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With the development of cloud computing and distributed cluster technology, the concept of big data has been expanded and
extended in terms of capacity and value, and machine learning technology has also received unprecedented attention in recent years.
Traditional machine learning algorithms cannot solve the problem of effective parallelization, so a parallelization support vector
machine based on Spark big data platform is proposed. Firstly, the big data platform is designed with Lambda architecture, which is
divided into three layers: Batch Layer, Serving Layer, and Speed Layer. Secondly, in order to improve the training efficiency of support
vector machines on large-scale data, when merging two support vector machines, the “special points” other than support vectors are
considered, that is, the points where the nonsupport vectors in one subset violate the training results of the other subset, and a cross-
validationmerging algorithm is proposed.(en, a parallelized support vectormachine based on cross-validation is proposed, and the
parallelization process of the support vector machine is realized on the Spark platform. Finally, experiments on different datasets
verify the effectiveness and stability of the proposed method. Experimental results show that the proposed parallelized support vector
machine has outstanding performance in speed-up ratio, training time, and prediction accuracy.

1. Introduction

As the mainstream part of today’s media industry, images
and videos are rich in information and easy to understand,
which makes them an indispensable part of life. Computer
vision analysis is also the key development direction of the
Internet communication industry at present. For example,
character recognition has great application value in many
scenes, such as vehicle license plate detection, image-text
conversion, image content translation, and image search.
However, because the precision of text recognition tech-
nology is not ideal, its application scenarios are relatively
simple, such as content search in images [1–6].

2. Literature Review

With the increasing amount of data, how to efficiently store,
organize, and analyze these massive data has become a hot
issue for both academia and industry. Distributed com-
puting, which can distribute computing tasks on a large
number of computers connected together through the

network and cooperate with each other to complete com-
puting tasks, is expected to become an effective means to
solve this problem [1–7].

Faced with the pressure brought by the storage and
calculation of big data, Google proposed and designed its
own distributed file storage system GFS (Google FileSystem)
[8, 9] in 2003, which used a large number of cheap com-
mercial computers as distributed clusters to store and
manage large-scale data. Later, it published MapReduce, a
distributed parallel computing technology, and Bigtable, a
distributed storage framework for structured data, which
were applied to fast parallel processing of large-scale data.
(en Apache implemented the open-source distributed file
system HDFS (Hadoop Distributed File System) and the
distributed computing engine Apache Hadoop MapReduce
as the storage and computing solutions of big data, re-
spectively. With the contribution of the open-source com-
munity, many projects around it are constantly emerging,
such as Hive, a data warehouse tool originated from
Facebook, HBase, a column-based distributed open-source
database, and of course, big data projects such as Pig, a data
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stream-based processing framework, and ZooKeeper, a
distributed coordination framework [10–13]. In 2009,
MateiZaharia founded Spark’s big data processing and
computing framework based on memory computing at the
University of California, Berkeley. Compared with the
previous MapReduce framework, the intermediate results of
computation are kept in memory and the optimization of
execution plan based on DAG (Directed Acyclic Graph)
makes Spark process data in parallel faster than MapReduce.
It also provides support for Hadoop components and Hive
and supports SQL-like large-scale structured data calcula-
tion and query [14, 15].

(e real significance of big data lies not in having a huge
amount of data but in mining valuable information for
people and how to use it. (erefore, data mining and ar-
tificial intelligence based on big data are the ultimate
destination of big data. Machine learning provides a variety
of learning algorithms and models for data mining and
artificial intelligence and has been applied in the fields of
urban management, finance, entertainment, security,
medical care, and so on, which has produced great influ-
ence and important value on people’s lives. As an im-
portant supervised learning algorithm, support vector
machine (SVM) has a complete mathematical theory and
has been widely used in the fields of text recognition and
speech recognition. However, because its ultimate learning
problem is to solve a convex quadratic programming
problem, the corresponding time complexity and space
complexity are relatively high. With the continuous growth
of training data, the space occupation and training time of
stand-alone training will increase dramatically, which is
not suitable for model training on big data. (is also di-
rectly leads to the fact that SVM is usually used to solve
small sample problems, which limits its application and
analysis on big data.

How to use the distributed parallel technology of big data
to improve the training efficiency of SVM on big data has
become a very meaningful research direction. Spark is a
mature distributed parallel computing framework for big
data at present, and it is of practical significance to realize
parallel SVM based on Spark to solve the application in
large-scale data. (erefore, the purpose of this study is to
accelerate the training process of SVM on large-scale data
while maintaining certain model accuracy.

When faced with a large training set, the whole training
process of SVM needs a lot of memory. Jindal et al. [16]
proposed that, by eliminating nonsupport vectors step by step,
the storage space required in the training process was reduced,
and each time a part of samples were selected as the training set,
the support vectors obtained by training were combined with
the samples that most seriously violated the training results
among the remaining samples as a new training set. Aslahi-
Shahri et al. [17] put forward the idea based on decomposition,
which decomposes a relatively large quadratic programming
problem into several relatively small subproblems, solves only
one subproblem at a time, and iterates until the global optimal
solution is obtained, thus obtaining the trainingmodel of SVM.
Chen et al. [18] proposed a fast implementation algorithm
based on this strategy-a series of minimum optimization

algorithms, which only considered the optimization problem of
two variables at a time until all the variables met the re-
quirements. (is algorithm has also become a widely used
SVM tool LIBSVM. Xu et al. [19] put forward an incremental
algorithm similar to the block algorithm, which takes the
training scale tolerated by the single training algorithm as an
increment and combines it with the support vector of the
previous sample for training until all the training samples are
processed.

3. Literature Review

Although the above algorithms have different effects on
speeding up SVM training and reducing memory usage,
these strategies still have their limitations when the scale of
training data reaches a certain level. (erefore, how to solve
SVM in parallel has become a hot research direction. Cao
et al. [20] proposed a parallel SVM algorithm based on the
distributedmemory system. Das et al. [21] proposed Cascade
SVM based on cascade and feedback architecture. In the
initial stage, the support vector machine randomly divides
the whole training set into even subsets. Experiments show
that since each layer of SVM training can be carried out in
parallel and a large number of nonsupport vectors can be
filtered in the initial stage, it can effectively reduce the
training time on large-scale data. On the basis of group
training, Singh and Jaiswal [22] proposed a parallel SVM
algorithm based on Hadoop. In the prediction stage, the
distance between the point to be predicted and the center of
each subset is calculated, and the nearest subset model is
used to predict it. Although the training time has been
shortened to the extreme, the generalization ability of the
algorithm remains to be discussed.

Aiming at the problem that the prediction accuracy of
traditional Cascade SVM is lower than that of single
machine training, the merging algorithm based on sup-
port vector is improved, and the process of realizing
parallelized support vector machine on Spark platform
[23] is studied. Firstly, based on the HDFS distributed file
system and Spark distributed computing engine, a three-
tier architecture of the machine learning platform is
constructed. (en, aiming at the problem that only a
single support vector is considered when merging two
support vector machines, when merging two support
vector machines, “special points” and support vectors are
taken as the input of the next layer, and a parallelized
support vector machine based on cross-validation is
proposed. Finally, by deploying HDFS and Spark clusters,
the traditional cascade support vector machine and the
proposed support vector machine are compared in real
environment in terms of acceleration ratio, training time,
and prediction accuracy.

4. Overall Architecture of Machine
Learning Platform

4.1. Spark Architecture Ideas. Spark operation mode ab-
stracts the memory through the technology of Resilient
Distributed Datasets (RDD) [24], realizes the data exchange
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of the whole memory, and greatly improves the speed of
frequent iteration and other operations. (e schematic di-
agram of the Spark operation process is shown in Figure 1.

(e most important reason why the Spark platform can
realize iteration in memory is that RDD is adopted, which is
also the greatest advantage of the Spark platform. In this
paper, sample points are stored in RDD of computing nodes
in the Spark platform, which greatly reduces the time of
reading and writing interaction with hard disk. Spark, as a
common engine for large-scale data processing, uses master-
slave node management mode to complete data processing
tasks together, but in terms of functional structure, master-
slave nodes have the same computing capability, and its
main structure is shown in Figure 2.

In addition to this master-slave node cooperative
working mode, the Spark platform has another advantage
that most data operations are completed in RDD of platform
node memory, which greatly improves data access efficiency.

4.2. Overall Platform Architecture. Modeling in big data
scenarios usually has two basic requirements: one is mod-
eling with real-time data flow, and the other is modeling with
mass data analysis. At present, these two requirements have
their own solutions. However, in common applications,
these two requirements are generated at the same time. For
example, a website of a recommendation system requires not
only mining large-capacity historical data but also real-time
modeling for quick feedback of users’ clicks and purchases.
In order to meet this challenge, many projects adopt the
form of hybrid architecture, which is called Lambda ar-
chitecture [25]. Lambda architecture provides a series of
clear architectural design principles for mixed and diverse
data scenes (which need batch processing and real-time or
streaming data processing), which are mainly divided into
three layers, Batch Layer, Serving Layer, and Speed Layer, as
shown in Figure 3.

In the design of distributed Spark recommendation
scheme, HDFS distributed file system based on Parquet data
storage is used for data storage [26], and Spark SQL is used
for database table query. (e recommendation scheme
analyzes the user’s preferences by studying the user’s dy-
namic and static data (including friend information, his-
torical search information, interests and hobbies
information, and registration information) and completes
personalized recommendations. (e core module of the
overall platform architecture is the recommendation engine
module, which adopts the recommendation scheme based
on the parallel SVM algorithm. (e overall architecture of
the Spark-based platform is shown in Figure 4.

For example, for the recommendation task of e-com-
merce websites, the system needs to analyze the historical
preferences of current users on the one hand and generate
real-time recommendations based on the feedback of
browsing and clicking behaviors of current users on the
other hand. First, at a fixed time, the batch processing layer
will analyze all the historical data collected at present and
obtain the user and project models of the recommendation
system by matrix decomposition of the large-scale user

feedback matrix of the current historical records. (e de-
composition target is calculated as follows [27]:

R � U × V
T
, (1)

whereU is the user interest matrix andV is the project theme
matrix.

(e decomposed user interest matrix and project theme
matrix are stored in the database and then inform the service
layer to update the user interest index and theme feature
index.When users browse the website and generate feedback
such as browsing products, clicking links, and searching for
products, the system will quickly collect these data and store
them in the batch processing layer and the speed layer,
respectively. At this time, the batch processing layer is still in
the data accumulation stage, while the speed layer can
quickly update the decomposition model online in memory,
give a new list of product recommendations, and return to
the website recommendation page.

5. Parallel Support Vector Machine
Based on Spark

(e traditional Cascade SVM based on decomposition
provides a new idea for the parallel solution of support
vector machine, which improves the training efficiency on
large-scale datasets and achieves certain model accuracy.
However, compared with stand-alone training, there is still a
certain loss. Without changing the overall architecture of
Cascade SVM, this paper studies the impact of merging
algorithm on the accuracy of the final model and proposes a
parallelized support vector machine model based on cross-
validation.

5.1. Merge Algorithm of Cross-Validation. (e basic idea of
the traditional Cascade SVM is to decompose the global
support vector machine solving process into several sub-
problems of support vector machine, then merge the models
on these subproblems in pairs by using a tree-like form, and
finally get a global solution. (e merging algorithm of
Cascade SVM only considers the support vectors on two
subsets, but this local support vector cannot completely
contain two subsets as global support vectors on a training
set, so in every small merging process, the loss will be
gradually enlarged with the increase of iteration layers,
resulting in the ultimate loss of model accuracy, which is
reflected in the number of support vectors of the final model
and the prediction accuracy of the test set.

Cross-validation [28] is often used to evaluate the
generalization ability and reliability of a model or algorithm.
In the related fields of machine learning, its basic idea is to
group the original training data, one of which is used as a
training set and the other as a verification set or a test set,
train the corresponding model by using the training set, and
verify the model by using the test set as an index to evaluate
the learning algorithm. In the learning process of the support
vector machine, the prediction accuracy obtained by cross-
validation is usually used to measure the selection of pa-
rameters in the learning process. Here, we do not care about
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the prediction accuracy of the model on the training set to
the test set but care about those “special points” in the test set
that violate the training results on the training set.

Considering the merging of two support vector ma-
chines, TD1 and TD2, respectively, represent two datasets,
SVM1 and SVM2, respectively represent the support vector
machines trained on the two datasets, and (w∗TD1

, b∗TD1
) and

(w∗TD2
, b∗TD2

) represent their respective classification hy-
perplanes, respectively. From the point of view of SVM2,
although SVM2 will not misclassify x1 and x2 , these points
are located between the boundary planes of SVM2, which
may become a new subset, which means that adding these
points will produce a new support vector machine model.
From the point of view of geometric space, the distance
between these points and the classification hyperplane of
SVM2 is small. Because of the relationship between function
interval and geometric interval, adjusting parameters of the
hyperplane in equal proportion will not affect the size of the
geometric interval. In the process of establishing the interval
maximization problem, the functional interval of the interval
boundary hyperplane with respect to the classification hy-
perplane is defined as 1.(erefore, the points in TD1 located
between the boundary of TD2 interval satisfy formula (2)
and formula (3).

0≤
y w
∗
TD2

· x + b
∗
TD2

 

w
∗
TD2

�����

�����
≤

1
w
∗
TD2

�����

�����
, (x, y) ∈ TD1. (2)

0≤y w
∗
TD2

· x + b
∗
TD2

 ≤ 1, (x, y) ∈ TD1. (3)

(erefore, the merging algorithm of cross-validation is
to take each training subset as a training set and a test set,
respectively. When merging two support vector machines,
we should not only consider the support vectors on the two
subsets but also consider these “special points.” In addition

to considering each support vector machine, the new
merging algorithm also needs to consider the KKT condi-
tions (Karush–Kuhn–Tucker conditions) of nonsupport
vectors in a subset. (erefore, the merged support vector
machine is a better model on two subtraining sets, and each
merging is a local optimum, and this local optimum will also
get a global optimum in layer-by-layer iteration.

5.2. Implementation FlowBased on Spark. (e process of the
proposed parallel SVM is similar to that of the traditional
Cascade SVM, except that the merging algorithm based on
cross-validation is adopted when merging the two SVMs.
(e specific implementation process is shown in Figure 5.

Initially, the dataset on HDFS is randomly divided
with restrictions to ensure that the ratio of positive and
negative samples in each divided subset is equal so as to
avoid the reduction of the global support vector in the first
layer caused by extreme cases. In the same way, all the
training subsets are encapsulated in an RDD, and each
training subset corresponds to a partition by setting
partitions. (en, the data corresponding to each partition
is trained in parallel by foreachPartition operation. After
the training process of all subsets is completed, the
support vector (SV) and nonsupport vector (NoSV) ob-
tained by each training are copied to HDFS to be used as
the data input of the next layer, or the two support vector
machines are prepared for cross-verifying and merging
data.

When the two support vector machines are merged, not
only is the support vector merged as the input of the next
layer, but also the cross-validation is completed through the
parallel prediction process.(e points where the nonsupport
vector in each subset violates the model in another subset are
screened out, and these points are combined with the
support vector as the input of the next layer, corresponding
to the Across Validation and Merge stage in Figure 5.
Similarly, all training sets in the next layer can be trained in
parallel by setting partitions. In this way, after many iter-
ations, the cross-validation parallelized SVM trained model
is obtained.

(e prediction process in the whole training process is
not to predict the labels of the test set samples but to filter out
the “special points” that the nonsupport vectors in one
training set violate the model of another training set; that is,
the points that satisfy formula (2) or formula (3) need to be
filtered out. Compared with the training process, the pre-
diction process of support vector machine is relatively
simple, so formula (4) needs to be obtained, and the form of
kernel function is formula (5).

F(x) � w
∗
x + b
∗
. (4)

F(x) � 

NS

i�1
αiyiK xi, x(  + b

∗
, (5)

where x denotes a point to be predicted, (w∗, b∗) denotes an
SVM model on a certain training set, NS denotes a support
vector on the model, K(xi, x) denotes the kernel function
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value of the point to be predicted and the support vector, and
αi denotes the Lagrange coefficient corresponding to the
support vector.

6. Experimental Results and Analysis

6.1. Experimental Environment and Dataset. (ere are 6
machines in the cluster environment, and the hardware
configuration parameters are shown in Table 1. Spark ver-
sion 0.9.0 is installed on all machines, the Hadoop version is
1.0.1, and the JDK environment is OpenJDK 1.7.0 64-bit
version. Hadoop and Spark environment configuration
parameters are shown in Table 2.

In the configuration of Hadoop and Spark, the experi-
ment mainly focuses on memory usage. In Hadoop, the
maximum number of map tasks that can run simultaneously
is 16, the maximum number of reduced tasks is 2, and each
task can occupy up to 4GB of memory. In Spark, the
computing memory of each node is 20G, which is mainly the
space occupied by computing data and RDD linear de-
pendency storage. (e experimental dataset is the Movie-
Lens dataset provided by the School of Computer Science
and Engineering, University of Minnesota (https://
grouplens.org/datasets/movielens/), which contains infor-
mation of 6,000 users and 4,000 movies and is the most
commonly used test dataset for the recommendation system.

6.2. Speed-Up Ratio. In the aspect of parallelization pro-
gramming, an important performance index is the speed-up
ratio, which is described by the following formula:

S �
Ta

Ts

, (6)

where Ta is the running time required by the serial program
and Ts is the running time after parallelization.

It is difficult to obtain a perfect linear acceleration
ratio for parallelized programs. However, with the in-
crease of the problem scale, the proportion of non-
parallelizable parts in the program will gradually decrease.
(erefore, when the total parallel execution time of the
program is assumed to be constant, the parallelized
program can still obtain a good linear acceleration ratio.
(e speed-up ratio of Hadoop and Spark with different
numbers of nodes is shown in Figure 6.

It can be seen from Figure 6 that the Spark-based
parallelized support vector machine has good horizontal
scalability. With the increase of the number of computing
nodes, more computing resources are put into the task, and
the running time of the computing task can show an obvious
downward trend.(e result of the speed-up ratio reflects the
efficiency improvement of parallelization. (erefore, Spark-
based parallelization SVM can greatly improve the efficiency
of the program running.
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6.3. Prediction Accuracy and Training Time. In the experi-
ment, the training time and prediction accuracy of LIBSVM,
Cascade SVM, and our proposed parallel SVM are com-
pared. (e MovieLens dataset is randomly divided into 7
subdatasets. (e prediction accuracy ratio of the three al-
gorithms on each dataset is shown in Figure 7.

For 7 subdatasets, the prediction accuracy of cross-
validation parallelized SVM is higher than that of Cascade
SVM, and it is very close to the prediction accuracy of single
machine training. (e prediction accuracy of cross-valida-
tion parallelized SVM is almost the same as that of single
machine training, and it has been improved compared with
layered support vector machine. (e biggest reason is that
the merging algorithm based on cross-validation adds more
training data, and these data are very likely to be global

support vectors. Comparison of training time on 7 datasets is
shown in Table 3.

It can be seen from Table 3 that when the scale of the
training set is small, the training time of Cascade SVM and
proposed SVM is longer than that of stand-alone SVM
because the data scale is small and stand-alone SVM can
train to get the final model in a very short time, while
Cascade SVM and proposed SVM take longer training time
than stand-alone training because each layer needs to
communicate with the next layer. However, with the in-
crease of data scale, the advantages of hierarchical divide-
and-conquer are manifested. (e training time of Cascade
SVM and the proposed SVM is shorter than that of a single
machine, and compared with Cascade SVM, the training
time of the proposed SVM will be reduced.

Table 1: Hardware configuration.

Number Node name CPU Internal storage capacity (GB) Hard disc capacity
1 Master i7-3820 8-Core 64 1 TB
2 Slave01 E31230 8-Core 32 500GB
3 Slave02 E31230 8-Core 32 500GB
4 Slave03 E31230 8-Core 32 500GB
5 Slave04 i5-2300 4-Core 32 500GB
6 Slave05 i5-2300 4-Core 32 500GB

Table 2: Configuration of test cluster.

Number Node name Hadoop’s configuration Spark’s configuration
1 Master

dfs.replication� 3; map.tasks.maximum� 16; reduce.tasks.maximum� 2; child.java.
opts� -Xmx4096M SPARK_MEM� 20g

2 Slave01
3 Slave02
4 Slave03
5 Slave04
6 Slave05

Number of nodes

2
1

10

100

1000
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up

 ra
tio

Hadoop 
Spark 

Figure 6: Experimental comparison of speed-up ratio.
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7. Conclusions

(is paper proposes cross-validation parallelized SVM based
on the Spark big data platform. Firstly, based on the HDFS
distributed file system and Spark distributed computing engine,
a three-tier architecture of machine learning platform is
constructed.(en, themerging algorithm based on the support
vector is improved, “special points” and support vector are
taken as the input of the next layer, and a parallel SVM based
on cross-validation is proposed. Experimental results show that
the prediction accuracy of the proposed parallelized SVM is
higher than that of Cascade SVM, it is very close to the pre-
diction accuracy of single machine training, and the training
time is further reduced. Further research will be carried out to
solve the problem of excessive differences in subdatasets caused
by randomly dividing datasets.
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