
Research Article
Malware Detection Using CNN via Word Embedding in Cloud
Computing Infrastructure

Rong Wang , Cong Tian, and Lin Yan

School of Computer Science and Technology, Xidian University, Xi’an 710000, China

Correspondence should be addressed to Rong Wang; bilywr@163.com

Received 5 August 2021; Accepted 2 September 2021; Published 13 September 2021

Academic Editor: Punit Gupta

Copyright © 2021 Rong Wang et al. (is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

(e Internet of (ings (IoT), cloud, and fog computing paradigms provide a powerful large-scale computing infrastructure for a
variety of data and computation-intensive applications. (ese cutting-edge computing infrastructures, however, are nevertheless
vulnerable to serious security and privacy risks. One of the most important countermeasures against cybersecurity threats is
intrusion detection and prevention systems, which monitor devices, networks, and systems for malicious activity and policy
violations. (e detection and prevention systems range from antivirus software to hierarchical systems that monitor the traffic of
whole backbone networks. At the moment, the primary defensive solutions are based on malware feature extraction. Most known
feature extraction algorithms use byte N-gram patterns or binary strings to represent log files or other static information. (e
information taken from program files is expressed using word embedding (GloVe) and a new feature extraction method proposed
in this article. As a result, the relevant vector space model (VSM) will incorporate more information about unknown programs.
We utilize convolutional neural network (CNN) to analyze the feature maps represented by word embedding and apply Softmax
to fit the probability of a malicious program. Eventually, we consider a program to be malicious if the probability is greater than
0.5; otherwise, it is a benign program. Experimental result shows that our approach achieves a level of accuracy higher than 98%.

1. Introduction

Cloud-fog-edge computing, especially cloud computing, is
providing a variety of services in many areas throughout the
world. (e cloud offers a variety of unique security prob-
lems, one of which is the detection of malware. Malware is a
significant threat to modern computing devices for their
illegal purposes, such as unauthorized access, stealing
confidential or personal information, implanting ads, and
disrupting normal operation. (erefore, some effective ap-
proaches and tools for detecting and deactivating malware
are required.

A widely used approach for malware detection is be-
havior-based method, which monitors the behaviors of a
program, typically the stream of system calls, to determine
whether it is malicious [1, 2]. However, behavior-based
malware detectionmethod is inferior in detecting the unseen
and continuously modified malware because of its rigid and
restrictive nature [3].

In this article, we propose a framework for malware
detection that combines behavior-based feature extraction
with deep learning. Our work makes the following major
contributions:

(1) Unified design of behavior detection and feature
extraction: we use a tool Cuckoo Sandbox to collect
the behavior information of the program (executable
file) when it executed inside a realistic but isolated
environment. (en, we construct a map of moni-
tored behavior to a vector space with a method
GloVe [4], which trains on a global word-word co-
occurrence matrix and produces a word vector space
model, to represent each word of the corpus with a
real-valued vector.

(2) Representation of the program’s behavioral char-
acteristics as a feature map (a matrix consisting of
sequential word vectors): this transformation makes
behavioral patterns reflected geometrically and

Hindawi
Scientific Programming
Volume 2021, Article ID 8381550, 7 pages
https://doi.org/10.1155/2021/8381550

mailto:bilywr@163.com
https://orcid.org/0000-0002-5368-1829
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/8381550

accessible by convolutional neural network, an ex-
cellent deep learning algorithm to capture word-level
features from the feature maps and further predict
the labels of the feature maps, malware or benign.

(e rest of this article is organized as follows. Section 2
describes the related work of malware detection. Section 3
studies the problem formulation posed by our approaches.
Section 4 introduces the framework of the proposed mal-
ware detection model in detail. Section 5 presents the ex-
perimental results that are followed by the conclusions in
Section 6.

2. Related Work

Malware detection has been a critical challenge in com-
puting since the late 80s, which mainly involves two pro-
cesses, feature extraction and classification. For feature
extraction, many researches focus on using information
available in API calls to monitor the behavior of the program
that may potentially highlight anomalous and malicious
activities.

(e work by Alazab et al. [5] studied an automated
method of extracting API call features and analysed them to
understand their use for malicious purpose. Sundarkumar
et al. [6] presented a model, based on the types of API call
sequences, using text mining and topic modeling to detect
malware. Hachinyan [7] discussed proactive methods based
on API call sequences analysis and proposed a method using
a multiple sequence alignment to identify malware. Most
recently, Pektas, and Acarman [8] presented a runtime
behavior-based classification approach for Windows mal-
ware, which extracts runtime behaviors for the determi-
nation of a malicious sequence of API calls. In this article, we
extract API call sequences of program as a baseline to
compare with extracting feature from the behavioral in-
formation of program in a sandbox environment.

Term Frequency-Inverse Document Frequency
(TF-IDF) is a common weighted technique for information
retrieval and data mining. Term Frequency (TF) refers to the
number of times a given word appears in a document. Jones
[9] first puts forward a technical term, later known as Inverse
Document Frequency (IDF), which counts the documents
containing (or being indexed by) the term in question. TF-
IDF has been used for web document clustering and ranking
[10], text classification [11], analysis of similarity between
important terms in text documents [12], and image retrieval
[13]. In this article, we use TF-IDF to extract feature from the
corpus of program behavior descriptions as another baseline
compared with word embedding and use SVM to classify the
numerical characteristics compared with CNN classifying
feature maps.

3. Problem Formulation

Several malware detection researches related to Deep
Learning have been proved effective, which extract infor-
mation from log files of program, like API call sequences
during execution process, and create a so-called program

behavior language model based on this information. But
there are two problems:

(1) It is not certain that the resulting textual information
from program’s log files can describe the nature of
programs

(2) (e behavior language model established using the
GloVe model for API call sequences may lose the
syntax information in some dimension

As we all know, the quality of feature extraction has a
decisive influence on malware detection. For accuracy and
effectiveness, we want more comprehensive, expressive, and
available features of programs. On the other hand, byte data
in malware can contain multiple types of information, in-
cluding human-readable text, binary code, images, and even
some encrypted content. (erefore, we expect to design a
malware detection model that can extract sufficient infor-
mation from program and be described in a usable format.

4. Methodology

In this section, we propose a new malware detection method
with supervised learning. Figure 1 shows an overview of the
main steps in our method. (is model adopts 5-fold cross
validation to process datasets (malware program set and
benign program set).

In the training phrase above the dotted line, we first
adopt Cuckoo sandbox to extract behavior information of
the executable files, such as “Installs itself for autorun at
Windows startup,” “Installs itself for autorun at Windows
startup.” (en, we perform a preprocessing to get word
sequences, which called Information Unit. We use Glove
model to capture the rich semantic and syntactic features of
words and vectorize them. (e output of GloVe is a dic-
tionary of word embedding for each unique word. After that,
we look up in the dictionary to represent every word in the
description file as its corresponding vector, thus a feature
map of the program is generated. Finally, we obtain a trained
CNN by learning from these feature maps.

Below the dotted line, the flowchart describes the de-
tection phrase of our model. More specifically, we first input
the executable file from the test set into Cuckoo for analysis
to get the Information Unit and then look up in the dic-
tionary of word embedding to get the Information Vector
Unit; finally, we use CNNmodel mentioned above to predict
the probability that the executable file is benign or malware.
If the probability is higher than 0.5, we consider the program
as a benign program, otherwise a malicious program.

4.1. Word Embedding. (is stage first utilizes Cuckoo to
analyze the executable files that may contain some malicious
codes and obtains the program behavior information that
described the natural language. (en, the model use GloVe
proposed by Jeffrey Pennington to complete the word
embedding. Each word w is represented by a 100-dimen-
sional vector v. During this step, we leverage global statistical
information by training on the word-word co-occurrence
matrix X, where the element Xij presents the number of

2 Scientific Programming

times that word wi occurs in the context of word wi. Let
Xi � kXik be the number of times that any word appears in
the context of word wi, and

Pi,j � P wj ∣ wi

�
Xij

Xi

,

(1)

be the probability that word wj appears in the context of
word wi. For three words wi, wj, and wk, the radio Pik/Pjk

depends on the co-occurrence frequency of words (wk, wi)
and (wk, wj), and the value is contributed to distinguishing
relevant words from irrelevant words or discriminate the
two relevant words. Let vi, vj, and vk be the word vectors of
wi, wj, and wk, since the inherently linear structures of
vector space, the radio Pik/Pjk can be considered as a
function of vi, vj, and vk. (en, the radio Pik/Pjk can be
measured as follows:

F vi − vj
T
vk �

Xik

Xjk

. (2)

(e regression connection function of the model is
Pik � exp(vT

k vi) + ai + ak, where ai and ak can be approxi-
mated as log(Xi) and log(Xj). (en, vT

k � log
(Pik) − log(Xi) − log(Xk) comes naturally. (en, the cost
function of Model is J �

N
i,j�1 f(Xi,j)(vT

i vj + ai +

aj − log(Xi,j))
2, where N is the size of the vocabulary (the

dimensions of co-occurrence matrix is N∗N, and vi, vj are
the vector representations of the words wi, wj.

In addition, a weighting function f(x) is needed so
that the frequent co-occurrence word pairs will not be
overweighted. Various functions can be selected, but we
found one work well, which can be parameterized as
follows:

f(x) �

x

xmax
α
, if x<xmax,

1, otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

Here, α � 3/4, and then, the model will perform better to
represent the words as vectors containing as many semantic
and grammatical information as possible. After getting this
word embedding, we can look up in the dictionary to turn
word sequences into a two-dimensional feature map, which
can also be generated by connecting as:

G � vi ⊕ vj ⊕ · · · ⊕ vk ⊕ vl. (4)

(e resulting feature map is used as input of CNN.
Figure 2 shows two sample benign feature maps and two

sample malware feature maps by their digital gray images.
Here, the dimension of a word vector is 100, and different
text lengths lead to different image sizes.

4.2.'eCNNArchitecture. In this work, we treat the feature
images as input and perform a convolutional neural network
to classify the images. Figure 3 shows the architecture of our
CNN used in our model. In general, the basic structure of
CNN consists of two layers: feature extraction layer and
feature mapping layer. In the feature extraction layer, each
neuron’s input is connected to the local receptive field of the
previous layer, and the local characteristics are extracted.
Once the local feature is extracted, the relationship with
other characteristics is also determined; In the feature
mapping layer, each computing layer of the network consists
of multiple feature maps, which can be seen as a plane. (e
feature mapping structure in our model uses the nonlinear
activation function Relu:

exe

Data Extraction &
Preprocessing

Information
Unit lookup Feature

Map CNN

Information
Unit Sets

Information
Unit

lookup Information
Unit Vector

Trained
CNN Model

Detection
Result

Glove Word
Embeddings

Training
Phrase

Detetion
Phrase

training
set

test
set

Figure 1: Overview of the main steps.

Scientific Programming 3

f(x) � max 0, x{ }. (5)

4.2.1. Features Extraction. (e main task of this stage is to
generate a feature map from the complex features within the
image. (is features extraction stage can be defined as an
alternate chain of two different layers (the convolutional
layer and the pooling layer).

(e convolutional layer applies a series of trainable and
learnable K filters (or kernels) to analyze the image. In our
CNN, we use the convolutional layer with 128 filters, select the
window size of neural network is 5 × 5, and choose the Relu as
the activation function. Each convolution layer in CNN is
followed by a calculation layer aimed at the local average and
secondary extraction. In the forward calculation, we input a
certain size of data (widthw � 1000∗ height h � 100), which
dot product with the filter w ∈ Rh×k (a vector of h × k di-
mensions) and add a bias b ∈ Rh.

(en, the pooling layer is designed to compress the data
hat produced by the previous convolutional layer and
maintain the most relevant features. (is layer swipes the
filters one by one to form a new output data. More generally,
the input is defined by the following parameters: h, w. Here,
h represents the height of the volume and w is the width.

When we consider the image processing, for each filter
k, the convolutional layer applies a convolution defined as
follows:

oi,j,k �

hk

h�0

wk

m�0
wh,m · xi+h,j+m + bk, (6)

where the filter k is represented by a hk × wk matrix of
weights, bk is a bias, i and j are the coordinates of the current
pixel x in the input volume.

After each convolution layer, we use the poolingmethod to
shrink the parameter space of CNN and filter noises. In this
article, we choose the Max-Pooling to obtain the most rep-
resentative local features.(emax-pooling is defined to extract
the most critical feature values of the input vectors within a
window. So the maximum value of each feature map is ob-
tained as the local optimal feature. After the final flattening, we
will get a one-dimensional vector as input for next stage.

4.2.2. Classification. (e classification stage receives the
input vector from the last layer (convolutional or pooling) of
the features extraction stage and then calculates the affinity
of the feature map with the classification classes.(is stage is

(a) (b) (c) (d)

Figure 2: Gray images of two benign feature maps and two malware feature maps.

Input :
1000⁎100

Conv : 128
⁎5⁎5

Pooling :
5⁎5

Similar processes

Flatten
Full

Connection

Dropout
(0.2)

Full
Connection

output

.....

Figure 3: (e framework of CNN.

4 Scientific Programming

structured as a chain of linear layers, which implemented by
a Fully Connected Network (FCN). In our model, there are
two Fully Connected Networks and one dropout layer to
prevent overfitting.

Suppose that the linear layer is composed by J neurons,
which are responsible for aggregating the information
derived from the previous layer.(en, the output values are
expressed as a weighted linear combination of these
neurons:

oj �
I

i�0
wi,j · xi + bk. (7)

Here, wi,j represents the weight, xi represents the
neurons from the previous layer, and bj represents a bias.

As for the dropout layer, we found that the model works
well when the dropout rate was equal to 0.2. (e last nor-
malization operator receives the output from the last linear
layer and calculates the affinity of the feature image with the
classification classes in percentage terms using a SoftMax
operator σ: σj � exj /

K
k�1 exk for j � 1, . . . , K. Here, xj

means the output of the last linear layer. (en, SoftMax
operator enforces the output in range [0, 1]. (us, this
normalized operator output can be seen as the probability of
classification.

4.3. Network Training. Convolutional neural network is a
supervised learning algorithm. Due to our target of malware
detection, the training data should consist of sufficient ex-
amples of two classes of application program, malicious
program and benign program, so that CNN can learn to
capture the relevant features of malware program for further
classificationmore effectively. Fortunately, we have found an
efficient method of feature extraction, which collects the
global and local statistic information of executable pro-
grams. (erefore, the next critical step is to train the vec-
tored data (or feature map) using CNN.

4.4. Dataset and Parameter Settings. In this work, we col-
lected malware samples from some antimalware commu-
nities (e.g., Kafan Forum andMalShare) and obtained some
benign system programs built in Windows, benign appli-
cations from the download site of software (e.g., Greenxf
and PConline). Our dataset consists of 1992 programs
(executable files), whose size ranges from a few KB to a
dozen megabytes. Among them, there are 981 malicious
programs, which are considered as negative examples, and
1011 benign programs, which are treated as positive ex-
amples. For these programs, we choose 4/5 of dataset as the
training set and 1/5 as the testing set, to evaluate the
classification results of our model. Batchsize and epoch we
choose are 128 and 4, separately. In training process, we use
the convolutional layer with 128 filters and the pooling
layer alternately before the flatten, after that there are two
Full Connection layers and a Dropout behind them for
avoiding overfitting and improving the generalization
ability of the network.

5. Experiment

We conduct a series of experiments to evaluate the efficiency
of our approach. As mentioned before, we extract the textual
information by Cuckoo from the program files and describe
the behavior of programs in natural language, for example,
“Allocatesread-write-execute memory (usually to unpack
itself)”. It is very critical for us to map the words into the
vector space and represents each word with a 100-dimen-
sional vector, which will produce a feature map for each
program.(en, we can develop CNN to detect malware with
the feature maps obtained before as input. (at is the whole
process of our model, we will denote it as Method B in the
below. In order to compare the efficiency of our model, we
design two other groups of experiments: Method A and
Method C. Method A also extracts textual information
describing the behavior of programs by Cuckoo in natural
language but generates the feature vectors by TF-IDF as the
input of SVM for malware detection. However, Method C
extracts API call sequences of programs and uses GloVe to
get the feature map and then uses CNN to detect malware.

5.1. Performance Comparison. As our approach relies on
machine learning techniques, we also follow the model
evaluation method to assess our experimental results. In this
work, our mainly used measurement parameters are Ac-
curacy, Precision, Recall, F1, Kappa, and ROC Curve, for a
more comprehensive assessment. For binary classification
task, we can divide the sample set into four classes: true
positive (TP), false positive (FP), true negative (TN), and
false negative (FN), according to the combination of real
class and predicted class.

Accuracy is the proportion of the correct sample in the
total sample. For a sample set D, the accuracy is defined as
accuracy � TP + TN/TP + FN + TN + FP. Precision is de-
fined as P � TP/TP + FP. Recall is defined as
R � TP/TP + FN. Other performance measures take the
precision and the recall into account at the same time, such as
F1 and kappa. F1 is defined as F1 � 2∗ precision∗
recall/precision + recall.

Kappa is another method of calculating classification
accuracy to determine whether the predicted results are
consistent with actual results, which is defined as
κ � pr(a) − pr(e)/1 − pr(e), where the pr(a) is the actual
accuracy and pr(e) is the theoretical accuracy.

Receiver operating characteristic (ROC) curve is ob-
tained by selecting the specificity (false-positive rate) and
sensitivity (true-positive rate) as the horizontal axis and the
vertical axis, respectively. (e corresponding area under the
receiver operating characteristic (ROC) curve (AUC) is one
of the most popular metrics to probabilistically evaluate the
performance of classifiers.

5.2. Results. In order to validate our detection method on
malwares, we set two baselines for comparison: feature ex-
traction and classification. (e experiment performs malware
detection task in three different ways on the same dataset, and
the results are shown as Table 1. Obviously, the results

Scientific Programming 5

illustrate that the malware detection method using CNN and
Word Embedding outperformed bothMethod A andMethod
C in the accuracy, recall, F1, and kappa. Especially, in the
aspect of Accuracy, Method A has achieved 98%, which is of
great significance in practical for malware detection because
the cost of misclassification is very high. As for Recall, the
value ofMethod B is 1, which is equal toMethodA .(is is the
only situation where our model performance is not over other
models because its Recall has reached the optimal value 1. In
addition, from Figure 4, we can observe that the AUC (area
under the ROC curve) of Method B is 0.990, which is superior

to 0.974 of Method A and 0.937 of Method B.(is means that
the model proposed in this article shows better classification
ability. Next, we contrast our model with other methods in
two stages: the feature extraction stage and the classification
stage, respectively.

5.2.1. Feature Extraction with Word Embedding and API
Calls Sequence. In the stage of feature extraction, Method C
uses Cuckoo to extract the API call sequence of the program
as description information for malware detection. Method C

Table 1: (e TP, TN, FP, precision, recall, accuracy, F1, and kappa of each malware detection method.

Method TP TN FP Precision Recall Accuracy (%) F1 Kappa
A (CUCKOO+TF-IDF+ SVM) 202 186 10 0.953 1 97.5 0.976 0.950
B (CUCKOO+GloVe +CNN) 203 191 4 0.981 1 98.9 0.990 0.980
C (API calls +GloVe +CNN) 193 180 15 0.928 0.951 93.8 0.939 0.87

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
False Positive Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curve of Method A

AUC=0.937

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
False Positive Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curve of Method B

AUC=0.990

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
False Positive Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curve of Method C

AUC=0.974

(c)

Figure 4: ROC curve of Method A (a), Method B (b), Method C (c).

6 Scientific Programming

divides the API calls sequence information into six cate-
gories (socket, memory management, processes, and threads
etc.), which simplifies complexity of the feature extraction
but also lost some other features. In our model (Method B),
Cuckoo takes the natural language description information
of program behavior, and GloVe represents the words as
vectors remaining the global and local information. On the
other hand, theWord Embedding has an inherent advantage
in clustering so that the distribution of the similar words
roughly similar in vector space. (erefore, it is reasonable
that the accuracy of our model is higher than Method C.

5.2.2. Word Vector and TF-IDF. In the stage of classifica-
tion, Method B and Method A choose different ways to
analyze the data obtained previously. Considering that the
TF-IDF used in Method A is a type of numerical data, we
choose the SVM to complete the classification phase of
Method A. Compared with the word embedding in Method
A, TF-IDF requires a higher dimension of the space. On the
other hand, the word vectors in Method B can express the
semantic and grammatical information without removing
the stop words because they also contain some grammatical
information available for training.(erefore, using the word
vectors can extract the features of program behavior more
effectively and make the classification more accurate at the
same time. (e experimental results directly verify that the
accuracy of Method B is higher than Method A.

6. Conclusion and Future Work

In this article, we proposed a novel approach for detecting
malware using CNN via Word Embedding. Our approach
first extracts the natural language description information of
program behavior by Cuckoo Sandbox and uses GloVe to
map the natural language (word space) into the corre-
sponding vector space, which results in a dictionary of words
represented by a real-valued vectors. For each program, the
corresponding textual description information extracted by
Cuckoo can be represented as a sequence of word vectors,
called feature map. (e task of malware detection can be
equivalent to image classification, and we use the convolution
neural network as a classifier to learn the feature maps of
programs. In this way, we can make full use of the grammar
and sematic information of programs. In the evaluation stage,
we created two baselines to compare with our model, one
method adopts TF-IDF word representation in the stage of
features extraction (Method A) and uses a SVM as classifier in
the stage of classification. (e other method uses API calls
sequences to represent the behavior information of executable
program (Method C). (e experimental results illustrate that
our approach achieves a better performance than others.

Future work should focus on the defensive mechanisms
that we identified as potentially helpful to improve our
model. Also, the applicability of our detection model to
additional domains should be studied. On the other hand,
we expect to improve our means of extracting information
so that we can generate more valuable features with more
expressive ability for the behaviors of executable programs.

Data Availability

(e experimental data used to support the findings of this
study are available from the corresponding author upon
request.

Conflicts of Interest

(e authors declare that they have no conflicts of interest.

References

[1] S. Dai, Y. Liu, T. Wang, W. Tao, and Z. Wei, “Behavior-based
malware detection on mobile phone,” in Proceedings of the In-
ternational Conference on Wireless Communications Networking
and Mobile Computing, Niagara Falls, Canada, October 2010.

[2] I. Burguera, U. Zurutuza, and S. T. Nadjm, “Crowdroid:be-
havior-based malware detection system for android,” in
Proceedings of the Acm Workshop on Security and Privacy in
Smartphones and Mobile Devices, Chicago, IL, USA, October
2011.

[3] A. Mujumdar, G. Masiwal, and B. B. Meshram, “Analysis of
signature-based and behavior-based anti-malware ap-
proaches,” International Journal of Advanced Research in
Computer Engineering and Technology, vol. 2, no. 6, 2013.

[4] J. Pennington, R. Socher, and C. Manning, “Glove: global
vectors for word representation,” in Proceedings of the Con-
ference on Empirical Methods in Natural Language Processing,
pp. 1532–1543, Doha, Qatar, October 2014.

[5] M. Alazab, S. Venkataraman, and P. Watters, “Towards un-
derstanding malware behaviour by the extraction of api calls,”
in Proceedings of the Cybercrime and Trustworthy Computing
Workshop, pp. 52–59, Berlin, Germany, June 2010.

[6] G. G. Sundarkumar, V. Ravi, I. Nwogu, and V. Govindaraju,
“Malware detection via api calls, topic models and machine
learning,” in Proceedings of the 2015 IEEE International
Conference on Automation Science and Engineering (CASE),
pp. 1212–1217, Gothenburg, Sweden, August 2015.

[7] O. Hachinyan, “Detection of malicious software on based on
multiple equations of api-calls sequences,” in Proceedings of
the 2017 IEEE Conference of Russian Young Researchers in
Electrical and Electronic Engineering (EIConRus), pp. 415–418,
St. Petersburg and Moscow, Russia, February 2017.

[8] A. Pektas and T. Acarman, “Malware classification based on
api calls and behaviour analysis,” IET Information Security,
vol. 12, no. 2, pp. 107–117, 2018.

[9] K. S. Jones, “A statistical interpretation of term specificity and
its application in retrieval,” Journal of Documentation, vol. 60,
no. 1, pp. 493–502, 1972.

[10] R. K. Roul, O. R. Devanand, and S. K. Sahay, “Web document
clustering and ranking using tf-idf based apriori approach,”
pp. 34–39, 2014, https://arxiv.org/abs/1406.5617.

[11] K. D. He, Z. T. Zhu, and Y. Cheng, “A research on text
classification method based on improved TF-IDF algorithm,”
Journal of Guangdong University of Technology, vol. 33, no. 5,
pp. 49–53, 2016.

[12] J. F. Zhang, “Words similarity algorithm based on improved
TF-IDF and cosine theorem,” Modern Computer, pp. 20–23,
2017.

[13] N. Kondylidis, M. Tzelepi, and A. Tefas, “Exploiting Tf-Idf In
Deep Convolutional Neural Networks For Content Based
Image Retrieval,” Multimedia Tools and Applications, vol. 77,
no. 23, pp. 1–20, 2018.

Scientific Programming 7

https://arxiv.org/abs/1406.5617

