-SM1) was 25%, the activation rate of the left-side
auxiliary motor area (L-SMA) was 62.5%, and the activation rate of the right-side auxiliary motor area (R-SMA) was 37.5%. In
conclusion, the MCRSVMC algorithm proposed in this study is highly efficient and stable. BOLD-fMRI diagnosis of motor
function in CIS patients is mainly related to compensation around the lesion, which occurs on the healthy side after recovery.

1. Introduction

Cerebral ischemic stroke (CIS) refers to brain tissue is-
chemia caused by cerebrovascular diseases, accompanied by
neuronal necrosis arising from a series of complex ischemic
cascade reactions [1]. It is the most common type of cere-
brovascular diseases, accounting for up to 87%, which se-
riously endangers people’s health [2]. It is characterized by

high morbidity, high disability, high mortality, and high
recurrence rate. Although the pathogenesis of CIS is dif-
ferent, the key to early treatment is to recanalize the blood
vessels as soon as possible, so as to promote the recovery of
blood flow in the ischemic penumbra area, and save the non-
necrotic brain cells in time [3–5]. CIS patients are most
prone to motor dysfunction. .e damage to upper motor
neuron function causes motor dysfunction. As a result, the
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high center loses control of the motor system, so that the
motor reflex of the subcortical center is released, and the
motor system is abnormal [6].

In the rehabilitation of motor function, the reorgani-
zation of brain function plays a very important role.
However, it is not clear which area of the cortex causes the
difference in recovery. Blood oxygen levels depending on
functional magnetic resonance imaging (BOLD-fMRI) can
non-invasively detect the activity in the brain. It detects the
activity in the central nervous system to observe the brain
cortex activity caused by external stimuli [7–9]. Support
vector machine (SVM) is a commonly used pattern classi-
fication algorithm. Compared with other algorithms, SVM
can be applied to small datasets and non-linear mapping and
has the advantages of rigorous mathematical logic and
strong generalization ability [10]. It is widely used in neu-
rological diseases and can be applied to detect abnormal
patterns of brain function in high-dimensional data of
functional magnetic resonance imaging (fMRI). In this
study, based on functional magnetic resonance imaging, a
multilevel clustering-evolutionary random support vector
machine cluster (MCRSVMC) was innovatively proposed.
MCRSVMC algorithm is an integrated technology based on
SVM. Taking advantage of the advantages of SVM in fMRI
data, a large number of SVM-based classifiers can be con-
structed to form clusters by randomly selecting some fea-
tures and samples, and finally the test samples are classified
by equal voting. Pruijm et al. [11] used MCRSVMC algo-
rithm to process MRI images, combined with clustering
evolution on the basis of multiple support vector machine
classifiers, and finally improved the classification perfor-
mance of the model. Blood oxygen level-dependent func-
tional magnetic resonance imaging based on multilevel
clustering evolution and stochastic support vector machine
clustering can realize the selection of features and further
detect abnormal brain regions of ischemic stroke [12].

In this study, multiple SVMs were combined, then
clustering evolution was applied to increase the difference of
independent learners in the cluster, and finally a random
SVM cluster with high classification accuracy was obtained.
.e MCRSVMC-based BOLD-fMRI was used to evaluate
the efficacy of CIS patients, aiming to conduct in-depth
research on the brain functional areas of CIS and provide a
basis for the treatment of CIS-induced motor dysfunction.

2. Materials and Methods

2.1. Research Subjects. In this study, 20 CIS patients treated
at the hospital from January 15, 2019, to December 20, 2020,
were defined as the experimental group, with 9 males and 11
females, with an average age of 48.26± 10.47 years. Another
20 healthy volunteers were selected as the control group, 12
males and 8 females, with an average age of
45.38± 11.32 years old, no neurological diseases, not en-
gaged in the computer industry, and normal finger move-
ment functions..e study has been approved by the Medical
Ethics Committee of the hospital, and the patients and their
families understood the situation of the study and had signed
an informed consent form.

.e subjects were selected as per the following inclusion
criteria: (I) first occurrence of cerebrovascular accident, with
onset time within 1–16 days; (II) patients with no history of
neurological diseases; (III) not in computer-related pro-
fessions; (IV) patients with no other abnormalities in body
sensation except motor dysfunction; and (V) patients whose
vital signs were normal.

Exclusion criteria: (1) patients with a history of cerebral
infarction or cerebral hemorrhage; (2) patients with obvious
disturbance of consciousness and neurological function; (3)
patients with impairment in comprehension; and (4) pa-
tients unable to cooperate with the investigation normally.

2.2. Observation Indicators. .e statistical function of SPM
(Salford Systems, USA) was used for group analysis to obtain
average images of group data and the accurate total cortical
activation data of individual observation intuitively and
quickly. In addition, the active areas of interest of SPM were
used to analyze the activation curve of brain death, which
intuitively reflected the relationship between the activated
areas and the stimulus.

2.3. Conventional MRI and BOLD-fMRI Examination
Methods. Achieva X-series 3.0 Tmagnetic resonance imager
(Philips, the Netherlands) was used for scanning. Before the
scan, the patient lied on his back for 5–10minutes. .e
multichannel phased array head collar was used. First, the
conventional head plain scan, T1WI transverse scan, and
T2WI transverse scan were performed, with slice thickness
of 5mm, repetition time of 300ms, echo time of 20ms, and
matrix of 320×192.

During fMRI scan, in addition to passively accepting
finger movement, the patients should keep still as much as
possible. .en, the structure scan and the finger-to-finger
movement of the affected upper limb were conducted. .e
whole brain three-dimensional structure imaging scan
adopts T1WI sequence, with layer thickness of 1.3mm,
repetition time of 3000ms, echo time of 10.5ms, matrix of
256×192, flip angle of 15°, and imaging frame number of
300. BOLD-fMRI uses T2WI gradient echo-plane echo
imaging sequence, with slice thickness of 5mm, repetition
time of 3000ms, echo time of 40ms, maximum field of view
of 240mm× 240mm, matrix of 256× 256, voxel size of
2.4× 2.4×1.8mm, phase encoding direction of AP, flip angle
of 90°, scanning time of 4min, number of acquisition layers
of 80 layers/frame, 3 s/frame, and number of imaging frames
of 2400 frames.

Before the experiment, patients in the experimental
group need to understand the purpose, method, and content
of the experiment, as well as the method, strength, ampli-
tude, and frequency of the training exercise..e training was
repeated 4 times in a sequence from rest to stimulation. In
the resting state, the patient kept still and did not move;
during stimulation, the patient performed a unilateral hand-
to-finger movement, that is, a match of the thumb and the
other four fingers. .e frequency is 1 time/second, and the
mode, amplitude, and frequency of the finger movement are
kept consistent. .e stimulation and resting lasted for 40 s,
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respectively. Volunteers in the normal control group un-
derwent fMRI examinations for verb association and picture
tasks.

2.4. MCRSVMC-Based Algorithm. In this study, clustering
algorithm is used to select SVM with higher accuracy as the
cluster representative to select the model. Suppose there is a
dataset D� {X1, X2, . . ., Xk} and individual learners, SVM1,
SVM2, SVM3,...SVMn; the SVM learners are classified as
follows:

Gi(x) �
1, SVMclassified correctly

0, SVMclassification error
, R � 

K

L�1
F G(L,i) � G(L,j) � 1 ,

⎧⎨

⎩

(1)

where k represents the number of samples in the dataset, R
represents the number of correctly classified data by SVMi
and SVMj, and F(∗ ) represents the indicator function.

W � 
K

L�1
F G(L,i) � 1 ∧ G(L,j) � 0  , (2)

where W represents the number of samples in the dataset
that are correctly classified by SVMi and incorrectly clas-
sified by SVMj, k represents the number of samples in the
dataset, and F(∗ ) represents the indicator function.

S � 

K

L�1
F G(L,i) � 0 ∧ G(L,j) � 1  , (3)

where S represents the number of samples in the dataset that
are classified incorrectly by SVMi and correctly classified by
SVMj, k represents the number of samples in the data set,
and F(∗ ) represents the indicator function.

T � 
K

L�1
F G(L,i) � G(L,j) � 0 , (4)

where T represents the number of samples that are incor-
rectly classified by both SVMi and SVMj, k represents the
number of samples in the dataset, and F(∗ ) represents the
indicator function.

In this study, dataset D is randomly divided into combi-
nation set A and test set B. .e combination set A is contin-
uously divided into training set Atrain and verification set
Averification. When training the learner, the setA is used to divide
the training set and the validation set, thereby increasing the
diversity of the learner. .e set B is used to determine the
generalization ability of MCRSVMC algorithm. Figure 1 shows
a flowchart of the MCRSVMC algorithm.

2.5. Simulation Experiment Design. .e performance of the
MCRSVMC algorithm is evaluated factoring in accuracy,
sensitivity, and specificity.

C �
TP + TN

TP + FP + FN + TN
, (5)

where the accuracy rate C represents the number of samples
correctly classified in all samples, TP represents true

positives, TN represents true negatives, FP represents false
positives, and FN represents false negatives.

Sensitivity �
TP

TP + FN
, (6)

where sensitivity represents the number of samples that are
correctly classified among all positive samples, TP represents
true positives, and FN represents false negatives.

Specificity �
TN

FP + TN
, (7)

where specificity represents the number of correctly clas-
sified samples among all negative samples, TN represents
true negatives, and FP represents false positives.

As for the pathogenesis of CIS, in the study, the
MCRSVMC algorithm is used to classify to search the
abnormal characteristics in the brain. First, it is necessary
to find the optimal number of base classifiers of
MCRSVMC, then feature extraction is performed, and
finally important features and optimal feature subsets are
found. .e corresponding brain area is identified through
the feature, and the frequency of the brain area is
counted.

2.6. Statistical Method. .e data were processed by
SPSS19.0, the measurement data were expressed as mean-
± standard deviation (x ± s), and the count data were
expressed as percentage (%). Pairwise comparison used
analysis of variance. Statistical parameter mapping (SPM)
was used to analyze brain function imaging data. P< 0.05
was the threshold for significance.

3. Results

3.1. Performance Comparison of TwoModels. Figure 2 shows
the comparison results of the two models. In this research,
the performance of support vector machine andMCRSVMC
algorithm was compared. .e number of base classifiers of
both models was set to 400. .e average accuracy of
MCRSVMC algorithm (86.75%) was significantly higher
than that of support vector machine (65.84%), and the
difference was statistically significant (P< 0.05). .e sensi-
tivity of MCRSVMC algorithm (92.52%) was significantly
higher than that of support vectormachine (75.41%), and the
difference was statistically significant (P< 0.05). .e speci-
ficity of MCRSVMC algorithm (86.39%) was significantly
higher than that of support vector machine (68.24%), and
the difference was statistically significant (P< 0.05). In the
images processed by MCRSVMC algorithm, the areas of red
and yellow gradient increased, indicating that MCRSVMC
algorithm could significantly enhance the diagnosis of ab-
normal brain regions.

3.2. fMRI Results in Healthy Control Group. Table 1 shows
the fMRI-activated brain regions of the healthy control
group. In the healthy control group, the main brain areas
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activated by verb association task were the auxiliary motor
area (BA6) with coordinates of (0, 15, 52), right Broca region
(BA45) with coordinates of (32,32,4), right anterior cin-
gulate gyrus (BA32) with coordinates of (10, 20, 25), and the
left fusiform gyrus (BA37) with coordinates of (−45, −55,
−18). .e main brain areas activated by the image naming
task were the right visual cortex (BA18) with coordinates of
(15, −82, −10), the left fusiform gyrus (BA35) with coor-
dinates of (−36, −43, −16), and the left Broca region (BA45)
with coordinates of (−5, 25, 5).

3.3. BOLD-fMRI Results of Brain Area Activated by Finger
Movement in Patients with CIS. .ere was a significant
difference in the activated brain areas by finger movement
between normal people and CIS patients. Obviously, in the
CIS patients, the precentral gyrus dominance area was
significantly activated (BA4); the left precentral gyrus (BA2)
and the postcentral gyrus dominance area of the hand (BA7)
were activated by small clusters; and the right paracentral
lobules (BA5), angular gyrus (BA19), cerebellar dentate
nucleus (BA39), left superior frontal gyrus (BA8), para-
central lobules (BA5), and angular gyrus (BA1) were acti-
vated by patches. .e brain function inhibition areas were
mainly distributed in the left limbic system of the brain,

including the left cingulate gyrus (BA32), the left hook gyrus
(BA35), the caudate nucleus (BA20), and the right para-
hippocampal gyrus (BA28). .e cerebral cortex includes the
left medial prefrontal lobe (BA20), with small activation
clusters (Figure 3).

Figure 4 shows the activated brain areas by the finger
movement. .e image processed by statistical parameter
mapping mainly displayed the sensory motor area (SM1)
and the lateral auxiliary motor area (SMA).

Figure 5 shows cerebral cortex activation. When CIS
patients conducted finger exercise, the sensory motor areas
on both sides were significantly activated, and the activated
areas were significantly bigger than the ipsilateral area.

3.4. BrainActivationRate. Figure 6 shows the activation rate
of brain regions in CIS patients. .e activation rate of each
brain area was calculated based on cortical activation per-
spective view combined with the coordinate of each acti-
vation area..e results showed that the activation rate of the
left-sensory motor area (L-SM1) was 87.5%, and the acti-
vation rate of the right-sensory motor area (R-SM1) was
25%; the activation rate of the left-side auxiliary motor area
(L-SMA) was 62.5%, and the activation rate of the right-side
auxiliary motor area (R-SMA) was 37.5%.

�e second cluster

…

SVM 1 SVM 2 SVM n…

�e first cluster

SVM 11 SVM 1Q…

Cluster 1 Cluster Q…

�e M cluster

SVM m1 SVM ms…

Cluster 1 Cluster s…

END

Figure 1: A flowchart of the MCRSVMC algorithm.
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3.5. BOLD-fMRI of CIS Patients before and after Treatment.
.e activation of the cerebral cortex of the patient was
observed, and it was found that activated areas of CIS pa-
tients in the acute phase were mainly around the stroke area
and the patient’s parietal lobe. Some patients showed mild
activation of the occipital lobe, temporal lobe, and cunei-
form lobe, as shown in Figure 7. After treatment, the main
manifestations of the patients were cerebral hemisphere
excitation, and individual patients showed cortex excitation
in the sensorimotor area, as shown in Figure 8.

4. Discussion

.e BOLD-fMRI currently used can stimulate the corre-
sponding functional activities of brain regions according to
the movements of peripheral organs and sensory move-
ments, and the changes in the signal intensity of brain tissue
observed by MRI images can directly reflect the changes in
brain tissue function [13–15]. For patients with ischemic

stroke, BOLD-fMRI can visually reflect the characteristics of
brain functional restructuring in patients and observe the
recovery function of limbs and the activation of brain-re-
lated cortex [16]. When the CIA patients performed finger
movement and verb associations, the cerebral cortex con-
trolled by the relatedmotor functions will be excited, causing
increased metabolism and oxygen consumption. Also, blood
vessels expand, and local blood flow increases, which will
lead to the increase of local oxygen hemoglobin. BOLD-
fMRI combined with conventional MRI can clearly observe
the location, intensity, and range of excitement in the ce-
rebral cortex caused by exercise [17–19].

BOLD-fMRI is a neuroimaging technology with no
radiation exposure, non-invasiveness, and high safety. It
provides effective data support for the study of human brain
cognitive function. In this study, based on the characteristics
of BOLD-fMRI images, the MCRSVMC algorithm was
proposed. It established SVM classifier using a random
sampling method and increased the diversity of SVM by
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Figure 2: Comparison results of the two models: (a) performance comparison result; (b) support vector machine processing results—(A)
coronal, (B) sagittal, and (C) axial; (c) results of MCRSVMC treatment—(D) coronal, (E) sagittal, and (F) axial. Note: ∗ indicates that the
difference was statistically significant compared with MCRSVMC algorithm (P< 0.05).

Table 1: fMRI-activated brain regions in healthy control group.

Task Anatomy Brodmann area (BA)
Coordinate

Voxel
X Y Z

Verb association

Auxiliary exercise area 6 0 15 52 56
Right Broca area 45 32 32 4 75

Right anterior cingulate gyrus 32 10 20 25 35
Left fusiform gyrus 37 −45 −55 −18 34

Picture naming
Right visual cortex 18 15 −82 −10 1285
Left fusiform gyrus 35 −36 −43 −16 236
Left Broca area 45 −5 25 5 15
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introducing a clustering algorithm [20]. .e results showed
that the average accuracy of MCRSVMC algorithm (86.75%)
was significantly higher than that of random forest (72.36%)
and SVM (65.84%) (P< 0.05); the sensitivity of MCRSVMC
algorithm (92.52%) was significantly higher than that of
random forest (72.34%) and SVM (75.41%) (P< 0.05); and
the specificity of MCRSVMC algorithm (86.39%) was sig-
nificantly higher than that of random forest (73.45%) and

SVM (68.24%) (P< 0.05). Taken together, it suggested that
the MCRSVMC algorithm was highly efficient and stable.

.e activated brain areas in the healthy control group
during the verb association task mainly included auxiliary
motor area, right Broca area, right anterior cingulate gyrus, and
left fusiform gyrus, indicating that the verb association task
mainly activated the frontal parietal cortex, and the bilateral
occipital area was activated by a small area [21–23]. .e

(a) (b) (c)

Figure 3: Registration module for statistical parameter mapping preprocessing. (a) Patient who was male, 48 years old, and had significantly
activated the dominant area of the central anterior gyrus of the affected side. (b) Patient who was female and 46 years old (her right
paraventricular lobule was activated in sheet form). (c) Patient who was male and 51 years old, with small activation cluster of right
parahippocampal gyrus. Note: blue indicated a decrease in the BOLD signal, while orange indicated an increase in the BOLD signal.
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Figure 4: .e activated brain areas by the finger movement: (a) sagittal position; (b) coronal position; (c) transverse position. Note: black
indicated increased signal in activated brain areas, while gray indicated decreased signal.
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Figure 5: .e cerebral cortex activation in patients with CIS.
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Figure 7: BOLD-fMRI before the treatment. (a) .e brain area around the stroke area. (b) .e stroke area located in the parietal lobe.
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Figure 8: BOLD-fMRI after the treatment. (a) Cerebral hemisphere excitation. (b) Sensorimotor cortex excitation.
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activated brain areas for picture naming mainly included the
right visual cortex, left fusiform gyrus, and left Broca, indicating
that the picture namingmainly activated bilateral occipital lobes
in the visual cortex, which was consistent with the results of Tan
et al. [24].

When CIS patients performed finger exercise, the
sensory motor areas on both sides were significantly
activated, and the activated sensory motor areas on both
sides were significantly bigger than the ipsilateral area.
.e activation rate of the left-sensory motor area (L-SM1)
was 87.5%, the activation rate of the right-sensory motor
area (R-SM1) was 25%, the activation rate of the left-side
auxiliary motor area (L-SMA) was 62.5%, and the acti-
vation rate of the right-side auxiliary motor area (R-
SMA) was 37.5%. It may be because of the functional
impairment of the affected hemisphere in the acute phase.
When the relevant brain functional areas in the affected
brain hemisphere are activated, the patient’s motor co-
ordination will be impaired.

5. Conclusion

In the study, MCRSVMC algorithm was applied to process
BOLD-fMRI images of CIA patients, and its performance
was compared with that of random forest and SVM. .e
MCRSVMC algorithm proposed in this study was highly
efficient and stable, and BOLD-fMRI diagnosis of motor
function in CIS patients was mainly related to compensation
around the lesion, which occurred on the healthy side after
recovery. .e limitation of this study is that the number of
cases is small, which will reduce the power of the study. In
the follow-up, an expanded sample size is necessary to
strengthen the findings of the study. In conclusion, the
changes of various brain function areas can be observed in
real time through BOLD-fMRI images, providing an evi-
dence-based basis for clinical diagnosis.

Data Availability

.e data used to support the findings of this study are
available from the corresponding author upon request.
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