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(e core issue of automatic manipulator tracking control is how to ensure the given moving target follows the expected trajectory
and adapts to various uncertain factors. However, the existingmoving target trajectory predictionmethods rely on highly complex
and accurate models, lacking the ability to generalize different automatic manipulator tracking scenarios. (erefore, this study
tries to find a way to realize automatic manipulator tracking control based on moving target trajectory prediction. In particular, a
moving target trajectory prediction model was established, and its parameters were optimized. Next, a tracking-training-testing
algorithm was proposed for manipulator’s automatic moving target tracking, and the operating flows were detailed for training
module, target detection module, and target tracking module. (e proposed model and algorithm were proved effective
through experiments.

1. Introduction

With the rapid development of industrial technology, ma-
nipulators have been successfully applied to original manual
operations, becoming the most widely used manmade tool
for industrial production [1–6]. (e application of manip-
ulators makes production more efficient and flexible. (e
core issue of automatic manipulator tracking control is how
to ensure the given moving target follows the expected
trajectory and adapts to various uncertain factors [7–11]. It is
of great practical significance to derive an automatic tracking
control strategy for moving targets under uncertainties and
external interference.

Target tracking is an important prerequisite for ma-
nipulator-assisted services. Zhu et al. [12] improved the
near-field computer vision system for intelligent fire robots.
(e improved system can predict the falling jet path under
the complex light environment and interference during
firefighting, identify the jet path based on length and area
ratio, and parametrize and extract the features of jet path by
superposing radial centroids. Wu et al. [13] adopted a hu-
man-following method suitable for a manipulator con-
taining visual sensors with a limited perception range,

integrated two physical motion models into an adaptive
trajectory prediction algorithm, and improved the predic-
tion accuracy by adaptive adjustment of model parameters.
For the trajectory control of Par4 parallel robot, Zhang and
Ming [14] designed a type 2 fuzzy predictive compensation
proportional-integral-derivative (PID) controller based on
the improved dynamic gray wolf optimizer (GWO) based on
the mutation operator and the eliminating-reconstructing
mechanism (DMR-GWO2). (e proposed controller speeds
up the response of the parallel robot and improves the
adaptability of the entire system.

In actual conditions, two manipulators are often needed
to pick up and place moving objects through the planning
and execution of collision-free trajectories. Tika et al. [15]
put forward a layered control strategy for collaborative
picking and placement tasks in a narrow, shared workspace
and realized the synchronous execution of task scheduling in
top-level design, path planning, and robot tasks. Xia et al.
[16] proposed a visual prediction framework based on time
granularity. (e core of the framework is an integrated
moving target prediction module based on multiple long
short-term memory (LSTM) neural network. Compared
with the latest prediction algorithms, the framework excels
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in prediction accuracy, success rate, and robustness. Fo-
cusing on the action understanding of mirror neurons,
Zhong et al. [17] simulated the walking mode of humanoid
robots and predicted the moving direction according to the
previous walking trajectory.

Trajectory prediction is the last step in the visual perception
of the manipulator. After a series of segmentation, detection,
and tracking, the algorithm could determine the type,
bounding box, and other information of the object. However,
the future movement trend and trajectory of the target must be
predicted to realize automatic tracking control. To sum up, the
traditional trajectory prediction methods for moving targets
mainly rely on features such as color and contour. (e rec-
ognition effect is very poor, if the target has multiple features.
Moreover, the existing moving target trajectory prediction
methods rely on highly complex and accurate models, lacking
the ability to generalize different automatic manipulator
tracking scenarios [18–22]. (erefore, this study develops an
approach for automatic manipulator tracking control based on
moving target trajectory prediction, aiming to improve the
manipulator’s trajectory prediction accuracy and automatic
tracking control effect. Section 2 establishes a moving target
trajectory prediction model and optimizes its parameters. (e
establishedmodel can predict the position and pose of irregular
moving objects at the same time and boast a strong general-
ization ability. Section 3 details the principles of the tracking-
training-testing algorithm for manipulator’s automatic moving
target tracking and explains the operating flows for the training
module, target detection module, and target tracking module
in the algorithm. (e proposed model and algorithm were
proved effective through experiments.

(is study solves the problems of the manipulator in
recognition, positioning, and trajectory prediction of moving
objects, models the error in target tracking, and tests the
feasibility of the proposed method through tracking experi-
ments. (e internal parameters of the proposed trajectory
prediction network for moving objects were all trained on
datasets. (e training ensures the degree of modularity and
generalization ability of the network. However, the prediction
precision of our network could be further improved by
changing network structure and modifying network param-
eters, when the network is applied to predict the position and
pose of complex and irregular moving targets.

2. Moving Target Trajectory Prediction Model

(e precision of moving target trajectory prediction hinges
on the accuracy of motion model. (is study establishes a
moving target trajectory prediction model based on LSTM,
which is known for its good accuracy and generalizability,
and further enables the manipulator to recognize, and au-
tomatically track and control the moving target.

2.1.ModelConstruction. To accurately predict moving target
trajectory, this study imports the three-dimensional (3D)
spatial position of a moving target from time h to time h+K
into the trajectory prediction model, which outputs the 3D
spatial position of the moving target at time h+K+ 1.

Figure 1 shows the overall structure of our moving target
trajectory prediction model. (e model consists of an input
layer, a hidden layer, an output layer, and a training module.
In the input layer, a complete sequence of moving target
trajectories G � g1, g2, . . . , gm􏼈 􏼉 is subjected to Z-score
normalization:
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To satisfy the input requirements of the hidden layer, the
input data were segmented. Let K be the prediction step
length of the model. (en, the tensor of the input data after
the segmentation can be expressed as follows:

A � A1, A2, . . . , AK􏼈 􏼉. (2)

Batch processing is applied on the input data to fully
utilize computer resources and improve the training effi-
ciency of the neural network. (at is, A is treated as a tensor
composed of a batch of 3D spatial coordinates [r, K, 3],
where r is the number of batch processing samples. (e
training accuracy of the model must ensure that each batch
of data is a complete trajectory of the moving target; i.e., the
batch size should be defined as (m − K). (en, we have the
following equation:

Ao � g
∗
o , g
∗
o+1, . . .∞, g

∗
m−K+o−1􏼈 􏼉1≤ o≤K; o, K ∈ m. (3)

(e theoretical output of the input layer can be expressed
as follows:

B � B1, B2, . . . , BK􏼈 􏼉,

Bo � g
∗
o+1, g
∗
o+2, . . . , g

∗
m−K+o􏼈 􏼉.

(4)

(e hidden layer in the trajectory prediction model
contains K LSTM nodes, which are connected in chrono-
logical order. Each node has F LSTM units.(e output of the
hidden layer can be expressed as follows:

O � O1, O2, . . . , OK􏼈 􏼉. (5)

(e dimensionality [r, K, F] of O should be consistent
with that of model output. Let ωti be the weight of a fully
connected layer, and t be the output of the output layer.
Before outputting the predicted position of the moving
target, the data must be handled by a fully connected layer:

th � 􏽘

F

i�1
ωtiOh. (6)

To test the prediction accuracy, the number r of batch
processing samples is set to 1. (e first K 3D spatial coor-
dinates of a complete trajectory in the test set are imported:

Ag � g
∗
1 , g
∗
2 , . . . , g

∗
K􏼈 􏼉. (7)

Based on the input Ag, the model outputs the predicted
trajectory:
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tg � t2, t3, . . . , tK+1􏼈 􏼉. (8)

Let tK+1 be the 3D spatial position predicted for the
moving target at time K+ 1.(is position is merged with the
last K − 1 3D spatial positions in Ag to obtain the new input
for the trajectory prediction model:

Ag+1 � g
∗
2 , g
∗
3 , . . . , g

∗
K, tK+1􏼈 􏼉. (9)

(en, Ag+1 is imported to the trajectory prediction
model. (e model will output the predicted 3D spatial
position tK+2 of the moving object at time K + 2. (e above
steps are iteratively executed, and the final prediction of the
3D spatial position of the moving object can be obtained as
follows:

t � tK+1, tK+2, . . . , tm􏼈 􏼉. (10)

(e fitting and prediction accuracy of the model can be
quantified by the error between input A and output t.

Both the predicted value and theoretical output of the
trajectory prediction model are 3D spatial coordinates. (e

loss of the model is calculated by the Euclidean loss function.
Let b be the theoretical output of the model. (e error
between predicted value and theoretical output can be
calculated by the following equation:

K(t, b) �
1
2M

􏽘

M

m−1
‖t − b‖

2
2. (11)

(emodel training aims to gradually reduce the value of
the loss function. Based on the AdaGrad algorithm, the
learning rate δ of our model is updated automatically. Let ξ
be the small constant to prevent denominator from being
zero; ω be the weight parameter of the model. (en, the
model can be updated by the following equation:
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(12)
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Figure 1: Overall structure of moving target trajectory prediction model.
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2.2. Model Parameter Optimization. (ere are many pa-
rameters in our trajectory prediction model. (e most
critical ones include prediction step length K, the number of
hidden nodes F, and the learning rate δ. To weaken their
influence on the prediction of moving target trajectory, this
study firstly evaluates the prediction accuracy on all test
samples and then chooses the optimal combination of K, F,
and δ, which leads to the highest prediction accuracy. (e
objective function can be expressed as follows:

min σ(t, A),

s.t.

10≤K≤Kmax ≤m, stepK|K

10≤F≤Fmax, stepF|F

0.005≤ δ ≤ δmax, stepδ|δ

K, F, δ, stepK, stepF, stepδ ∈M

.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(13)

(e multilayer grid search algorithm is adopted to
process K, F, and δ to determine the best values of these
crucial parameters.(e grid search is carried out from inside
to outside in three steps:

Step 1. Set the number of batch processing samples r and
number of training steps Tsteps, which are two key param-
eters, and preset the value ranges of K, F, and δ based on
formula (13).

Step 2. Traverse K, F, and δ layer by layer, and implement
model training and prediction in the innermost layer. After
the training, maintain the three parameters to obtain the
fitting and prediction accuracies of the model.

Step 3. Sort the parameter search results in descending
order by the prediction accuracy, and select theK, F, and δ in
the top-ranking combination for the optimal model.

3. Automatic Tracking Control Algorithm

3.1. Algorithm Principles. Based on machine vision, ma-
nipulator moving target tracking might involve multiple
moving targets at a time and needs to consider multiple
motion states of each target.(emoving targets face changes
in moving direction, speed, color, and brightness, and could
be occluded by obstacles. (erefore, the tracking technology
should be able to detect the 3D spatial position of each
moving target in real time and judge whether the target is
missing or occluded. (is study proposes a tracking-train-
ing-testing algorithm for manipulator’s automatic moving
target tracking and combines the algorithm with moving
target trajectory prediction to enable manipulators to grasp,
as well as automatically track and control targets.

(e automatic tracking algorithm can select the moving
target from each frame image of the video stream. (e
architecture of the algorithm is shown in Figure 2. (e
training module processes the detection result of the target
detection module and the tracking result of the target
tracking module. (e processing and feedback results from
the training module are used to update the target detection
module and the target tracking module. (is cyclic

optimization process can handle complex situations, such as
the appearance changes in the moving target over time and
the temporary disappearance of the moving target from the
shooting range, thereby ensuring the target identification
and tracking effects of the algorithm.

Let GYH be the normalized cross-correlation coefficient.
To select the moving target from the video frame, the
similarity between two adjacent frames wi and wj must be
defined before analyzing the main modules:

RE wi, wj􏼐 􏼑 � 0.5∗ GYH wi, wj􏼐 􏼑 + 1􏼐 􏼑. (14)

(e matching image set N containing both positive
samples w+

i and negative samples w−
i of moving targets can

be expressed as follows:

N � w
+
1 , w

+
2 , . . . , w

+
n , w

−
1 , w

−
2 . . . w

−
n􏼈 􏼉. (15)

(en, n positive sample w+
i and n negative samples w−

i

are sorted in the order of i� 1, 2, 3, . . ., n and then added to
the matching image set.

(e similarity between a matching image NG and each
frame w can be divided into the similarity with the nearest
neighbor of w+

i and the similarity with the nearest neighbor
of w−

i :
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w, NG( 􏼁 � maxw+

i
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(16)

(e similarity between the frame w and the labeled first
half of the positive samples can be calculated by the fol-
lowing equation:

RE+
1/2 � w, NG( 􏼁 � max

w
+FL<NG /2
i

RE w, w
+
i( 􏼁. (17)

(e cross-correlation of w can be calculated by the
following equation:
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Figure 2: Architecture of manipulator’s automatic moving target
tracking algorithm.
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REs
�

RE+

RE+
+ RE−. (18)

Formula (18) shows that the value of REs falls in [0, 1].
(e greater the REs, the more credible that the frame
contains a moving target. (e conservative similarity of w

can be calculated by the following equation:

REd
�

RE+
1/2

RE+
1/2 + RE−. (19)

(e cross-correlation obtained by formula (18) is the
threshold for the nearest neighbor classifier that determines
the similarity (REs, REd) between frame w and matching
image NG. If REs (w, N)> ρMM, w is a positive sample; if REs
(w, N)< ρMM, w is a negative sample. Here, REs (w, N)-ρMM
is the classification threshold ensuring the convergence of
the classifier.

3.2. Target Detection Module. (e variance classifier is the
first link of the cascade classifier in the target detection
module. Let Q (w) be the expectation of w solved by the
integral image method. (en, the variance of any frame w

can be calculated by the following equation:

Q w
2

􏼐 􏼑 − Q
2
(w). (20)

If the total variance of gray values for all pixels in the
frame within the window is smaller than half of the total
variance of gray values for all pixels in the moving target box,
then the window is invalid and needs to be removed. In this
way, half of the image contents, including ground and
shadows, can be eliminated.

(e ensemble classifier is the second link of the cascade
classifier in the target detection module. (e frame out-
putted by the variance classifier is imported to the ensemble
classifier composed of m basic classifiers. Here, each basic
classifier is a decision tree (DT). (e output of classifier i is a
posterior probability vector composed of code a:

GV1(b|a), b ∈ (0, 1). (21)

(e m classifiers output m posterior probability vectors.
(e mean of all vectors can be calculated by the following
equation:

GV∗ �
􏽐

m
i�0 GVi(b|a)( 􏼁

m
, b ∈ (0, 1). (22)

If GV∗ > 1/2, the window is retained; if GV∗ > 1/2, the
window is eliminated.

As the eigenvalue of the frame, the combined code vector
is distributed to all the basic classifiers of the ensemble
classifier. Each basic classifier corresponds to a posterior
probability. (e ith posterior probability is denoted as
GVi(b|a). If the posterior probability of each basic classifier
is described by binary code a, then

GVi(b|a) �
Δw
Δw + Δm

, (23)

where

Δw � M w
+

( 􏼁

Δm � M w
−

( )
.

⎧⎨

⎩ (24)

During initialization, wi(b|a) � 0, and the posterior
probability corresponding to each basic classifier charac-
terizes a negative sample. During later training, the ensemble
classifier classifies the labeled frames and updates wi(b|a) (b|
a) (as shown in Figure 3).

Most unqualified contents are eliminated from the input
frame through the filtering by both variance filter and en-
semble filter. (e filtered results are further processed by the
nearest neighbor classifier. If REs (w, N)>ωMM, the frame
content in the scanning window is a positive sample.

3.3. Target Tracking Module. (e target tracking module
combines the Lucas–Kanade (LK) optical flow method with
the forward and backward error tracking theory. (e for-
ward and backward directions refer to the positive and
negative directions of the sequence of video frames, re-
spectively. If there is a large error between the target tracking
results in the two directions, then the predicted trajectory of
the moving target must be incorrect and unreliable. (e
forward-backward error helps to judge whether the moving
target is tracked successfully, but cannot identify unobvious
errors in trajectory prediction. (erefore, this study designs
an image frame difference comparison method for slow-
moving target tracking points. (e frame sequence of slow-
moving target can be expressed as follows:

FD � Jτ , Jτ+1, . . . , Jτ+v( 􏼁. (25)

LetAτ be the coordinates of themoving target at time τ; v
be the times of forward tracking of point Aτ . (en, the
forward trajectory tracking sequence of the moving target
can be given by the following equation:

ψv
x � Aτ , Aτ+1, . . . , Aτ+v( 􏼁. (26)

(e forward tracking and backward tracking are denoted
by subscripts x and y, respectively. (en, the pixel coordi-
nates Aτ+v are backward tracked to the previous frame.(en,
the backward trajectory tracking sequence can be given by
the following equation:

ψv
y � _Aτ ,

_Aτ+1, . . . , _Aτ+v􏼐 􏼑. (27)

Combining formulae (26) and (27), the tracking error of
themoving object can be obtained by the following equation:

FB ψv
x|FD( 􏼁 � distance ψv

x,ψv
y􏼐 􏼑. (28)

To sum up, the forward and backward tracking errors
can be obtained by formula (28), as long as a suitable
threshold is determined for different image sequences.(en,
it is possible to judge the success or failure of target tracking.
Figure 4 illustrates the flow of tracking error calculation.

3.4. Training Module. (e training module contains the
classifier to be trained, labeled training set, positive/negative
training sample generator, etc.(e classifier is trained on the
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training set to achieve comprehensive integrated learning.
Figure 5 explains the flow of the training module. During
classifier training, the training quality is closely associated
with the absolute number of labeled positive and negative
samples. Hence, the training module should be able to
quantify the relationship between the classifier performance
and the absolute number of samples. (e classifier perfor-
mance can be characterized by the reliability of positive
sample labels, the incorrect detection probability of negative
samples, the accuracy of negative sample labels, and the
incorrect detection probability of positive samples.

(e reliability of positive sample labels can be charac-
terized by the ratio of the number of correctly detected
positive samples m+

C to the sum of the number of correctly
detected positive samples and the number of incorrectly
detected positive samples m+

C + m+
E:

GV+
�

m
+
C

m
+
C + m

+
E( 􏼁

. (29)

(e incorrect detection probability of negative samples
can be characterized by the ratio of the number of correctly
detected positive samples m+

C to the number of incorrectly
detected negative samples Φ:

S
+

�
m

+
C

Φ
. (30)

(e reliability of negative sample labels can be charac-
terized by the ratio of the number of correctly detected
negative samples m−

C to the sum of the number of correctly
detected negative samples and the number of incorrectly
detected negative samples m−

C + m−
E:

GV−
�

m
−
C

m
−
C + m

−
E( 􏼁

. (31)

(e incorrect detection probability of positive samples
can be characterized by the ratio of the number of correctly
detected negative samples m−

C to the number of incorrectly
detected positive samples Ω:

S
−

�
m

−
C

Ω
. (32)

(e classifier performance evaluation equations
(29)–(32) must satisfy the following equation:

mC(v) � S
+Φ(v), m

+
E(v) �

1 − GV+
( 􏼁

GV+ S
+Φ(v),

m
−
C(v) � S

−Ω(v), m
−
E(v) �

1 − GV−
( )

GV− S
−Ω(v).

(33)

(e number of incorrectly detected negative samples Φ
and the number of incorrectly detected positive samples Ω
can be, respectively, updated by the following equation:

Greyscale map
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Pixel comparison

1 0 0 1 1 1 0 1 0 1

(1)

(2) (3)

(4)

(5)

Figure 3: Generation of binary code. Note: subgraph (1) is the
input image +window; subgraph (2) is the grayscale map of the
input image +window; subgraph (3) is the fuzzified image-
+window; subgraph (4) is the pixel comparison image +window;
and subgraph (5) is the final binary code.

Start

Collecting video frames

Setting up a bounding box of moving target

Start tracking

Tracking started?

Computing the coordinates of the 
window

Predicting the coordinates of the moving 
target

Computing the 
tracking error

All samples matched?

End 

No

No

Yes

Yes

Figure 4: Flow of tracking error calculation.

6 Scientific Programming



Ω(v + 1) � 1 − S
−

( )Ω(v) +
1 − GV+

( 􏼁

GV+ S
+Φ(v),

Φ(v + 1) �
1 − GV−

( )

GV− S
−Ω(v) + 1 − S

+
( 􏼁Φ(v).

(34)

Assume _O(v) � [Φ(v) ·Ω(v)]T. (en, a 2 × 2 matrix Q
can be defined as follows:

Q �

1 − S
− 1 − GV+

( 􏼁

GV+ S
+

1 − GV−
( )

GV− S
− 1 − S

+
( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (35)

After rewriting formulae (25) and (26) as matrices, the
recursive formula of _O(v) can be established as follows:

_O(v + 1) � Q · _O(v). (36)

(e above formula shows that the recursive system of the
manipulator’s moving target tracking is both discrete and
dynamic. (us, the ultimate control goal of our algorithm is
to gradually reduce the system error increment to zero, with
the growing number of iterations.

4. Experiments and Result Analysis

(e multilayer search algorithm was introduced to optimize
the three parameters K, F, and δ of the proposed moving
target trajectory model. Firstly, the number of the training
steps was set to 120, and the value ranges of the three pa-
rameters were preset as follows: K∈{15, 20, 25, 30}, F∈{60,
120, 180, 240}, and δ∈{0.01, 0.02, . . ., 0.1}. (e objective
function is to maximize the prediction accuracy of moving
target trajectory, i.e., minimize the prediction error. (e
possible parameter combinations were sorted in descending
order of error. Table 1 lists the top five parameter combi-
nations and their errors. It can be seen that the optimization
of the three parameters greatly enhanced the accuracy of our
moving target trajectory model.

(e three key parameters of the moving target trajectory
prediction model were optimized as K� 30, H� 60, and
δ � 0.08. Next, the hidden units in the hidden layer nodes
were configured as recurrent neural network (RNN) and
gated RNN (GRNN). (e prediction results of these two
models were compared with those of our model (Table 2).
Our model achieved better training accuracy and test ac-
curacy than RNN and GRNN.

Figure 6 records the loss variations of different pre-
diction models during the training. Overfitting occurs to the
RNN when the training lasts too long; i.e., the number of
iterations is too large. As shown in Figure 6, the loss of the
RNN dropped the fastest, but the loss of our model gradually
moved below that of RNN and GRNN, with the growing
number of iterations.

Table 1: Top five parameter combinations and their errors.

Ranking
Model parameters

Training error Test error
K H δ

1 30 60 0.08 5.0441e− 06 0.001753
2 30 180 0.08 4.2582e− 06 0.002096
3 30 60 0.01 4.7857e− 06 0.002162
4 30 60 0.02 5.6412e− 06 0.001781
5 30 120 0.06 4.4325e− 06 0.002318

Training set

Unlabeled 
samples

Model trainingGenerating positive 
and negative training 

samples

Classifier

Labeled 
samples

Updating 
classifier 

parameters

Label

Negative 
sample set

Positive 
sample set

Figure 5: Flow of training module.

Table 2: Prediction results of different models.

Models
Model

parameters Training error Test error
K H δ

RNN 30 60 0.08 9.4781e− 06 0.089156
GRNN 30 60 0.08 6.5428e− 06 0.036843
Our model 30 60 0.08 5.2657e− 06 0.011891
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Figure 6: Loss variations of different prediction models.
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(e prediction error was defined as the distance from
the spatial coordinates on the predicted trajectory of the
moving target to those on the actual trajectory. Table 3
compares the prediction errors of our model with RNN
and GRNN. When too many trajectory points needed to
be predicted, RNN had a lower prediction accuracy than
GRNN and our model, because it cannot effectively
process the historical positions on distant trajectories.
Our model surpassed the GRNN by 56.7% in the pre-
diction accuracy of the spatial coordinates on the tra-
jectory of moving targets.

Figures 7 and 8 show the predicted trajectory of moving
targets and the predicted grasping position trajectory of the
manipulator. Figure 9 presents the prediction error of moving
target trajectory. Table 4 lists the prediction error of moving
target trajectory. Most errors were within 0.2 cm, which verify
the generalizability of the proposed tracking control algorithm.

To verify the learning effect of our training module, the
probability density of classification error was calculated. (e
classification error of the classifier fell in (−0.9142, 0.8747),
which basically obeys normal distribution (as shown in
Figure 10).

Table 3: Prediction errors of different models.

Models
Model parameters

Trajectory coordinate error
K H δ

RNN 30 60 0.08 0.9874
GRNN 30 60 0.08 0.5592
Our model 30 60 0.08 0.4275
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Figure 7: Trajectory of moving targets.

6
4

2
0

-2
-4

-6-6
-4

-2
0

2
4

6
-8

-6

-4

-2

0

2

4

Pitch (rad) Rol
l (ra

d)

Ya
w 

(r
ad

)

Figure 8: Grasping position trajectory of the manipulator.
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5. Conclusions

(is study explores how to realize automatic manipulator
tracking control based on moving target trajectory pre-
diction. Firstly, a moving target trajectory prediction
model was established, and its parameters were optimized.
Next, a tracking-training-testing algorithm was proposed
for manipulator’s automatic moving target tracking, and
the operating flows were detailed for training module,
target detection module, and target tracking module. (e
experimental results show the effectiveness of the

proposed model and algorithm. During the experiments,
the parameter combination was optimized, the corre-
sponding errors were obtained, and the values of three key
parameters K, F, and δ were optimized. (e prediction
results and losses of different models were compared,
revealing that our model is more accurate in prediction
than other models. Finally, the moving object trajectory
and the manipulator’s grasping position trajectory were
predicted, and the prediction error of moving target
trajectory was used to confirm the generalizability of the
proposed tracking control algorithm.

Table 4: Prediction error of moving target trajectory.

Serial number ΔPitch ΔRoll ΔYaw ΔX ΔY ΔZ
1 0.068915 0.031406 −0.07264 0.196543 −0.056134 0.179623
2 0.035234 0.107545 0.0135 0.034126 −0.026247 0.106412
3 0.108972 0.135621 −0.019232 0.049862 −0.00572 0.281565
4 0.16152 −0.008942 −0.003757 0.005741 0.017964 0.297534
Mean 0.09366025 0.0664075 −0.02053225 0.071568 −0.01753425 0.2162835
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Figure 10: Probability density distribution of classification error.
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Figure 9: Prediction error of moving target trajectory.
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