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To explore the effect of the full iterative model reconstruction algorithm (IMR) on chest CT image processing and its adoption
value in the clinical diagnosis of lung cancer patients, multislice spiral CT (MSCT) scans were performed on 96 patients with
pulmonary nodules. Reconstruction was performed by hybrid iterative reconstruction (iDose4) and IMR2 algorithms. Then, the
image contrast, spatial resolution, density resolution, image uniformity, and noise of the CT reconstructed image were recorded.
The benign and malignant pulmonary nodules of patients were collected and classified into malignant pulmonary nodule group
and benign pulmonary nodule group, and the differences in chest CT imaging characteristics between the two groups were
compared. The subject’s receiver operating characteristic (ROC) curve was used to analyze the diagnostic sensitivity, specificity,
and area under the curve (AUC) of CT for benign and malignant pulmonary nodules. It was found that the spatial resolution,
density resolution, image uniformity, and contrast of the CT image reconstructed by the IMR2 algorithm were remarkably greater
than those of the iDose4 algorithm, and the noise was considerably less than that of the iDose4 algorithm (P < 0.05). Among 96
patients with pulmonary nodules, 65 were malignant nodules, including 15 squamous cell carcinoma, 31 adenocarcinoma, and 19
small cell carcinomas. There were 31 cases of benign nodules, including 14 cases of hamartoma, 10 cases of tuberculous
granuloma, 2 cases of sclerosing hemangioma, and 5 cases of diffuse lymphocyte proliferation. The pulmonary nodule malignant
group and the pulmonary nodule benign group had statistical differences in pulmonary nodule size, nodule morphology, burr
sign, lobular sign, vascular sign, bronchial sign, and pleural depression sign (P < 0.05). The sensitivity, specificity, and area under
the curve (AUC) of IMR2 algorithm processing chest CT images for liver cancer diagnosis were 85.7%, 82.3%, and 0.815,
respectively, which were significantly higher than the original CT images (P <0.05). In short, chest MSCT based on the IMR2
algorithm can greatly improve the diagnosis efficiency of lung cancer and had practical significance for the timely detection of
early lung cancer.

1. Introduction

Lung cancer is a kind of malignant tumor that occurs in the
lungs. It is one of the most common malignant tumors in the
world, and its incidence ranks first in the cause of death
among tumor diseases in China. Lung cancer is classified
into non-small cell lung cancer (NSCLC) and small cell lung
cancer (SCLC) according to the pathological type. Among
them, NSCLC includes adenocarcinoma (AC), squamous
cell carcinoma (SCC), and large cell carcinoma (LCC).
NSCLC accounts for more than 85% of all lung cancers [1, 2].

At present, lung cancer is considered as a respiratory disease,
and about 80% of lung cancers are mainly caused by
smoking. Global air pollution is also one of the main causes
of lung cancer-related deaths [3]. The key to reducing lung
cancer mortality lies in early detection. However, early lung
cancer often has no obvious clinical symptoms, and health
examinations are needed to achieve early diagnosis.
Therefore, it is necessary to diagnose and treat lung cancer as
early as possible.

As one of the main methods for early diagnosis of lung
cancer, chest computerized tomography (CT) has the
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advantages of high spatial resolution, high density resolu-
tion, and good anisotropy, but there are also a series of
problems that need to be optimized, such as noise and
artifacts [4]. In recent years, many advances have been made
in the optimization technology for CT images. The recon-
struction algorithm for CT images was originally developed
by the filtered back projection (FBP) algorithm. FBP algo-
rithm uses filtering function or convolution algorithm to
balance the spatial resolution and noise of the final recon-
structed image. Due to the high requirements for the amount
of projection data, this algorithm makes the CT scan dose
reduced, the reconstruction time is too long, and the CT
image has problems such as noise [5]. To break through the
limitations of the FBP algorithm, people began to try new
optimization algorithms, such as adaptive statistical iterative
reconstruction (ASiR) [6], iterative reconstruction in image
space (IRIS) [7], adaptive iterative dose reduction (AIDR)
[8], and hybrid iterative reconstruction technology (iDose).

As an iterative reconstruction algorithm using dual
models, iDose4 is part of the iterative technology based on
FBP. This algorithm can significantly reduce the noise of CT
images, but it is still a part of iterative technology. When
image reconstruction is performed, the influence of the
system hardware and the photon characteristics of part of
the incident X-ray on the image are not considered, which
limits the further optimization of CT images [9]. The
knowledge based IMR is a new upgrade based on iDose4,
which removes the FEP component. The optimization effect
is realized through continuously optimizing image statistics,
data statistics, and system models in the image and data
space. In recent years, a comparative study on the IMR
algorithm and the FEP algorithm pointed out that, com-
pared to FEP and IMR, it can reduce the radiation dose by
60% to 80%, reduces noise by 70% to 90%, and increases the
spatial resolution by about 50% [10]. It is verified that the
IMR algorithm has a good application prospect in the op-
timization of CT images. At present, the IMR algorithm has
been applied to the clinical diagnosis of many diseases, but
there is no report about the adoption value of IMR in the
early diagnosis of lung cancer patients.

Therefore, the IMR algorithm based on the iDose4 al-
gorithm was employed to iteratively reconstruct the chest
CT of lung cancer patients. The receiver operating charac-
teristic (ROC) curve was used to analyze the early diagnosis
value of the two algorithms for lung cancer patients, so as to
comprehensively evaluate the application value of the IMR
algorithm in the CT diagnosis of lung cancer patients. It was
hoped to provide some reference for the related research on
the optimization of chest CT image quality and the im-
provement of diagnostic accuracy in clinical lung cancer
patients.

2. Materials and Methods

2.1. Research Object. In this study, 96 patients with lung
cancer admitted to hospital were selected as the research
object, including 54 males and 42 females, aged 36-72 years.
All patients received multislice spiral CT (MSCT) scans. The
average age of patients was 58.05+10.95 years, the body
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mass index (BMI) ranged from 19.70-29.64 kg/rnz, and the
average BMI was 26.35 + 3.67 kg/m”. The benign and ma-
lignant pulmonary nodules of patients were collected and
classified into malignant pulmonary nodule group and
benign pulmonary nodule group. The study had been ap-
proved by the ethics committee of the hospital. The patients
included in the study and their family members were in-
formed and signed the informed consent forms.

Inclusion criteria: (i) the chest CT showed a lung mass
with a diameter less than or equal to 3 cm, with clear or fuzzy
edges, and a circular-like density with increased density; (ii)
complete basic clinical information; (iii) patients without
serious heart, liver, or kidney dysfunction and serious in-
fection; (iv) patients without previous history of tumors or
other types of tumors. Exclusion criteria: (i) patients who
had received chemotherapy and radiotherapy, immuno-
therapy, and other antitumor treatments before surgery; (ii)
patients with other malignant tumors; (iii) female patients
during menstruation, pregnancy, and lactation.

2.2. CT Scans. MSCT scans were performed on 96 patients
with pulmonary nodules. The CT model was a microplate 3D
iCT (Philips Corporation, Cleveland, USA). Breath-hold
training was made before plain CT scan of the chest. During
the scan, the subject was in a supine position with his arms
raised and his head advanced. Scanning conditions: 120 Kv,
30mAs for malignant pulmonary nodule group; 120Ky,
10 mAs for benign pulmonary nodule group. Collimation
was 128 x0.625mm, pitch was 0.992, rotation time was
0.75 s/r, and matrix was 512 x 512. The scan range was from
the tip of the lung to the bottom of the lung. Scanning
parameters: pitch was 0.920, stereoscopic field of view
(SFOV) was 50 cm, rotation time was 1 s/r, and collimation
was 64 x0.625 mm. The tube voltage was 120kV, the tube
current was set in 9 groups, and the current sizes were 20, 40,
60, 80, 100, 200, 300, 400, and 500 mAs, respectively.

2.3. Patient CT Optimization Based on iDose4 Algorithm and
IMR Algorithm. The original data of the CT images ob-
tained from the scan were reconstructed by the iDose4
algorithm and the IMR algorithm, respectively. The data
parameters of iDose4 were Standard (B). iDose was
employed to iteratively reconstruct the 4™ level among the
7 levels, which was recorded as iDose4. IMR iteratively
reconstructed the second level of the 3 levels, which was
denoted as IMR 2. The reconstruction parameters were
Routine, Soft, and SharpPlus. Display field of view (DFOV)
was 25cm, layer thickness was 5mm, layer spacing was
5mm, and matrix was 512 x 512. The reconstructed image
data was saved in a disc. Image detection was performed by
Iris image quality automatic detection software (V2.4,
2009, Iris QA, LLC, USA).

The IMR algorithm model is upgraded and optimized
based on the image degradation model. First, p m xn LR
observation images are set.

yk:DBkZ'f'Vlk,lSkSP. (1)
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In the model of (1), y; is an N x1 (N=m n) vector
composed of k m xn LLR observation images sorted by
dictionary. If r; and r, are downsampling factors in the
horizontal and vertical directions, respectively, then Z is the
z—a vector of the HH image formed after dictionary
sorting, and r;m x r,n is the affine transformation matrix.
Bk is the fuzzy matrix, D is the downsampling matrix of
rir,N x r,r,N, and n;. is the Gaussian white noise of N x 1
vector, which can be obtained from model (1). The image
SSR reconstruction needs to solve the following minimi-
zation problems, and the corresponding equation is as
follows:

minJ (2): ] (2) = ) ||yx - DBM,z]. 2)
k

Another balance item is introduced for adjustment, and
there is

minJ (2): J (2) = Y |yx - DBMyz|* + 4, (2). (3)
k

In (3), A, is the balance factor and p(z) is the regula-
rization term. There are many ways to determine p(z).

v @= Y ¥ Al ossnol, @
l=—w M=0

where S\ and S” are the movement matrixes that move the
image z in the horizontal and vertical directions by / and m
pixels, respectively, and « (0<a<1) is the weighting
coefficient.

In short, a constant a will have a double effect on the
reconstructed HR image, so how to choose a suitable « is
very important for the quality of the final reconstructed HR
image. An adaptive weighting coefficient ai is introduced.
According to the difference between the specific edge and
the smooth part, the edge of the image is sharpened, and the
other parts of the image are also smoothed and noise is
suppressed, so as to effectively ensure the image quality. The
specific method is as follows.

It is assumed that (5) can be obtained from (4):

perv(@ =Y 3 A"z @ml,  (5)
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z =z (Lm) = [z, (m), 2, (M), ..., Z, sy, (Lm)]  shall
have a physical meaning. The element z; (/, ) in the vector is
the difference between the pixel z at the same position in the
reconstructed image z — z' (I, m) and the surrounding pixels.
In a grayscale image, if it is too large, it means that the
reconstructed image z has a sudden change around the i-th
pixel; that is, there is an edge around the i point. Therefore, it
is hoped that the reconstruction algorithm can sharpen the
edge around the i point and highlight the display effect of the
edge. Otherwise, it is too small, indicating that the 7 pixel in
the image is very smooth, and it is hoped that the recon-
struction algorithm can suppress noise. In summary, to
perform SSR reconstruction according to the characteristics
of different images, an adaptive bilateral full-variable reg-
ularization term is introduced, which is expressed as follows.

z—zI(lm) = [z, (L m),z,(m), ..., Z, ;. ,(I,m)] shall
have a physical meaning. The element z — z/ (I,m) in the
vector z; (I, m) is the difference between the pixel at the same
position in the reconstructed image z and the pixels around
it. In a grayscale image, 0 < z; (l.m) <255, if z; is too large, it
indicates that the reconstructed image z has a sudden change
around the first pixel; that is, there is an edge around the —i
point. Therefore, it is hoped that the reconstruction algo-
rithm can sharpen the edge around the ip point to highlight
the display effect of the edge. Otherwise, z; (I.m) is too small,
which means that the i pixel of the image is very smooth, and
it is hoped that the reconstruction algorithm can suppress
noise. In summary, to realize SSR reconstruction based on
the characteristics of different images, an adaptive bilateral
tull variation regularization term pgpry (2) is introduced as
follows.
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Equation (6) is the adaptive weighting coefficient that
changes according to the difference of each pixel of the
reconstructed HR image, which fully guarantees the
adaptability of the algorithm, thereby theoretically im-
proving the quality of the reconstructed HR image.

The computer automatically analyzed and detected the
CT scan data of 96 patients, and the computer gave a test
report. Measurement indicators included spatial resolution,
density resolution, image uniformity, and noise conditions.

2.3.1. Spatial Resolution Measurement. It was known that
the CT of the patient contained 21-line pairs for visual in-
spection, which were used as the point source for the
software to calculate the modulation transfer function
(MTEF). First, some images were randomly selected during
the preliminary experiment, and the difference between the
visual inspection method and the MTF method in evaluating
the spatial resolution was compared. Giving that the cor-
responding value of MTF10% was close to the visual method,
it was set as the reference value of image spatial resolution. In
this study, if the tube current was less than 50 mAs, since the
software cannot automatically detect the point source, it
would be sent to the postprocessing workstation. The data
cannot be collected accurately, so visual inspection was used
to record the line logarithm. This operation was jointly
completed by two radiologists with more than 5 years of
work experience, and the differences in the judgment results
were negotiated and handled.

2.3.2. Density Resolution Measurement. In the Iris image
quality automatic detection report, the density resolution
is expressed by contrast, which is the minimum CT value
required to distinguish a target of a certain size. In this
experiment, the contrast of the CT value required to
distinguish a target with a diameter of 5mm was
included as an objective indicator of the density resolution
(unit: %).



2.3.3. Image Uniformity and Noise Measurement. In the
chest CT image, the software automatically identified and
delineated the region of interest and measured the CT value
and noise (SD) of the center, upper, and lower left and 2 cm
right away from the image edge. The maximum deviation
between edge and center CT value was the reference value of
image uniformity. The ambient and central noise values were
averaged as the noise of this image.

2.4. Acquisition of CT Imaging Omics Features and Detection
of Optimized Effects in Patients with Lung Cancer.
Imaging analysis was performed on the optimized CT im-
ages of lung cancer patients. The statistics on the typical
imaging characteristics of lung cancer patients were col-
lected, and the malignant group of pulmonary nodules and
the benign group of pulmonary nodules were analyzed in
terms of the imaging characteristics of the CT images of the
two groups of patients. Moreover, the differences in the
imaging characteristics of the CT images of the two groups of
patients were compared, including (i) nodule size: the
maximum axial diameter of the nodule in the mediastinal
window was measured; (i) nodule morphology: regular or
irregular; (iii) fuzzy sign: it was manifested as a long line
shadow or short dense thin line shadow that extended ra-
dially from the edge of the nodule to the surrounding lung
field in the lung window and was not connected to the
pleura; (iv) lobular sign: manifested as obvious unevenness
on the edge of the nodule, and multiple arcs with notches; (v)
vascular sign: it was manifested as the vascular structure
around the nodule gathering in the direction of the lesion, or
it was manifested as the blood vessel passing through or
ending at the lesion; (vi) bronchial sign: mainly manifested
as thin strips, tubular shadows with gas-like density, or dot-
like translucent shadows appearing on continuous layers;
(vii) cavitation sign: mostly 2-3mm gas sample density
shadows, excluding the density reduction shadows that
appeared on continuous layers, which may be unoccluded
small bronchi or alveoli that became larger lumens or
vacuoles due to traction; (viii) pleural depression sign:
manifested as a linear depression or triangular depression
between the tumor lesion and the pleura.

Then, the ROC curve was used to analyze the differences
in the sensitivity, specificity, and AUC area of the two al-
gorithms in the diagnosis of benign and malignant pul-
monary nodules, so as to measure the optimization value of
the algorithm.

Then, the sensitivity, specificity, and AUC of the two
algorithms in the diagnosis of benign and malignant pul-
monary nodules were analyzed by ROC curve, so as to
measure the optimization value of the algorithm. The sen-
sitivity and specificity are calculated by the following
equations, respectively:

|[AnC]|
Al

(7)

Sensitivity =

|[BND|
Bl

Specificity = (8)
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A is the degree of coincidence between fitting the real
lung cancer lesion area (set as A) and the lung cancer lesion
area determined by the full model iterative algorithm (set as
C). B and D represent other positions outside the real cancer
lesion area of lung cancer and other positions outside the
cervical cancer lesion area determined by artificial intelli-
gence algorithm, respectively. In addition, three overlapping
tumor regions were divided into different structural groups
of lung cancer tumors that were, whole-area tumors (WT),
core tumor areas (CT), and enhanced tumor areas (ET).

2.5. Statistical Methods. SPSS 19.0 was employed for data
statistics and analysis. Percentage (%) was how count data
were expressed, and mean plus or minus standard deviation
(x +s) was how measurement data were expressed. The
comparison of the means between the groups was performed
by t-test. The count data was expressed as a percentage (%),
and the y” test was used. The Mann-Whitney U test was used
to compare the differences in the macroscopic characteristics
and imaging omics characteristics of the two types of lung
cancer patients, and P < 0.05 indicated that the differences
were statistically significant.

3. Results

3.1. Comparison of CT Images Processed by Different
Algorithms. Figure 1 was a chest CT image of a 67-year-old
patient. The noise of CT images of lung cancer patients after
iDose4 algorithm processing was improved in contrast to the
CT images of patients before processing, and the image
clarity was also improved to a certain extent. The CT image
processed by the IMR 2 algorithm was significantly im-
proved compared to the one before the processing. In ad-
dition, the IMR algorithm had a better processing effect.

3.2. Evaluation of CT Image Quality Based on Different
Algorithms. Figures 2-5 show the comparisons of the spatial
resolution, density resolution, image uniformity, and noise
of the iDose4 algorithm and the IMR algorithm under
different parameters, respectively. The spatial resolution,
density resolution, image uniformity, and contrast of the CT
image reconstructed by the IMR2 algorithm were signifi-
cantly greater than those of the iDose4 algorithm, and the
noise was notably less than that of the iDose4 algorithm
(P <0.05). Through analysis of variance (ANOVA) test,
iDose iterative reconstruction cannot improve the spatial
resolution of CT images when the reconstruction parameter
was Standard (B). The spatial resolution detection results of
IMR and iDose were dramatically different (P <0.05). The
spatial resolution of IMR 2 was improved by an average of
16% in contrast to that of iDose4. In IMR iterative recon-
struction, the spatial resolution of SharpPlus was greatly
higher than that of Routine and Soft, and the spatial reso-
lution of Routine was remarkably superior to that of Soft.
The differences among the three groups were considerable
through ANOVA test (P <0.05).
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FiGure 1: Comparison of patient’s chest CT before and after processing by the two algorithms. (a) Before processing, (b) iDose4 algorithm

processing, and (c) IMR algorithm processing.
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FiGure 2: Comparison of image spatial resolution of the two al-
gorithms. (R) denotes Routine, (SO) denotes Soft, and (SH) denotes
SharpPlus.
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FIGUure 3: The effect of reconstruction of two algorithms on the
contrast of CT images. (R) denotes Routine, (SO) denotes Soft, and
(SH) denotes SharpPlus.

3.3. Comparison of CT Image Optimization Effects of Two
Algorithms. Based on the detected sensitivity, specificity,
and AUC, the optimization effect of the patient’s CT image
after the iDose4 algorithm and IMR2 algorithm recon-
struction and optimization processing is shown in Figures 6
and 7. The sensitivity, specificity, and AUC of the patient’s

Uniformity (Hu)
S

20 40 60 80 100 200 300 400 500
mAs

—e— iDose 4 —o— IMR 2 (SO)
—eo— IMR2 (R) e IMR2(SH)

FIGURE 4: The impact of two algorithms on image uniformity. (R)
denotes Routine, (SO) denotes Soft, and (SH) denotes SharpPlus.
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mAs

—o— iDose 4 —o— IMR 2 (SO)
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Figure 5: Comparison of image SD values of the two algorithms.

(R) denotes Routine, (SO) denotes Soft, and (SH) denotes
SharpPlus.

diagnosis of benign and malignant pulmonary nodules
before CT image processing were 59.4%, 68.1%, and 0.632,
respectively. The diagnostic sensitivity, specificity, and AUC
of CT images reconstructed by iDose4 algorithm for benign
and malignant lung nodules were 82.1%, 75.3%, and 0.695,
respectively. Those of CT images reconstructed by IMR2
algorithm for benign and malignant pulmonary nodules



were 85.7%, 82.3%, and 0.815, respectively, which were
significantly higher than the original CT images (P <0.05).

3.4. Comparison of CT Imaging Information of Two Groups of
Patients Processed by IMR 2 Algorithm. The CT images and
other information of 96 patients with lung cancer are
summarized in Figures 8-10. Figure 8 shows the distribution
of lung cancer types, Figure 9 shows the comparison of
tumor size between the two groups, and Figure 10 shows the
comparison of CT imaging features between the two groups.
There were 65 cases of malignant nodules in lung cancer
patients, including 15 cases of squamous cell carcinoma, 31
cases of adenocarcinoma, and 19 cases of small cell carci-
noma. Of which, 31 cases were benign nodules, including 14
hamartomas, 10 tuberculous granulomas, 2 sclerosing
hemangiomas, and 5 diffuse lymphocyte hyperplasia. The
average size of lung nodules in the malignant group and
benign group of lung cancer patients was 23 (15, 27) mm and
14 (11, 19) mm, respectively. The size of benign nodules was
significantly smaller than that of malignant nodules
(P =0.012). In the malignant group of lung nodules, the
morphology of the nodules was irregular. The proportions of
burr sign, lobular sign, vascular sign, bronchial sign, and
pleural depression sign were 92%, 48%, 42%, 45%, 38%, and
43%, respectively. In addition, the percentages of indications
in the benign pulmonary nodule group were 59%, 29%, 19%,
27%, 18%, and 20%, respectively. There were significant
differences in the number of patients with each indication
between the two groups (P <0.05) (Figure 10).

4. Discussion

Chest CT lung cancer screening is the best way to detect
early lung cancer [11]. At present, the use of chest CT for
preoperative diagnosis of lung cancer is relatively common,
but due to the large image noise and other shortcomings, the
traditional method of using the subjective judgment of
physicians is likely to be misdiagnosed [12, 13]. Therefore,
how to accurately locate the tumor lesions still needs further
research. The advent of iterative reconstruction algorithms
has greatly reduced image noise. With the advancement of
computer software and hardware technology, it has been
widely used clinically. In the evaluation system of CT image
quality, image noise (SD, SNR, and CNR) is only one aspect,
and its core evaluation indicators are the spatial resolution
and density resolution of the image. Studies found that the
image quality of images reconstructed by iDose recon-
struction and conventional dose scan FBP reconstruction
has no difference in image quality and lower noise [14]. In
addition, there were reports that the IMR algorithm [15], as
an emerging full model iterative reconstruction technology,
was mainly used in computer-aided medical imaging di-
agnosis and analysis to evaluate the efficacy of radiotherapy,
image-based pathological analysis, tumor microenviron-
ment, and heterogeneity research. For example, the high-
throughput processing of multimodal images and the
analysis of graphics into data can provide quantification of
diagnosis basis and have powerful image noise reduction
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FiGure 6: Comparison of sensitivity and specificity of different
algorithms for lung cancer detection. * indicates that the sensitivity
was considerably different versus that before treatment (P < 0.05); #
indicates that the specificity was remarkably different versus that
before treatment (P < 0.05).
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F1Gure 7: Comparison of AUC area of patient CT images processed
by two algorithms.
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Figure 8: Distribution of lung cancer types in patients. A: ma-
lignant nodule, B: benign nodule, Al: squamous cell carcinoma,
A2:adenocarcinoma, A3: small cell carcinoma, B1: hamartoma, B2:
tuberculous granuloma, B3: sclerosing hemangioma, and B4: dif-
fuse lymphocyte proliferation.

capabilities [16, 17]. Based on traditional chest CT, the image
quality using the IMR algorithm is good and the noise is low.
Therefore, LDCT scan (120kV, 30 mAs) was adopted in this
research, and the image reconstructed by iDose4 was set as a
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FiGure 9: Comparison of tumor size between two groups of pa-
tients. A: benign nodule; B malignant nodule.
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Figure 10: Comparison of CT imaging features between the two
groups. a denotes irregular nodule morphology, b denotes burr
sign, ¢ denotes lobular sign, d denotes vascular sign, e denotes
bronchial sign, and f meant denotes depression sign; * indicates
that the difference was considerable versus that of benign group of
patients (P <0.05.).

reference to compare and study the ability of IMR iterative
reconstruction algorithm to improve image quality. More-
over, the chest CT accuracy, spatial resolution, density
resolution, image uniformity [18], and noise were evaluated.

The results showed that the spatial resolution, density
resolution, image uniformity, and contrast of the CT image
reconstructed by the IMR2 algorithm were significantly
greater than that of the iDose4 algorithm, and the noise was
significantly less than that of the iDose4 algorithm
(P <0.05). The subject ROC curve was used to analyze the
diagnostic sensitivity, specificity, and AUC of benign and
malignant pulmonary nodules based on CT. It was found
that the diagnostic sensitivity, specificity, and AUC of CT
images reconstructed by IMR2 algorithm for benign and
malignant lung nodules were significantly higher than that
of original CT images (P < 0.05). In short, chest CT based on
the IMR2 algorithm can significantly improve the diagnosis
of lung cancer and was of practical significance for the timely
detection of early lung cancer. This was consistent with the
findings of Lombard et al. [19]. In addition, the patients were
grouped according to the benign and malignant conditions
of different lung nodules, and the differences in chest CT
imaging characteristics between the two groups were

compared. It was found that the malignant pulmonary
nodule group and the benign pulmonary nodule group had
statistical differences in lung nodule size, nodule mor-
phology, burr sign, lobular sign, vascular sign, bronchial
sign, and pleural depression sign (P < 0.05). It was suggested
that the benign and malignant conditions of lung nodules in
patients with lung cancer were closely related to the imaging
features presented by CT [20]. The tumor size in chest CT
images of patients with malignant pulmonary nodules was
significantly larger than that in the benign nodules group.
The proportion of patients with irregular nodules, burr sign,
lobular sign, vascular sign, bronchial sign, and pleural sign
was significantly higher than that of the benign group. In
summary, chest CT based on the full model iterative re-
construction algorithm had a good diagnostic value for lung
cancer patients, can significantly improve the diagnostic
efficiency of lung cancer, and was worthy of clinical
promotion.

5. Conclusion

To explore the application of IMR processed chest CT images
in the clinical diagnosis of lung cancer patients, the iDose4
algorithm was employed and applied to the CT image
analysis of 96 lung cancer patients. It was found that the IMR
algorithm showed high accuracy and AUC area for lung
cancer diagnosis and prediction compared with the iDose4
algorithm for processing patient CT images. Among them,
IMR?2 algorithm combined with SharpPlus parameters can
be used as the optimal feature combination model for the
diagnosis of lung cancer. However, the selection of patient
samples is small and the source is single in this study, and the
different manifestations of lung cancer patients are not
discussed in detail. It is impossible to verify the impact of
these features on the accuracy of the prediction. In the
future, it will consider increasing the sample size of lung
cancer patients and further adopting a multicenter collab-
orative analysis method for research. In conclusion, the
results provide good clinical data support and certain the-
oretical support for the application of the IMR algorithm in
the clinical diagnosis of lung cancer.
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