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Data augmentation is a commonly used technique in data science for improving the robustness and performance of machine
learning models.*e purpose of the paper is to study the feasibility of generating synthetic data points of temporal nature towards
this end. A general approach named DAuGAN (Data Augmentation using Generative Adversarial Networks) is presented for
identifying poorly represented sections of a time series, studying the synthesis and integration of new data points, and per-
formance improvement on a benchmark machine learning model. *e problem is studied and applied in the domain of al-
gorithmic trading, whose constraints are presented and taken into consideration. *e experimental results highlight an
improvement in performance on a benchmark reinforcement learning agent trained on a dataset enhanced with DAuGAN to
trade a financial instrument.

1. Introduction

Data augmentation is a vast and often used method for
enhancing the amount of data available for training a ma-
chine learning (ML) model. It is well known that the amount
and quality of data available are closely bounded to the
success of any ML project, independent of the application
domain. *ere are multiple data augmentation procedures,
which are often specific to the application domain and the
specific dataset that is used.

For example, image-based machine learning tasks often
employ operations of contrast adjustment, flipping, trans-
lation, cropping, rotation, color space manipulation, etc.
*ese present new contexts to the model, helping it to better
generalize and to avoid overfitting [1]. Another example of
data augmentation is the SMOTE, or the Synthetic Minority
Oversampling Technique, whose purpose is to alter the
dataset presented to the algorithm by presenting minority-
class data points to the classifier more often than they
naturally occur (oversampling), while minimising the rate at
which the majority class appears (undersampling). *is
increases the sensibility of the model for the subrepresented

data class and has applications such as identifying fraud
credit card transactions [2].

A more recent augmentation method involves using a
generative adversarial neural network (GAN) architecture,
whose ability to reproduce a statistical distribution is
repurposed for creating new, convincing examples of a
poorly represented class, or generally any point of the dataset
[3]. GANs are an important machine learning paradigm.
Two neural networks engage in a zero-sum game where the
generator network attempts to generate new samples, while
the discriminator discerns between real samples and gen-
erated samples. *e end goal is to train the generator into
reproducing the initial train distribution as close as possible.
GANs have been used to great effect, with examples such as
reproducing the effects of dark matter on astronomical
observations [4], generating photorealistic human faces [5],
or applying style transfer operations in the audiodomain [6].

Identifying imbalanced classes and enhancing their
presence in the time series would not be devoid of practical
applications. One such example is securities trading. Secu-
rities are defined as any financial instrument that can be
bought or sold via an accredited intermediary, creating a
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supply and demand market. An example is the stock market,
which allows buying and selling “shares”: discreet units of
ownership in a company. While the price of any share has a
correlation with the business performance, there is research
that indicates the market’s sentiment and domain-specific
factors such as national interest rate create a cyclical effect on
the price evolution [7, 8].

*e current paper is based on work originating from two
research questions:

(1) RQ1. Is it possible to improve the performance of
reinforcement learning- (RL-) based trading algo-
rithms through augmenting training data using
adversarial techniques?

(2) RQ2. What is the performance gain of the RL agent
trained on the enhanced data over a baseline RL
agent trained on the initial data, without
augmentation?

To this end, a general approach named Data Augmen-
tation using GANs is proposed for identifying poorly repre-
sented sections of security-related time series. Leveraging that
autoencoder neural network architectures can encode and
decode complex temporal dependencies to and from a latent
space, the proposal reduces the problem of identifying poorly
represented time series periods into a clustering problem [9]
and synthesises new examples of the minority class using a
GAN architecture. A method of integrating synthesised data
points into the original time series, respecting the original
constraints of the data, is presented, and experiments are
carried out for measuring the performance improvement on
benchmark reinforcement learning algorithms.

Parallels between the proposed method and the Time-
GAN method proposed by Yoon et al. for generating ar-
bitrary time-series [10] are acknowledged. *e proposed
method improves by particularising the problem to the
constraints of security-related time series on one hand and
the problem of data series minority data augmentation on
the other one.

Section 2 introduces fundamental concepts used by the
approach, along with a literature review on time series
generation. DAuGAN is introduced in Section 3 along with
proposed methodology, whilst experimental results and
their analysis are presented in Section 4. *e conclusions of
the paper and directions to further improve and extend
DAuGAN are outlined in Section 5.

2. Background

*is section presents a literature overview of the technical
notions used in this paper. *e importance and evolution of
generative adversarial and autoencoder networks are pre-
sented, together with a brief review on reinforcement
learning. Historical approaches related to data augmentation
and data synthesis on time series are also presented.

2.1. Generative Adversarial Networks. GANs is a deep
learning architecture that have been first introduced by Ian
Goodfellow et al. [11], which has been heavily used in image-

based tasks, from synthesising new images [12] to repro-
ducing the content of one image in the style of another.

At a very high level, the generative adversarial network
technique pits two deep neural networks against each other
in a zero-sum game. One of the networks, the generator,
acts as a map from a latent space towards a desired dis-
tribution, sampling noise from the latent space that is
synthesised as closely as possible to a point in the distri-
bution. Its counterpart, the critic, is fed samples from both
the real distribution and from the generator, with the goal
of deciding whether the sample is “real” or “fake.” Over
time, the two networks improve at their goal, resulting in
not only better fakes from the generator but also a better
ability to discern the fakes from the critic. Ideally, the
system converges towards equilibrium where the critic can
no longer separate between the two classes; i.e., it assign
equal probability for any sample to be either one of the
classes.

Formally, the generator attempts to minimise the value
of the following loss function, while the discriminator at-
tempts to maximise it: Ex[log(D(x))] + Ez[log(1 − D
(G(z)))]], where x is a random variable corresponding to
the real distribution, z is a random variable assigned to the
generated distribution, G(x) is the generator’s output, D(x)

is the discriminator’s output, and Ev denotes the expected
value over all instances v.

*e expected value is used to indicate that the loss is the
average over all samples of the batch at a given training step.
*e critic assigns values from 0 to 1, estimating the prob-
ability that a sample is real. Letting x denote the real dis-
tribution and z denote the synthesised distribution, the critic
attempts to maximise this loss, the upper bound being
obtained when all labels are properly assigned, while the
generator attempts to minimise it by controlling the second
term, i.e., generating more convincing examples, signified by
the G(z) term.*e log operations are derived from the cross
entropy between the real and fake distributions.

Notorious problems affecting GANs are mode collapse
and vanishing gradients. Vanishing gradients is a general
issue in machine learning, where gradients prove insufficient
for the machine learning model to update meaningfully,
while this issue has classically occurred in neural models
with high depth [13] or recurrent networks such as long-
short term memory architecture [14]. However, the issue
manifests particularly in the case of generative adversarial
networks: the unadjusted loss formulation presented above
will result in a critic that converges faster than the generator.
*us, the critic cannot offer constructive feedback for the
generator to improve on, since it perfectly discerns between
real and fake.

A connected issue with vanishing gradients that is faced
by generative adversarial networks is mode collapse. *e
problem manifests on the generator’s side by mapping all
latent points to the same synthesised sample. From the
perspective of game theory, both mode collapse and van-
ishing gradients issues are caused by the two players, the
critic and the generator, converging to a local, undesired
optimum of the game that does not offer enough incentives
for any of the networks to update their weights [15].
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Several improvements on the domain transfer sub-
problem have been addressing the mode collapse issue.
CycleGAN [16] introduces the following adjustments: in-
stead of sampling from a latent random space, the generator
samples from the input space of the input domain, with
output in the target domain. *e critic is fed both generated
images and those belonging to the target domain, thus
encouraging the generator to learn a better mapping be-
tween input and target. *us, the improvement resides in
translating the task into an unsupervised task, as the gen-
erator is ideally able to map any image from the first domain
to an image in the target domain. A limitation of the
CycleGAN paper is the domains being required to be ho-
mogeneous [17]. An improvement over the CycleGAN is
represented by TraVeLGAN [18], which adds to the classical
two network architectures formed of a generator and critic, a
third, siamese network, and eliminates the domain homo-
geneity constraint [19].

*e Wasserstein variation of the generative adversarial
network architecture (WGAN), authored by Arjovsky et al.
[20] offers a robust method to train GAN architectures. *e
WGAN improves the stability of learning, eliminates
problems such as mode collapse, and provides meaningful
learning curves useful for hyperparameter searches.

2.2.Autoencoders. *e autoencoder (AE) architecture uses a
two-part neural network to transform the input in a com-
pressed and meaningful representation using the encoder
part, recreating the input using the decoder part [21]. *e
technique proves to be immensely flexible and is of interest
to the purpose of this thesis since former research proved
that autoencoders are able to encode and decode complex
temporal features into the latent space [9]. Furthermore,
there are no special theoretical aspects to be considered over
a general-purpose deep learning architecture. *e autoen-
coder is presented as two symmetrical parts, with a small,
latent representation in the middle, usually trained to
minimise the mean squared error between the distribution
and itself.

AEs can be interpreted as an improvement over the sta-
tistical technique of principal component analysis. Principal
component analysis with p dimensions identifies an ortho-
normal base of p vectors that best identify the variance of the
input distribution [22]. *is technique is limited to linear
representations, unlike the manifold organized by the
autoencoder. *us, the AE is able to construct higher fidelity
correlations between the original and latent spaces, preserving
relationships. Furthermore, there are multiple accounts in the
literature in using the latent representation over the initial
dataset with great effect for increased classification perfor-
mance, better interpretability of the obtained clusters, or better
ability to generalize over the latent representation [23–25].

Salakhutidnov and Hinton restrict the latent represen-
tation to a binary code which is interpreted as the output of a
black-box hash function modelled by the encoder. *e
hashing is applied in the field of document retrieval, where
the hashing of the query is used to retrieve the directly
associated documents plus documents from neighbouring

hashes. *e task has also been approached from a generative
approach by Hansen et al. in Unsupervised Neural Gener-
ative Semantic Hashing [26].

2.3. Reinforcement Learning. Reinforcement learning (RL) is
a paradigm of the machine learning field where problems are
modelled around two fundamental notions: agents and
environments. Agents are able to interact with the envi-
ronment via a defined set of “actions” which change the
environment’s “state.” Defining the problem’s solution as a
desirable environment state, the agent is conditioned via
“rewards” and “punishments” to reach this favourable state.
RL purpose is to teach an agent the optimal policy of acting
inside an environment.*e environment can at any moment
be in a certain state that can be changed by the agent’s
actions. *e agent receives feedback from the environment
in the form of a reward. Using a tradeoff between reward and
value (future reward received by the agent by taking a certain
action in a particular state), the agent learns a policy that
decides the best course of action for a given state.

*is flexible framework has allowed to model complex
real-world situations: scheduling drug administration to
patients with chronic conditions in order to minimise risk of
negative interactions [27, 28], minimising energy costs as-
sociated with cooling of data centers [29], or outmatching
human players in games such as Go [30].

RL is facing a growing interest in the discipline of al-
gorithmic trading [31, 32]. *e interest can be explained by
the ease with which the problem can be modelled: given the
price fluctuation of a certain instrument, an agent’s purpose
is to maximise the overall profit. Current frontier in rein-
forcement learning focuses on improved training perfor-
mance, particularly incentivising the agent to explore
multiple action courses and breaking the state causality effect
on training by sampling and replaying random past states
[33]. Intuitively, these improvements focus on offering the
agent the ability to retrospect and decide on past better
courses of action.

2.4. Time Series Generation. GAN-based methods or gen-
erative adversarial network models have emerged as a
popular technique for generating or augmenting datasets,
especially with images and videos. However, GANs give
poor fidelity in networking data, which has both complex
temporal correlations and mixed discrete-continuous data
types. Although GAN-based time series generation exist-
s—for instance for medical time series—such techniques fail
on more complex data exhibiting poor autocorrelation
scores on long sequences while prone to mode collapse.

TimeGAN architecture introduced by Yoon et al. [10] is
of strong interest for the proposed method, as it reinforces
the idea that latent spaces can be used to better understand
the original time series distribution of the data. Specifically,
the paper proposes using two latent spaces, HS and HX,
where S represents the mathematical space of static features
of the time series, e.g., gender, while X represents the space
of temporal dependencies of the time series, e.g., the cho-
lesterol level as the person ages. *e paper asserts that
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instead of using only a generator-discriminator system for
creating new samples, introducing supervised learning to the
unsupervised generation will increase the fidelity of gen-
erated data. *e supervised loss comes from two encoder-
decoder pairs (h: S⟼HS, e: HS⟼S) and (hX: X⟼HX,

eX: HX⟼X) between the initial space and latent space,
with the GAN networks learning to directly replicate the
latent vectors: (g: ZS⟼HS, d: HS⟼IR) and (gX:

ZS⟼HS, d: HS⟼IR), where ZS and ZX are the space the
random noise is sampled from. Of particular interest is the
use of recurrent neural networks throughout the architec-
ture. Notably, gX features the use of a 2-step autoregression
dependency for creating the temporal latent vector. Re-
current neural networks are also used for encoding and
decoding between X and HX.

DoppelGANger architecture introduced by Lin et al. [34]
represents a current benchmark in time series generation. It
tackles a similar problem with TimeGAN as both separate
the generation of static attributes from the time series
measurements, although focusing on privacy over accurate
reproduction of the target distribution time series. Specifi-
cally, the generation procedure for the time series implies a
conditional process akin to prior work with Conditional
Generative Adversarial Nets [35].

*e network further improves by providing a normal-
ization approach that avoids mode collapse on long time
series: instead of normalizing the entire data set at once,
using the global minimum and maximum, the algorithm
normalizes using the per-sample minimum and maximum.
Furthermore, the minimum and maximum are attached as
static metadata describing the associated time series. *us,
the generator is responsible for creating the static features
and is also in charge of creating the features that normalize
the time series.

*e final DoppelGANger architecture uses three net-
works for generating data: a generator network used for
generating static attributes and a generator network used for
generating the minimum and maximum of each time series,
as described above. *e data generated by the two networks
is fed into the third, a recurrent neural network which le-
verages the provided information plus its internal state to
generate measurements. A stacked discriminator critiques
the generator’s work: one model focuses on the generated
static features (also called metadata), while the other is a
recurrent neural network critiquing the generated
measurements.

3. Methodology

*is section presents the steps undertaken in obtaining the
augmented dataset. *e dataset is discussed, along with the
data preprocessing operations carried out. Afterwards, the
LSTM-based autoencoder architecture employed for trans-
lating between the initial and the latent space is detailed upon.
*e latent space obtained is explored, and underrepresented
sequences are identified using an OPTICS clustering algo-
rithm. Moving on, the adversarial network (WGAN) used to
sample new examples is presented, and the process of inte-
grating the new samples into the initial dataset is discussed.

A high-level overview of the DAuGAN approach is
depicted in Figure 1. *e code, models, and dataset used are
publicly available in [36].

3.1. Dataset. For the purpose of the paper, a dataset de-
scribing the evolution of the price for Apple’s company
stock, denoted by the AAPL ticker on New York stock
exchange, has been chosen.

*e dataset presents samples at every 15 minutes, cov-
ering the company’s price evolution starting from 1st of
January 1998 until 3r d of December 2021, totalling 289487
time steps. *e dataset features 7 initial columns: date, time,
open, high, low, close, and volume. *ese features are often
used in the domain of algorithmic trading and offer indi-
cators on the price’s evolution per time step. *e open
feature describes the price at the start of the time step, and
high and low describe the maximum and minimum reached
throughout the time-step, while the close price describes the
price at interval’s end. *e volume feature represents the
number of trades executed in the given period.

Table 1 presents a sample fragment from the beginning
of the time series.

Since the time steps are continuous, there are constraints
that apply for any time step t.

∀t≥ 1: closet−1 � opent, (1)

xt ≤ hight,∀t,∀x ∈ low, close, open􏼈 􏼉, (2)

xt ≥ closet,∀t,∀x ∈ low, high, open􏼈 􏼉. (3)

However, real world imposes exceptions to these con-
straints. First, the data used come only from the trading
hours action, starting from 09 : 30 until 16 : 00, Monday to
Friday, when all traders can take part in the market.
However, the NYSE, and in general, the exchanges located in
the United States, also present a “before-market” and “after-
market” period, limited to institutional investors such as
pension funds, hedge funds, or banks. Furthermore, shares
can be traded between any two interested parties, without
the exchange as an intermediary.

It is beyond the scope of the paper to identify and
enumerate all possible sources of discontinuity that could
violate Equation (1). *e simplifying assumption that the
condition holds for any two consecutive steps is made.

Basic statistics for the numerical features of the dataset
are calculated. *e analysis from Table 2 reveals that volume
features a very wide, [102, 107], domain.

Columns open and volume are plotted, observing that
columns high, low, and close will trend in correlation and
close to open column, leading to Figure 2. Figure 2(a)
presents the histogram of volume column in the initial
dataset, while Figure 2(b) depicts the open column evolution
in time.

*e keen observer will be very interested in the two
sudden drops in price illustrated in open column evolution
illustrated in Figure 2(b). *ey represent a domain-specific
event called share splitting. In a X: 1 share split, the price of
one share is divided by X while each share presplit is
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replaced with X times more. *is preserves the value of the
investment while lowering the financial bar for buying one
share, attracting interest and activity from smaller investors
with the better price per action.

3.1.1. Data Preprocessing. Date and time features are dis-
carded, since the augmented dataset obtained at the end of the
procedure contains a larger number of samples and the two
features must be mocked. For training open, high, low, close,
and volume columns are used. Considering the exponential
distribution of the volume highlighted in Figure 2, with values

in the domain of [102, 107], a logarithm transformation is
applied column-wise, followed two independent statistical
normalization operations: one for the [open,high, low, close]
columns and one for volume. Applying normalization on all
columns would violate the constraint of Equation (1), as the
features follow different distributions. Training on non-
logarithmized leads to an autoencoder collapse, with most
values outputted be decoder for volume being zero.

Figure 3 illustrates the dataset after normalization. One
observes that the transformation of volume feature
(Figure 3(a)) is notable, compared to the initial data
(Figure 2(a)).

LSTM based
autoencoder

OPTICS
clustering
algorithm

WGAN
architecture

Figure 1: DAuGAN approach.

Table 1: An excerpt from the beginning of the time series.

Date Time Open High Low Close Volume
1998/02/01 09:30 13.6250 13.7500 13.5000 13.6875 20270
1998/02/01 09:45 13.6875 13.7500 13.5000 13.6250 334000
1998/02/01 10:00 13.6250 13.7500 13.5625 13.7500 299900
1998/02/01 10:15 13.7500 14.0000 13.6250 14.0000 430201
1998/02/01 10:30 13.9375 14.8125 13.7500 14.6250 944200
1998/02/01 10:45 14.6250 14.7500 14.3750 14.4375 218103

Table 2: Count, mean, standard deviation, and minimum values for the entire dataset plus upper bounds for each quarter of the dataset in
sorted order.

Open High Low Close Volume
Count 2.894870e+ 05 2.894870e+ 05 2.894870e+ 05 2.894870e+ 05 2.894870e+ 05
Mean 187.757776 188.038462 187.466230 187.758491 4.580510e+ 05
Std 160.514466 160.689723 160.326415 160.513598 9.206810e+ 05
Min 12.550000 12.950000 11.312500 12.850000 1.000000e+ 02
25% 78.750000 78.920000 78.500000 78.750000 5.900000e+ 03
50% 131.040000 131.330000 130.790000 131.040000 1.033630e+ 05
75% 248.160000 248.605000 247.625000 248.150000 5.635505e+ 05
Max 704.800000 705.070000 704.530000 704.800000 7.514145e+ 07
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In preparation for the training of the models, time series
are split into chunks of twenty time steps and an overlap of
eight time steps between two chunks formed of the forty
consecutive time steps.

3.2. Autoencoder. It is difficult to identify outliers in the
original, time series problem space.*e issue is resolved via an
autoencoder architecture that translates the time series
samples into a latent, Euclidean space, where clustering can be
applied in order to identify outliers.*e autoencoder is tasked
with translating between the two spaces. *e dimensions of
the latent space are not significant in themselves, and the
cardinality has been chosen in order to minimise Pearson
correlation, reducing autoencoder training time.

*e architecture of the proposed autoencoder is illus-
trated in Table 3 (the architecture for the encoder) and Table 4
(the architecture for the decoder). *e encoder and decoder
parts of the architecture mirror each other. When repro-
ducing the experiments, one should expect training and
validation losses in the domain of 10− 4 after 1000 epochs of
training. Besides the valloss metric, Person correlation between
dimensions of latent space is employed in order to determine
the minimum number of nonredundant dimensions.

In the encoder, one-dimensional convolutions use same
padding mode, increasing the number of dimensions fed into
the LSTM layers. It has been observed that the expansion in
dimensionality aids the convergence of LSTM layers. *ree
stacked LSTM layers are used to capture temporal depen-
dencies and encode them in the condensed latent form. *e
decoder operates in the same manner, with stacked LSTM
layers expanding the temporal correlations encoded in latent
and reverse convolutions condensing dimensions back to the
original form. Following best practices from the literature,
dropout layers with a rate β � 0.3 are intertwined for regu-
larization purposes [37], and PReLu function is employed as
activation between all layers [38]. *e optimization algorithm
involved in training is Stochastic Gradient Descent with a
learning rate of α � 0.0001 that uses Nesterov momentum
[39]. *e choice of the optimizer is motivated by the fact that
Adam is not guaranteed to converge [40].

3.2.1. Analysing the Latent Space. *e Pearson correlation
heat map between the features is illustrated in Figure 4. *e
latent features have weak correlation, indicating an optimum
number of features. AnOPTICS algorithm [41] is applied for
identifying minority clusters, sampling the epsilon
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Figure 2: (a) Histogram of volume feature in the initial dataset; (b) open feature evolution in time.
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Figure 3: (a) Histogram of volume feature in the normalized dataset; (b) open feature evolution in time in the dataset after normalization.
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Table 3: Encoder architecture.

Layer (type) Output shape Param #
input_1 (InputLayer) [(None; 20; 5)] 0
conv1d (Conv1D) (None; 20; 256) 5376
p_re_lu (PReLU) (None; 20; 256) 5120
dropout (Dropout) (None; 20; 256) 0
conv1d_1 (Conv1D) (None; 20; 256) 262400
p_re_lu_1 (PReLU) (None; 20; 256) 5120
dropout_1 (Dropout) (None; 20; 256) 0
conv1d_2 (Conv1D) (None; 20; 256) 262400
p_re_lu_2 (PReLU) (None; 20; 256) 5120
dropout_2 (Dropout) (None; 20; 256) 0
lstm (LSTM) (None; 20; 256) 525312
p_re_lu_3 (PReLU) (None; 20; 256) 5120
dropout_3 (Dropout) (None; 20; 256) 0
lstm_1 (LSTM) (None; 20; 256) 525312
p_re_lu_4 (PReLU) (None; 20; 256) 5120
dropout_4 (Dropout) (None; 20; 256) 0
lstm_2 (LSTM) (None; 12) 12912

Table 4: Decoder architecture.

Layer (type) Output shape Param #
input_2 (InputLayer) [(None; 12)] 0
repeat_vector (RepeatVector) (None; 20; 12) 0
lstm_3 (LSTM) (None; 20; 256) 275456
p_re_lu_5 (PReLU) (None; 20; 256) 5120
dropout_5 (Dropout) (None; 20; 256) 0
lstm_4 (LSTM) (None; 20; 256) 525312
p_re_lu_6 (PReLU) (None; 20; 256) 5120
dropout_6 (Dropout) (None; 20; 256) 0
conv1d_3 (Conv1D) (None; 20; 256) 262400
p_re_lu_7 (PReLU) (None; 20; 256) 5120
dropout_7 (Dropout) (None; 20; 256) 0
conv1d_4 (Conv1D) (None; 20; 256) 262400
p_re_lu_8 (PReLU) (None; 20; 256) 5120
dropout_8 (Dropout) (None; 20; 256) 0
conv1d_5 (Conv1D) (None; 20; 256) 262400
p_re_lu_9 (PReLU) (None; 20; 256) 5120
dropout_9 (Dropout) (None; 20; 256) 0
time_distributed (TimeDistributed) (None; 20; 5) 1285
time_distributed_1 (TimeDistributed) (None; 20; 5) 0
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Figure 4: Pearson correlation between features.
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hyperparameter linearly from the [0.05, 0.5] range. *e
Elbow method [42] is applied on total variance in order to
choose an optimum number of clusters. Analysis yields a
majority cluster of ≈ 20000 points, with the rest being
classified as outliers or noise. Principal component analysis
[43] is employed for reducing dimensionality to three axes,
thus allowing visualization.

3.3. Synthesising New Samples. *e generative architecture
presented in Tables 5 and 6 is able to synthesise credible
examples that resemble the minority class. For statistical
confirmation, a multivariate Wilcoxon test between the real
minority points and the generated points is used [44, 45]. A
p-value of 0.7275 is obtained at a significance level α � 0.05,
unable to refute the null hypothesis, proving there is no
significant difference between the real and the generated
points. *e resemblance between distributions can be ob-
served in Figure 5.

Figure 6 depicts the correlation heat map for the syn-
thesised examples.

It is worth noting that the feature correlation for syn-
thesised latent vectors slightly differs from the minority
features’ correlation, as shown in Figure 7.

3.3.1. Smoothing the Synthesised Examples. Despite statis-
tical resemblance of the generated samples, the WGAN is
unable to model the constraints from formulae (1), (2), and
(3).

*e issue is approached as an optimization problem: the
closest point to the initially synthesised data point is found
that satisfies all constraints simultaneously. Bayesian search
[46] in tandem with a greedy algorithm is employed. *e
time steps corresponding to the latent point are iteratively

“smoothed.” If the time step’s values do not respect the
imposed constraints, the latent point will be assigned a
negative value and a new neighbouring latent point will be
verified. Should the time step be found adequate, it is
assigned the inverse of the distance between the original
location of the sampled synthetic point and the current
location of the data point, and this metric is maximised. It
should be noted that the original data point is kept as
reference throughout all explorations.

Formally, let d � ‖clv − olv‖2 (clv denotes the current
latent vector, and olv represents the original latent vector);
Bayesian search must optimize the black-box function c for
each time step, minimising the distance d at the overall data
point level. After fixing a time step, the open price of the next
time step is set to be equal to the close price of the current
one in order to preserve continuity.

c(open, high, low, close) �

−1, if (time step passes),

1
d

, otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

*e search space of the Bayesian process over c is
constrained to X ±

��
X

√
, where X is the value for any of the

features. *e point with the maximum score after a set
number of steps is selected and integrated in the time series.
For time steps with index t≥ 1, the search is carried out only
for high, low, close􏼈 􏼉, since open price has been set at the first
step.

In order to integrate a smoothed chunk ζ into the
original time series, a tuple of consecutive chunks, defined by
index t< len(time series) − 1, is identified such that the
objective is minimised:

closet, opent+1, c volumet: volumet+1( 􏼁( − openζ , closeζ , c volumeζ􏼐 􏼑􏼐
�����

�����
2
. (5)

Minimising the objective is equivalent to minimising the
distance between (closet, openζ) and (closeζ , opent+1), pre-
serving the overall smoothness of the time series. Table 7
presents a chunk fragment obtained in the generation
process.

4. Results and Discussion

With the goal of answering research question RQ2, Section
4.1 presents the benchmark used to assess the effectiveness of
the augmentation introduced in Section 3 in improving the
performance of trading algorithms. *e obtained results are
then presented in Section 4.2.

4.1. BenchmarkMethodology andData Preparation. In order
to assess the impact of augmentation, independent rein-
forcement learning trading algorithms and domain-specific
data preparation procedures are provided by the open-
source FinRL library [47].

For the benchmark, 80% of the original time series is
kept for training the trading strategies, while employing the
rest of 20% for blind validation. For fair comparison, the
augmentation procedure is employed only on the training
portion, and the impact is measured on the validation pe-
riod. *e algorithms are trained on two distinct datasets, the
augmented training dataset and original training dataset,
until convergence, and score on validation is measured.

FinRL preprocessing is applied on both datasets. *e
procedure adds technical indicators, whose purpose is to
highlight trends in a security’s price evolution, such as
relative volatility, magnitude of price shifts, or trends in
price shift. *e indicators added by FinRL are 12-MACD,
Bollinger Bands, 30-RelativeStrengthIndex, 30-Commodi-
tyChannelIndex, 30-AverageDirectionalIndex, 30-Close-
SimpleMovingAverage, and 60-CloseSimpleMovAvg.

*e FinRL library requires the presence of two extra
columns in order to calculate the technical indicators: the tic
column which represents the security’s descriptor (FinRL is
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able to trade multiple securities at once, hence the re-
quirement for this column) and the date column which
represents the date and time of the column. With the
simplifying assumption that the security has been traded
continuously in intervals of 15 minutes starting from an
arbitrary date, the two columns are added.

*e trading agent’s state is described by the tuple (shares,
capital), where shares describes the number of owned shares,
while capital describes the amount of monetary units

available for buying shares. *e state of the agent is com-
pleted by the time series, as seen until moment t of time.*e
initial state (shares0, capital0) � (0, 200000). *e value of a
portfolio value with shares is defined as capitalt + 􏽐0,ropent.

At any time step, the agent’s action space spans the
integers [−min(k, sharest), k]. k is a positive integer
hyperparameter set in the environment. Negative integers
indicate selling that amount of shares, receiving an amount
of capital equal to the opening price for each sold share.

Table 5: WGAN generator architecture.

Layer (type) Output shape Param #
input_4 (InputLayer) [(None; 15; 1)] 0
dense_3 (Dense) (None; 15; 20) 40
conv1d_9 (Conv1D) (None; 8; 16) 1296
leaky_re_lu_3 (LeakyReLU) (None; 8; 16) 0
conv1d_10 (Conv1D) (None; 4; 16) 1040
leaky_re_lu_4 (LeakyReLU) (None; 4; 16) 0
flatten_1 (Flatten) (None; 64) 0
dense_4 (Dense) (None; 100) 6500
dense_5 (Dense) (None; 100) 10100
dense_6 (ense) (None; 12) 1212

Table 6: WGAN critic architecture.

Layer (type) Output shape Param #
input_3 (InputLayer) [(None; 12; 1)] 0
conv1d_6 (Conv1D) (None; 6; 16) 80
leaky_re_lu (LeakyReLU) (None; 6; 16) 0
conv1d_7 (Conv1D) (None; 3; 16) 1040
leaky_re_lu_1 (LeakyReLU) (None; 3; 16) 0
conv1d_8 (Conv1D) (None; 2; 16) 1040
leaky_re_lu_2 (LeakyReLU) (None; 2; 16) 0
flatten (Flatten) (None; 32) 0
dense_1 (Dense) (None; 100) 3300
dense_2 (Dense) (None; 1) 101
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Figure 5: Distribution of latent points before and after synthesising new examples.
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Table 7: Generated chunk fragment.

Open High Low Close Volume
0 326.366272 341.629822 314.827942 330.429718 517.638489
1 330.429718 336.826141 310.153687 325.654053 899.540161
2 325.654053 338.448029 311.383545 327.100647 2897.673340
3 327.100647 351.454468 313.967712 351.090942 3598.678955
4 351.090942 340.434845 313.185944 329.017059 4032.858887
5 329.017059 340.508057 313.215607 329.068115 5119.424316
6 329.068115 335.061981 308.940491 324.127441 153.940964
7 324.127441 331.650665 305.705658 320.777008 144.449570
8 320.777008 335.563629 308.537842 324.214722 4437.651367
9 324.214722 340.812073 313.569183 329.397736 3368.686523
10 329.397736 340.041931 312.984558 328.713165 2112.148193
11 328.713165 344.093750 312.746857 319.489136 575.971191
12 319.489136 339.126801 312.318512 327.886292 1199.597290
13 327.886292 344.057251 316.442230 332.473938 9648.517578
14 332.473938 346.419373 318.820251 334.856781 5601.142578
15 334.856781 345.538300 318.073364 334.029663 4347.550781
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Positive amounts indicate buying stock units and have the
reverse effect on capital. *e special case k � 0, denoting the
agent’s choice to hold its current position, should be noted.

4.2. Results. A positive correlation between the amount of
samples introduced in the original time series, and the
performance improvement of the algorithm is identified.
*e improvement is defined as the difference in portfolio
value between training on the original time series and
augmented series.

Table 8 summarizes the performance improvement of
DAuGANa. Permutations of introduced samples and
benchmark algorithm used: Deep Deterministic Policy
Gradient (DDPG), Proximal Policy Optimization (PPO),
and Advantage Actor Critic (A2C). Regarding the hyper-
parameter setting, the algorithms were trained using the
values depicted in Table 9.

5. Conclusions and Future Work

*e paper has introduced a novel augmentation method for
identifying poorly represented sections of a time series,
studied the synthesis of new data points and their integration
into the time series, and assessed the performance im-
provement on a benchmark machine learning model.

Data synthetisation is a valid training augmentation in
the area of algorithmic trading, which has the potential to be

extended to other domains involving time series, due to the
generality of the latent space approach. Of interest for the
future are mission-critical tasks such as detecting rare
medical conditions or weather now-casting, where perfor-
mance improvement is vital.

As possible improvements, the authors hypothesise that
the use of recurrent neural networks at the generation step
[10], combined with the autonormalization trick using
DoppelGANger discussed in [34], can result in longer
synthesised time series, eliminating the need for interleaving
generated samples back into the original time series. Instead,
numerous independent “training episodes,” several chunks
in length, could be fed to the reinforcement learning agent, a
method known to improve training performance [48].
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