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Aiming at the problems that the traditional water quality prediction model is generally not high in prediction accuracy and
robustness, a water pollution prediction using deep learning in water environment monitoring big data is proposed. Objective. To
optimize and improve the prediction accuracy of the water quality predictionmodel. Firstly, in the water environment monitoring
system, the Internet of 'ings big data technology is used to accurately sense and monitor the real-time data of sewage treatment
equipment and sewage quality.'en, the deep belief network (DBN) is used to build the water pollution predictionmodel, and the
collected sewage treatment data is analyzed to predict the water quality status. Finally, particle swarm optimization algorithm is
used to dynamically optimize the number of hidden layer neural units and learning rate in the DBN prediction model, which
makes the prediction results more scientific and accurate. Based on the sampling data of Shanghai Jinze Reservoir, the proposed
model is experimentally analyzed.'e results show that the probability of accurate location of the pollution source is not less than
70%. And under the two indicators of chemical oxygen demand and biological oxygen demand, the root mean square error and
correlation coefficient are 3.073, 0.9892 and 1.958, 0.9565, respectively, which are better than other comparison models.

1. Introduction

In recent years, with the rapid development of cities and
social economy, the issue of water resources has gradually
become a hot social issue. In association with this, the
problem of water pollution is particularly prominent, which
is directly related to the long-term development of my
country’s economy and society [1]. As shown in Figure 1,
water eutrophication caused by industrial waste water,
domestic sewage, accidental pollution source leakage, and
other reasons, such as serious excess of toxic and hazardous
substances, and other water resources problems are com-
mon [2].

However, in real life, the detection of water resources is
still done manually in a considerable part of the area and
submitted to the laboratory for analysis. Although it is
possible to obtain as detailed water quality information as
possible, it will greatly consume manpower and material
resources, and it is difficult to ensure timeliness [3]. At
present, sensors are widely used to collect water quality data
of the water supply pipe network in real time and transmit

the data to the server through the network for centralized
analysis. 'e method of using sensor data to detect and trace
the source of water pollution is directly related to the choice
of sensor type, usually including sensors for specific pol-
lutants and general-purpose sensors. As far as a specific
sensor is concerned, it has better performance in detecting
specific pollutants, but its ability to detect other pollutants is
weak. Usually this type of sensor is mainly aimed at pol-
lutants such as heavy metal ions [4]. For general-purpose
sensors, they are not designed for a specific type of pollution,
so they have a more general detection ability for most
pollution types [5]. Faced with the massive detection data
generated by many sensors in the water supply network, its
analysis and judgment also require updated technical sup-
port. 'rough the study of water resources prediction
models, the use of water environment monitoring big data to
predict the pollution of water sources is the key research
direction [6, 7].

At present, scholars at home and abroad have done a lot
of research on water quality prediction based on sensor big
data. Traditional water quality prediction models mainly
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include time series models, regression analysis models, and
grey system theory models [8, 9]. Reference [10] proposed a
recurrent neural network water quality prediction method
based on sequence-to-sequence framework. 'e gate loop
unit model is used as the encoder and decoder, and the
factorization machine is integrated in the model to solve the
problem of high sparsity and high-dimensional feature in-
teraction in the data. However, it cannot accurately predict
data with large fluctuations. Reference [11] proposed a
method to estimate the concentration of environmental
pollutants in water based on environmental parameters.
Symbolic constraints are used to express domain knowledge,
and the influence of symbolic constraints on prediction
performance is studied by using censored data sets. Its
prediction accuracy is greatly affected by the data itself, and
it is only suitable for medium- and short-term prediction.
Reference [12] proposed a prediction model based on
nonlinear regression for the problem of irrigation water
quality. It has flexible and accurate evaluation performance
for irrigation water quality. Traditional forecasting models
often only pay attention to the characteristics of the data
itself, without fully considering the interrelationship be-
tween the data.'e prediction accuracy is generally not high,
and it is difficult to accurately predict and monitor the water
quality parameters of the water environment [13].

With the continuous improvement of the computing
performance of smart hardware, deep learning and artificial
intelligence have developed rapidly. 'ey are continuously
integrated into all aspects of national life and industrial
control [14]. As an important component in the field of deep
learning, cyclic neural network fully considers the long-term

dependence of time series data and can handle time series
data well [15]. Reference [16] proposed a water quality
parameter analysis and water quality prediction method
using linear regression analysis and artificial neural network.
'e artificial neural network has a good forecasting effect,
but linear regression analysis cannot be used for nonlinear
forecasting. Reference [17] proposed a seawater quality
prediction method based on artificial neural network and
multiple linear regression model. 'e seawater quality of
mangroves and estuaries has been accurately predicted.
However, a large amount of sample data is required for
training, and the parameters set by experience can easily lead
to the appearance of local extreme values. Reference [18]
combines convolutional neural network and long-short-
term memory model to predict water quality, which has
good accuracy and predictive performance. However, the
training sample should not be too large, and it is more
sensitive to missing data. Reference [19] proposed a water
supply and drainage health monitoring method combining
fog computing and cloud computing based on the Internet
of 'ings water supply system, which improved the pre-
diction accuracy. However, the mining of the in-depth
correlation information between data is not deep enough,
and the utilization rate of monitoring big data needs to be
further improved.

Aiming at the problem that traditional prediction
models cannot handle massive data from multiple sensors, a
water pollution prediction model using deep learning in the
big data of water environment monitoring is proposed. 'e
innovations of the proposed model are summarized as
follows:

Figure 1: Typical water pollution cases.
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(1) Due to the lack of data in most waters and the
unclear water management mechanism, the accuracy
of traditional prediction models is not high. 'e
proposed model introduces deep learning technol-
ogy, which has good data nonlinear approximation,
self-learning, and generalization capabilities and can
achieve a more ideal water quality prediction effect.

(2) 'e particle swarm optimization algorithm is used to
dynamically optimize the number of hidden layer
neural units and the learning rate in the prediction
model. In order to improve its convergence speed
and generalization ability, the prediction results are
more scientific and accurate.

2. Related Technology

2.1. Deep Belief Network. Deep belief network (DBN) is a
directed graph model widely used at present. It can be seen
as a superposition of multiple restricted Boltzmann ma-
chines (RBM). First, the effective unsupervised greedy layer-
by-layer training method is used to initialize the DBN
weights; that is, only two adjacent layers are trained each
time, and each output is used as the input of the next
training, and the training is performed layer by layer. 'e
features are extracted from the input sample data to obtain
the parameters of the global network model. 'en the su-
pervised learning method is used to fine-tune all the pa-
rameters, further optimize the network, and get the trained
DBN. 'e DBN network structure is shown in Figure 2.

In order to reduce the complexity of the algorithm, the
whole DBN is divided into several RBMs. 'e RBM was
trained layer by layer with the fast trainingmethod of contrast
divergence (CD). Although CD algorithm does not follow any
function gradient and its maximum likelihood estimation is
not accurate, it is very effective for training depth structure
similar to DBN [20, 21]. 'e RBM training process optimizes
the initial parameters of the network model to avoid the
situation where the model falls into a local extreme value due
to improper initial values. Finally, the back propagation (BP)
algorithm is used to supervise and fine-tune the network
parameters. 'is is a local space search, so the speed is faster,
and it is not easy to fall into a local extreme value situation.

2.2. Particle SwarmOptimization Algorithm. Particle swarm
optimization (PSO) algorithm is a swarm intelligent opti-
mization algorithm that simulates the collective cooperation
of birds to find food. It was first proposed by J. Kennedy and
R. Eberhart in 1995. PSO combines the advantages of swarm
intelligence optimization algorithms and the advantages of
evolutionary calculations to achieve global optimal search in
complex spaces.

In the PSO algorithm, in order to achieve the optimality
of the behavior of the entire group, the individual is rep-
resented by particles that specify the corresponding behavior
rules. 'e particles find the optimal position based on their
own experience and group experience and constantly update
themselves, and the particles find the optimal solution
through cooperation and mutual assistance.

Mathematical expression of PSO: in the D-dimensional
search space, n represents the number of particles
i � 1, 2, . . . , n. 'e position of the i-th particle is denoted by
Xi � (xi1; xi2; . . . ; xi D). 'e historical optimal position of
the i-th particle is represented by Pi � (pi1; pi2; . . . ; pi D).
'e velocity of the particle is denoted by
Vi � (vi1; vi2; . . . ; vi D). 'e particle velocity and position
update formula are as follows:
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where the right side of the speed update formula is inertial
part, cognitive part, and social part.ω is the inertia weighting
factor, which is generally between (0.2, 0.9). c1 and c2 are
learning factors, generally take the same normal number
between (0,4), and usually take 2. c1 and c2 are random
positive numbers, evenly distributed between (0,1). Pg

represents the historical global optimal solution. Sometimes
in order to limit the speed of the particles, the upper limit
Vmax and the lower limit Vmin of the particle speed are set
according to different situations, generally set to 2.048 and
-2.048.

3. System Structure

In the water quality pollution prediction system architecture
based on deep learning in the water environment moni-
toring big data, the overall topological structure and func-
tional structure of the system are mainly designed, and the
overall design and implementation of the system are planned
[22]. 'e system design goals mainly include two aspects:
water quality data collection based on big data of the Internet
of 'ings, water quality pollution prediction and control
based on deep learning. Its overall topological structure is
shown in Figure 3.

'e system uses wireless sensor nodes as data sensing
equipment for big data of the Internet of 'ings to monitor
the sewage water quality of sewage treatment equipment and
every intermediate link in the sewage treatment process. 'e
monitoring results are handed over to the cloud computing
storage platform. On the cloud computing storage platform,
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v

Figure 2: 'e structure of deep belief network.
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deep learning algorithms are used to process and analyze
monitoring data, generate prediction results, and intelli-
gently control sewage treatment equipment.

General sewage treatment is divided into four levels. 'e
sewage treatment perception system based on big data of
Internet of 'ings deploys wireless sensor nodes for each
treatment process, each important parameter index, and
important treatment equipment of sewage treatment, real-
izes the information perception of the whole sewage treat-
ment process without dead angle and full coverage, and
ensures the comprehensive, in-depth, and thorough per-
ception and collection of the sewage treatment process in-
formation. Each sensor node self-organizes to build a
wireless multihop network through the Zigbee protocol and
reports the collected sewage treatment data to the sink node.
'e coordinator node will upload the data to the cloud
platform through the gateway for subsequent intelligent
analysis and processing.

4. Intelligent Prediction and Control Design of
Sewage Treatment Process Based on
Deep Learning

4.1. Algorithm Design of Prediction Model. 'e intelligent
prediction and control of sewage treatment based on deep
learning are as follows. Firstly, the water environment

monitoring IOT collects the parameters of each treatment
equipment and the intermediate sewage quality data in the
sewage treatment process and obtains the historical original
data. After data preprocessing, the training data set is ob-
tained. 'en, the unsupervised learning machine learning
DBN is used to model the wastewater treatment prediction.
'e optimal network structure of DBN is determined by
using the training data set, including the number of nodes in
the input layer, the number of nodes in the hidden layer, and
the number of layers in the hidden layer, and the weight is
adjusted. 'e training data is used to train this model, and
the final model is adjusted continuously.

'e big data system of water environment monitoring
collects the data of sewage treatment equipment parameters
and intermediate sewage quality data in real time to form the
current original data. At present, the original data becomes
the prediction data set after data preprocessing. 'e DBN
model and prediction data set are used to predict the results
of sewage treatment and then control the operation of re-
lated equipment in the whole process of sewage treatment.

DBN overlaps multiple RBM models together, regards
the visual layer of each RBMmodel as the input layer and the
hidden layer as the output layer, and then completes the
training [23]. 'e visual layer of the network and the hidden
layer unit are interconnected (no connection within the
layer), and the hidden layer unit can obtain the high-order
correlation of the input visual unit. Compared with the
traditional Sigmod reliability network, the learning of RBM
weights is relatively easy [24]. In order to obtain generative
weights, unsupervised greedy layer-by-layer implementation
is used in pretraining [25, 26]. In the training process, the
Gibbs sampling principle is adopted; that is, the visible
vector value is mapped to the hidden layer unit. 'en the
visible unit is reconstructed from the hidden layer unit.
'ese new visual units are mapped to hidden layer units
again, and new hidden layer units are obtained. A typical
DBN network with only one hidden layer can use the joint
probability density distribution to describe the relationship
between the input vector x and the hidden vector gi. 'e
mathematical expression is as follows:
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where ρ(hi|hi+1) is the conditional probability distribution.
'ink of the hidden layer hi as a random binary vector with
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where sigm(t) � 1/(1 + e− t), bi
j is the bias value of the j th

unit in the i-th layer, and ωi is the weight of the i-th layer.
After training, you need to fine-tune the DBN training.

According to the loss function of the input data and the
reconstructed data, the BP algorithm is used to fine-tune the
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Figure 3: Overall topological structure of the system.
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correlation network parameters to minimize the loss
function. 'e formula of the loss function is

L x − x′(  � ‖x − x′ ‖22. (4)

Among them, x is the true value of the training data, and
x′ is the value of the DBN fitting function.

Considering that the final discharged water quality is the
final direct indicator, the final water quality is used as the
indicator of the sewage treatment result. Realize the pre-
diction of the discharge water quality by constructing the
DBN network. 'e construction process of the sewage
treatment forecast DBN networkmodel is shown in Figure 4.

'e input of DBN water pollution prediction model
includes the parameters of each process and the sewage
quality after each process. And through the bottom-up
combination of multiple RBMs to build a DBN network, the
final output of sewage quality is obtained.

4.2. Optimization of Model Parameters for Water Quality
Prediction. When designing the structure of the DBN, it is
necessary to determine the number of hidden layers, the
number of nodes contained in each hidden layer, the
learning rate of RBM, and the learning rate of the fine-
tuning process. 'e setting of these parameters largely
affects the prediction performance of the water pollution
prediction model. However, there is no relevant theory to
clarify the best selection method for these parameters.
Many researchers use a large number of experimental
comparisons, experiences, and trial-and-error methods to
determine these parameters and choose a better network
structure of the water pollution prediction model. 'e
network structure needs to be readjusted every time the
impact factor related to the forecast changes. 'e network
structure of each model is only suitable for a specific en-
vironment, resulting in poor generalization ability of the
predictive model. Moreover, the accuracy of the model’s
prediction results is related to the model user, and expe-
rienced experts may get better results.

'e proposed model uses PSO to optimize the param-
eters of the water pollution prediction model. PSO can not
only avoid falling into local extreme values but also ensure
the global search ability and can optimize the parameters of
the water pollution prediction model. Regarding each pa-
rameter to be optimized as a particle, it iteratively adjusts
continuously to continuously approach the global optimal
solution. 'e convergence speed is fast, and the adaptability
of the water pollution prediction model becomes stronger,
and the generalization ability is improved. 'e process of
using the PSO algorithm to dynamically optimize the water
pollution prediction model based on deep learning is shown
in Figure 5.

'e number of hidden layer units of the DBN network is
M, and the learning rates of RBM1, RBM2, and RBM3 are ε1,
ε2, and ε3, respectively. 'e particle x(m, ε1, ε2, ε3) is a four-
dimensional vector, where ε1, ε2, ε3 ∈ (0, 1).

'e pseudocode of the specific PSO algorithm is shown
in Algorithm 1.

5. Experiment and Analysis

'ewater quality data in the experiment comes from the real
monitoring data of the main water quality indicator
chemical oxygen demand (COD) of Shanghai Jinze Reser-
voir, the main water source in Shanghai, fromApril 30, 2019,
to November 30, 2019, and according to the collection
frequency per minute to obtain 300,520 monitoring value
data. 'e original COD data measurement value is shown in
Figure 6.

5.1. Data Preprocessing

5.1.1. Missing Value Processing. In the original data set,
some sensor data is missing at some moments. 'erefore, it
is necessary to fill in the missing data before using the data.
Since the sensor data has a high probability to remain
relatively stable in a short period of time, the forward filling
method is adopted. 'at is to fill in the missing data at the
current moment based on the data at the previous moment.
'e possible data missing in the sensor data collected at 4
consecutive times within a certain period of time and the
corresponding forward filling results are shown in Table 1.
'e black data is the real measurement data, and the red data
is the filling data.

5.1.2. Standardization. For the learning of multidimen-
sional feature data, standardization can often facilitate data
processing and speed up the convergence speed of model
training. For the data set used, each piece of data has dif-
ferent characteristics. 'erefore, it is also necessary to
standardize the original data set, so as to avoid the phe-
nomenon that the model convergence is too slow due to the
large difference between the original data of different
characteristics. 'e standardization method adopted is that,
for each sensor indicator, if the mean value of the indicator
in the set time window is recorded as μ, the standard de-
viation is recorded as δ. 'en the observed value xt of this
indicator at time t becomes

xt �
xt − μ
δ

. (5)

After this transformation, the values between different
sensors are scaled to a range that can be directly compared.
Moreover, using the transformed data to train the model can
also speed up the convergence speed of the model training to
a certain extent.

5.2. Evaluation Index. Two indicators, RMSE and correla-
tion coefficient R, are used to evaluate the performance of the
water quality prediction model.
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In the formula, yi represents the actual data of the i-th
sample, and yi

′ represents the predicted data of the i-th
sample. y and y′, respectively, represent the average value of
n actual data and the average value of n predicted data.When

using RMSE and R as indicators to evaluate the water quality
prediction model, the smaller the RMSE, the better, and the
closer R to 1, the better.

5.3. Pollution Source Location Based onDeep LearningModel.
First, the data set obtained by monitoring is divided into two
data sets to evaluate the effect of the deep learningmodel in the
first stage of traceability in the location of pollution sources.
Before that, the same segmentation is performed on the two
data sets: 80% of the data is used as the training set, and 20% of
the data is used as the test set. 'e positioning results of the
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proposedmodel on the two data sets are shown in Tables 2 and
3. It should be noted that T in the table represents the number
of samples. 'at is, the data used in training and testing the
model is the concentration data at Tmoments after the pol-
lution occurs, rather than all the data during the entire sim-
ulation period. For example, when the number of sensors is 4
and that of T is 12, it means that the data used by the cor-
responding proposedmodel is the data collected at the 4 sensor
nodes at 12 moments after the pollution occurred.

Since the proposed model will output multiple suspicious
pollution source nodes at the same time, the evaluation of the
model can be described by whether the actual pollution source
node is included in several nodes predicted by the proposed
model. 'erefore, it can be seen from Tables 2 and 3 that, (1)
under the combination of the number of various sensors and
the number of samples, the 6 nodes predicted by the proposed
model obtained on the two data sets have a high probability of

containing the real pollution source nodes. In the worst case, the
probability also exceeds 70%. 'erefore, the constructed DBN
model for locating pollution sources is effective. (2)'e effect of
the proposed model is still reliable even when the number of
samples T is small. 'erefore, the method of locating pollution
sources based on the DBN model does not rely on long-term
data collection. 'e process of locating the pollution source is a
task that can be completed in a relatively short period of time.

5.4. Comparison of Predicted Value and Actual Value.
'e water quality pollution prediction model based on deep
learning is used to predict this sewage treatment plant
dataset, and the result is shown in Figure 7. Among them, the
predicted output value of the model includes biological
oxygen demand (BOD) in addition to COD.

It can be seen from Figure 7 that whether it is COD or
BOD, the predicted value can better approximate the actual
value, and the two curves have a higher consistency. 'e
predicted value of individual points differs greatly from the
actual value, which may be caused by test errors or other
uncertain parameters. Taken together, it can be demonstrated
that the proposed model has better predictive performance.

5.5. Comparison with Other Models. In order to better
demonstrate the performance of the proposed model, the
prediction experiment was performed on the same set of
experimental data as the model in [17]. 'e results of the
comparative experiment are shown in Figure 8.

(1) Parameter: N:'e population size of the particle swarm; C:'e maximum number of iterations.
(2) Begin
(3) Initialize the particle’s position xc�0 and velocity vc�0.
(4) 'e root mean square error (RMSE) between the predicted value and the expected value is used to find the optimal position xc

ipbest
and the global optimal position xc

gbest of each particle.
(5) Update speed and position information. Calculate and update the speed and position information of the particles according to

the speed update formula and the position update formula:
x
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(6) If RMSE convergence and c � C then PSO algorithm ends;
(7) otherwise c � c + 1, return to step 3.
(8) End

ALGORITHM 1: Pseudocode of PSO algorithm.

Table 1: Forward fill results with missing data.

Time Cl Cl_2 pH Tp COD
. . . . . . . . . . . . . . . . . .

T At Bt Ct Dt Et
t+ 1 At+1 Bt Ct+1 Dt Et+1
t+ 2 At+1 Bt+2 Ct+2 Dt Et+2

Table 2:'e probability that the 6 nodes predicted by the proposed
model in dataset A contain real pollution source nodes.

Number of sensors T� 2 T� 6 T� 8 T�12 T�14
4 0.854 0.868 0.892 0.886 0.884
6 0.795 0.807 0.856 0.875 0.863
8 0.733 0.774 0.827 0.861 0.859
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Figure 6: Measured value of original COD data.

Table 3:'e probability that the 6 nodes predicted by the proposed
model in dataset B contain real pollution source nodes.

Number of sensors T� 6 T�12 T�18
10 0.713 0.740 0.769
20 0.752 0.785 0.791
30 0.868 0.863 0.884
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Figure 7: 'e prediction and output value of different water quality parameters by the model. (a) 'e predicted and actual values of COD.
(b) 'e predicted and actual values of BOD.
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Figure 8: Continued.
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It can be seen from Figure 8 that the water quality
prediction model based on the improved DBN and [17]
based on the artificial neural network and the multiple linear
regression model have good COD and BOD prediction
effects, and the curve fits well. 'eir predicted and actual
values are relatively consistent. However, the prediction
results of the improved DBN prediction model are closer to
the actual data, with smaller errors and higher accuracy.

In order to quantitatively compare and analyze the
performance of the two models, RMSE and correlation R are
used for evaluation. 'e results are shown in Table 4. In
order to increase the persuasive power, the traditional
prediction model proposed in [11] is added.

It can be seen from Table 4 that, for the prediction of
COD and BOD, the RMSE and R of the proposed prediction
model are 3.073 and 0.9892, 1.958 and 0.9565, respectively,
which are better than other comparison models. Because it
uses PSO to improve DBN, it can quickly obtain high-
precision prediction results. 'e model in [11] is more
traditional, and the prediction results are not ideal. Taking
the correlation R of BOD as an example, it is only 0.9017.
Reference [17] combines artificial neural network and
multiple linear regression model to achieve water quality
prediction, and their prediction performance has been

improved to a certain extent. But the learning performance
advantage of artificial neural network is not obvious, because
the overall effect is lacking. 'e particle swarm optimization
algorithm is used to dynamically optimize the number of
hidden layer neural units and the learning rate in the pre-
diction model. In order to improve its convergence speed
and generalization ability, the prediction results are more
scientific and accurate.'erefore, the proposed water quality
prediction model based on deep learning has a relatively
ideal water quality prediction effect and has certain practical
application advantages.

6. Conclusion

Water quality is closely related to people’s daily life. In order
to improve the quality of life, a highly reliable water quality
prediction model is necessary. For this reason, a water
pollution prediction model using deep learning in water
environment monitoring big data is proposed. In the water
environment monitoring system, the Internet of 'ings big
data technology is used to accurately sense and monitor the
real-time data of sewage treatment equipment and sewage
water quality. And the DBN is improved by PSO to build the
water pollution prediction model, so as to get the ideal water
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Figure 8: Comparison of predicted value and output value under different models. (a) Comparison of COD predicted value and actual value
in different models. (b) Comparison of BOD predicted value and actual value in different models.

Table 4: Comparison results of evaluation indexes of two prediction models.

Model Water quality index RMSE R

Ref. [11] COD 5.384 0.9533
BOD 3.190 0.9017

Ref. [17] COD 4.521 0.9641
BOD 2.185 0.9239

'e proposed model COD 3.073 0.9892
BOD 1.958 0.9565
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quality prediction results. Based on the sampling data of
Jinze reservoir in Shanghai, the proposed model is dem-
onstrated experimentally. 'e results show that the prob-
ability of accurate pollution source location is not less than
70%, and the pollution source location can be completed in a
short time. In addition, under the two indicators of COD
and BOD, the RMSE of the proposed model is 3.073 and
1.958, respectively, which are better than other comparative
models. And the correlation coefficient R is 0.9892 and
0.9565, which are very close to 1. 'e proposed model only
uses a specific data set for experimentation. In reality, the
benchmarks of water quality in different water supply pipe
networks are not the same, and the types of sensors deployed
are also different. 'erefore, how to obtain data from a real
water supply network and design a learning model for
pollution detection still needs to be further explored.
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