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An improved Graham scan convex hull algorithm is designed using the convex hull region shrinkage algorithm and the sample
selection decision algorithm. In the sorting of Graham scan convex hull algorithm, the cross-multiplicationmethod is used instead
of the operation of finding the polar angle, which avoids the high computational complexity of finding the inverse trigonometric
function. When the polar angles are the same, that is, the two points are collinear, the points close to each other are deleted
directly. Select the maximal horizontal ordinate point, minimal horizontal ordinate point, maximal longitudinal coordinate point,
and minimal longitudinal coordinate point. Connect these points and obtain lines. )e whole plane is divided into different
regions. )e points that are not on the convex hull are deleted, and the redundant points are removed. )is can speed up the
calculation of approximate convex hull boundary and shorten the time of convex hull calculation.)e proposed algorithm is used
for buoy drifting area demarcating.)e offsets of the geometric center of the high-frequency position point and the distance from
geometric center of high-frequency position of buoy to sinking stone are calculated. )e experimental results show that the new
algorithm can effectively accelerate the convex hull calculation. We use the convex hull process to compute the area of the drifting
buoy position and discover that the drift area of the port hand buoy is similar. )e drift area of the port hand buoys is similar. )e
drift area of the port hand buoy is greater than that of the port hand buoy.

1. Introduction

A buoy is a kind of artificial mark used to mark warning and
channel boundary, which can guide ships to navigate, locate,
and avoid obstacles [1–4]. However, navigation aids installed
on the sea are easy to drift due to wind and waves. Navi-
gation aids floating in the channel are easy to cause navi-
gation errors and security threats to ships. In order to
analyze the drift characteristics of buoys and accurately warn
the real-time position of buoys, pretreatment algorithm can
be used.

Convex hull is used to calculate the range of buoys [5–7].
)e idea of Graham’s scanning is to find a point on the
convex hull first and then start from that point to find the
points on the convex hull one by one in a counterclockwise
direction. In fact, it is to sort the polar angles and then use
them to query. A modified Graham’s convex hull algorithm

is proposed for finding the connected orthogonal convex
hull of a finite planar point set [8]. Nguyen designed a faster
convex hull algorithm for disks [9]. Ferrada discussed a
filtering technique for fast convex hull construction in R2

[10]. Preprocess the input set, filter all points in the eight
vertex polygon in O (n) time, and return a simplified
candidate point set. )ese candidate points are sequentially
distributed in four priority queues. Aman et al. used a linear
time combinatorial algorithm to compute the relative or-
thogonal convex hull of digital objects [11]. Wu et al.
designed an improved Graham algorithm for determining
the convex hull of planar points’ set [12].

However, Graham’s scanning algorithm still costs great
time when dealing with big data. In this paper, an improved
Graham scan convex hull algorithm is proposed to speed up
the calculation process.

)e novelty and the contributions of the paper are
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(1) An improved Graham scan convex hull algorithm is
designed using the convex hull region shrinkage
algorithm and the sample selection decision algo-
rithm. In the sorting of Graham scan convex hull
algorithm, the cross-multiplication method is used
instead of the operation of finding the polar angle,
which avoids the high computational complexity of
finding the inverse trigonometric function. When
the polar angles are the same, that is, the two points
are collinear, the points close to each other are de-
leted directly.

(2) Select the maximal horizontal ordinate point Qn and
the minimal horizontal ordinate point Qs point.
Select the maximal longitudinal coordinate point Qe
and minimal longitudinal coordinate point Qw.
Connect these points and obtain lines. )e whole
plane is divided into different regions. )e points
that are not on the convex hull are deleted, and the
redundant points are removed.)is can speed up the
calculation of approximate convex hull boundary
and shorten the time of convex hull calculation.

(3) )e proposed algorithm is used for buoy drifting
area demarcating. )e offsets of the geometric center
of the high-frequency position point and the distance
from geometric center of high-frequency position of
buoy to sinking stone are calculated.

2. Related Works

2.1. Frequency Calculation of Buoy Position. )e buoy
moves irregularly around the anchorage under the action
of external force. In the process of movement, the fre-
quency of passing through different positions is different.
For example, at the edge of the sea area, the frequency of
buoy floating here is obviously smaller than that at the
center of the active water area. )erefore, by calculating
the frequency of the buoy at different positions, we can
find the characteristics of the shift of the buoy in the
water area relative to the sinking stone. Generally
speaking, in the buoy sea area, the frequency of reaching
the sea area is less, and the position of the buoy reaching
the edge waters is more divergent.

Suppose there exists a minimum set, and the sum of the
frequency of all these buoy position points set X is not less
than 80%. )e proportion of each buoy positions points
ranked from high to low is P0, P1, . . ., Pm−1.m is the number
buoy in set X. Ni is the number of points at position Xi. N is
the total number of position points:

Pi �
Ni

N
. (1)

In each buoy position dataset, the point set with the first
80% occurrence times is taken out. Denote S as the mini-
mum set whose frequency is more than 80% of total fre-
quency. c is the number buoys in set S:

P0 + P1 + · · · Pn−1 > � 80%,

P0 + P1 + · · · Pc < 80%.
(2)

)emethod of obtaining dataset S with no less than 80%
position data points in the buoy position dataset X is as
follows:

Step 1: delete the abnormal points whose distance from
the rock sinking position exceeds the length of the
anchor chain.
Step 2: calculate the proportion of each buoy positions
points Pi, 0≤i<m.
Step 3: rank the proportion of each buoy positions
points from high to low as P0, P1, . . ., Pm−1. Initialize a
stack. Set k� 0.
Step 4: push Pk into the stack.
Step 5: if the total frequency of points in the stack is less
than 80%, that is, P0 +P1+. . .+Pk <80%, set k� k+ 1 and
go to Step 4.
Step 6: output the final result set, that is, the points in
the stack.

Taking the 3 # and 4# buoy as examples, the frequency
distribution of each position point is shown in Figure 1.
Figure 1(a) shows the position number distribution of 3#
buoy. Figure 1(b) shows the frequency distribution of 3#
buoy. Figure 1(c) shows the position number distribution of
4# buoy. Figure 1(d) shows the frequency distribution of 4#
buoy.

2.2. Basic Convex Hull Algorithm. With the buoy position
dataset, the convex hull algorithm is used to obtain the
drifting area. Convex hull is a concept in computational
geometry. Denote n as the number of points in the buoy
position set S. )e convex hull is solved based on Graham
Scan algorithm as follows:

Step 1: the point p0 with the smallest longitudinal
coordinates is first pushed into a stack.
Step 2: calculate the intersection angle of each point
relative to p0.
Step 3: sort the points from small to large according to
their intersection angles relative to p0. When the in-
tersection angles are the same, those closer to p0 are
arranged in front. )e points after sorting are, namely,
p1, p2, . . ., pn-1.
Step 4: push p1 into the stack.
Step 5: suppose the top point in the stack is pi, and the
second point in the stack is pi−1. For the first remaining
points pj (1< j< n), link the line pi−1pj and line pipj.
Step 6: if from this line pi−1pj to line pipj is clockwise,
pop pi from the stack and push pj into the stack. If from
this line pi−1pj to line pipj is counterclockwise, push pj
into the stack.
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Step 7: if pj is not the last remaining point, go to Step 5.
Otherwise, output the points in the stack as vertexes of
the convex hull.

3. Main Results

3.1. Improved Graham Scan Convex Hull Algorithm.
Firstly, in the sorting, the cross-multiplication method is
used instead of the operation of finding the polar angle,
which avoids the high computational complexity of finding
the inverse trigonometric function.

)e cross multiplication of vector a and b is

a × b � |a| · |b| · sin θ, (3)

where θ is the angle between the two vectors. When the cross
product is larger than zero, the angle for a to b is in a
counterclockwise direction. When the cross product is
smaller than zero, the angle for a to b is in a clockwise
direction.

Secondly, when the polar angles are the same, that is, the
two points are collinear, the points close to each other are
deleted directly.

)irdly, due to the large amount of buoy data, in order to
save the time of big data processing, we need to improve the
algorithm to improve the efficiency of convex hull algorithm.
In this algorithm, the points that are not on the convex hull
are deleted, and the redundant points are removed. At the
same time, the points on the boundary of the convex
polygon are sorted and ordered. It can speed up the
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Figure 1: Frequency distribution of buoy position points. (a) Position number distribution of 3# buoy. (b) Frequency distribution of 3#
buoy. (c) Position number distribution of 4# buoy. (d) Frequency distribution of 4# buoy.
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calculation of approximate convex hull boundary in many
situations and shorten the time of convex hull calculation.

Step 1: select the maximal horizontal ordinate point Qn
and the minimal horizontal ordinate Qs point. Select
the maximal longitudinal coordinate point Qe and
minimal longitudinal coordinate point Qw.
Step 2: connect these points and obtain lineQnQe,QeQs,
QsQw, andQwQn, and divide the scattered point set into
several regions by the lines. )ere are 5 cases.

Case 1: )e whole plane is divided into 5 regions, as
shown in Figure 2.
Case 2: )e whole plane is divided into 4 regions, as
shown in Figure 3.
Case 3: )e whole plane is divided into 3 regions, as
shown in Figure 4.
Case 4: )e whole plane is divided into 2 regions, as
shown in Figure 5.
Case 5: )e whole plane is divided into 1 regions, as
shown in Figure 6.

Step 3: the points in the polygon surrounded by these
four vertices are deleted.
Step 4: sort the points in the point set according to the
abscissa of the vertex. If the abscissa values of two
points in the upper part are the same, the points with
relatively large ordinate values are selected and
retained, while the points with relatively small ordinate
values are deleted. Similarly, the points in the lower part
of the point set are sorted according to the abscissa. If
there are two points with the same abscissa value, the
vertex with relatively small ordinate value is selected
and the vertex with relatively large ordinate value is
deleted.

3.2. TimeComplexity. )e time complexity of preprocessing
isO (n).)eGrahammethod is carried out on the premise of
sorting the vertices, but compared with other convex hull
generation methods, this algorithm shows smaller time
complexity according to different vertex distributions. )e
complexity isO (nlog n).)erefore, it takes at least o (nlog n)
time to solve the convex hull problem of n vertices in the
plane.

4. Experiment and Analysis

4.1. Dataset. )is section calculates the frequency of the
buoy of the main channel in Tianjin port at different lo-
cations and calculates the central coordinates of the ge-
ometry of the data points containing not less than 80% of the
position data points in the dataset of each lamp buoy lo-
cation. Table 1 shows the geometric center of buoy position.

Table 2 lists buoy #5 position records.

4.2. Convex Hull Computing Results. Figure 7 shows the
convex hull results of the buoys. )e triangle represents the
position of the sinker. )e hexagon represents the geometric
center of the actual drift position.

4.3. Analysis and Discussion

4.3.1. Time Cost of Different Algorithms. )e algorithm is
tested on a computer with Intel (R) Core(TM) i7-260 QM,
CPU@2.20GHz, 8.00 GBmemory, 64 bits operation system.
Table 3 shows the calculation time cost of different points’
number scale in seconds.

Figure 8 shows time cost of different algorithms.
)e experiment shows that the new algorithm speeds up

the buoy convex hull calculation. Most vertices that are not
on the convex hull are deleted, which reduces the calculation
scale.)e inverse trigonometric function is replaced by cross
multiplication.

4.3.2. Distance from Geometric Center of High-Frequency
Position of Buoy to Sinking Stone. Table 4 shows the distance
between the realistic center of each buoy offset from the
high-frequency position point and the corresponding
sinking stone.

)e geometric center of each buoy in the channel de-
viates from the high-frequency position point, and the
maximum distance is about 26.83m, and the minimum
distance is about 3.90m. )ere are many reasons for the
offset distance:

(1) Some of the far offset buoys may be due to the offset
of the anchorage. If the buoy is thrown for a long
time, part of the anchor chain may be undercover for
a long time, making the buoy move around a chain
link of the anchor chain

(2) For some far offset buoys, it is also possible that the
buoy is affected by the regular wind and current,
which makes the offset position of the buoy prefer to
a certain water area. In this case, the offset position of
the buoy covers the position of the sinking stone, but
the frequency of the buoy “staying” is low near the
sinking stone.

(3) )e offset distance between the geometric center of
some buoys’ high-frequency position points and the
sinking stone is small. For example, the offset of 4#
buoy is only 3.90m, and the offset of 10# buoy is
about 5.48m. )is shows that the sinking stone of
these buoys is basically not displaced, and the an-
chorage point is also basically not displaced. )e
buoy basically moves around the location of the
sinking stone under the action of external force.
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Figure 2: Five regions’ case.
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)e average deviation direction of the 4–14 buoy in the
waters of the foreign navigation section is about 230.11°.
)erefore, in the outer leg, the direction of the geometric

center of the buoy offset high-frequency position point
relative to the buoy is basically perpendicular to the main
channel strike offset.
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Table 1: Geometric center of buoy.

Buoy name Longitude Latitude
1# 118°13′31″.5 E 38°51′32″.7 N
2# 118°13′19″.3 E 38°51′19″.9 N
3# 118°12′33″.4 E 38°52′06″.7 N
4# 118°12′21″.2 E 38°51′53″.9 N
5# 118°11′35″.3 E 38°52′40″.7 N
6# 118°11′23″.1 E 38°52′27″.9 N
7# 118°10′33″.8 E 38°53′16″.7 N
8# 118°10′21″.6 E 38°53′03″.9 N
9# 118°09′32″.3 E 38°53′52″.7 N
10# 118°09′20″.1 E 38°53′39″.9 N
12# 118°08′18″.5 E 38°54′15″.8 N
13# 118°07′21″.7 E 38°55′09″.3 N
14# 118°07′21″.5 E 38°54′49″.5 N

Table 2: Time cost of different algorithms (s).

Number of points Buoy Graham scan Improved Graham scan
1741 3# 7.480646 0.974504
7120 12# 7.489085 0.989793
7905 8# 8.434150 1.646129
14875 4# 8.597524 1.721608
15846 22# 8.984171 1.826584
16304 21# 9.132568 2.113338

Table 3: Buoy #5 position records.

Time Latitude Longitude
2019-02-01 00:54:07 24o3852.6776N 118o11.59128′E
2019-02-01 01:54:09 24o3852.6758N 118o11.59188′E
2019-02-01 02:54:10 24o3852.6773N 118o11.59368′E
2019-02-01 03:54:11 24o3852.67688N 118o11.59392′E
2019-02-01 04:54:13 24o3852.677N 118o11.59338′E
2019-02-01 05:54:14 24o3852.6767N 118o11.5926′E
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Figure 7: Continued.
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4.3.3. Area of Buoy Drifting Convex Hull. We use the convex
hull process to compute the area of the drifting buoy po-
sition. Table 5 shows the area of buoy drifting convex hull.

According to the customary trend of buoys, those
marking the left boundary of the channel are called port
hand buoy, such as buoy #4, #10, and #14.)osemarking the
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right boundary of the channel are called port hand buoy,
such as buoy #5 and #13. From Table 5, the drift area of the
port hand buoy is similar. )e drift area of the port hand
buoys are similar. )e drift area of the port hand buoy is
greater than that of the port hand buoy.

4.3.4. Influence of Buoy Offset on Navigation Safety. If the
displacement is too large, the buoy may enter the waterway
and affect the navigation safety of the ship. According to the
analysis of the offset distance and azimuth of the geometric
center of the high-frequency position point of the buoy offset
relative to the sinker, combined with the position of each
buoy relative to the channel sideline, the influence of the
buoy offset on navigation safety is analyzed.

)e tether length of the buoy in the channel is generally
three long and one short.)e water depth near the channel is
about 15–22m. If the distance of the buoy from the sinking
stone is too large, it may be that the error of the buoy is too
large, or the anchor point is offset or the sinking stone is
displaced.

When the buoy is thrown, there may be some error, or
the sinking stone moves, and the actual position of the
sinking stone should be located in the southwest of the
throwing position. Although the buoy has a large offset to
the channel, it is less than the distance between the buoy and
the side line of the channel.)erefore, its offset will not affect
the navigation safety of ships in the channel.

5. Conclusion

To improve the prediction calculation of buoy trajectory, an
improved Graham scan convex hull algorithm is used. )e
new algorithm speeds up the buoy convex hull calculation.
Most vertices that are not on the convex hull are deleted,
which reduces the calculation scale. )e inverse trigono-
metric function is replaced by cross multiplication. We use
the convex hull process to compute the area of the drifting
buoy position and discover that the drift area of the port
hand buoy is similar. )e drift area of the port hand buoys
are similar. )e drift area of the port hand buoy is greater
than that of the port hand buoy.

)e future work will continue to improve the convex hull
region shrinkage algorithm and the sample selection deci-
sion algorithm. )e improved algorithm is used to deal with
super large-scale point sets.
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