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In this paper, we proposed an improved 2D U-Net model integrated squeeze-and-excitation layer for prostate cancer
segmentation. .e proposed model combined a more complex 2D U-Net model and squeeze-and-excitation technique. .e
model consisted of an encoder stage and a decoder stage. .e encoder stage aims to extract features of the input, which
contains CONV blocks, SE layers, and max-pooling layers for improving the feature extraction capability of the model. .e
decoder aims to map the extracted features to the original image with CONV blocks, SE layers, and upsampling layers. .e
SE layer is implemented to learn more global and local features. Experiments on the public dataset PROMISE12 have
demonstrated that the proposed model could achieve state-of-the-art segmentation performance compared with other
traditional methods.

1. Introduction

Prostate cancer has become a high incidence cancer among
men. Early medical detection and diagnosis of cancers could
substantially improve the cure rate among patients. Cur-
rently, radiation therapy which uses medical ionizing ra-
diation to kill cancer cells is a very common procedure to
treat prostate cancers [1]. However, the worst disadvantage
of the procedure is that the radiationmay damage the cells of
surrounding tissue when it kills prostate cancer. For the sake
of raising the accuracy of radiation therapy and reducing the
side effect in surrounding tissue such as bladder and rectum,
more delicate prostate cancer diagnosis and more accurate
prostate cancer localization methods are required.

At present, there are two main types of artificial and
automatic to achieve prostate cancer segmentation on MRI
(magnetic resonance imaging) [2]. .e former, however, is
gradually being displaced by the latter. Manual segment by
radiologists is a time resuming work, and there are subjective
differences among radiologists’ diagnoses. For example, a

radiologist may get a segmentation image differently, and
different radiologists may obtain to different results on the
same image.

Automatic segmentation methods can help radiologists
achieve prostate cancer segmentation result faster with
higher accuracy. .ere are two main methods usually uti-
lized: atlas-based methods and deformable model-based
methods [3]. As for the atlas-based method, training images
accompanied with their corresponding manual labels are
mixed together; then, through nonrigid registration (NRR),
a reference image named as an Atlas and labeled Atlas is
formed [3]..e Atlas is a trained image which represents the
prostate and its surrounding tissue while its corresponding
labeled Atlas shows the probability of a voxel being a part of
the prostate [2, 3]. In model-based methods, the model can
use the atlas-based segmentation for its initialization and use
the grey-level information of the image to be deformed to
match the boundaries of the prostate [4]. .en, a distance
metric is utilized, usually the Mahalanobis distance to match
the contour of the feature model with the contour extracted
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from the case images [3]. Both methods can be time-con-
suming since they require a good initialization to display
better effects on prostate cancer segmentation [2].

Currently, the deep learning-basedmethods have made a
remarkable performance in medical image segmentation.
.ere are some research studies based on deep learning
methods that have obtained accurate results in the seg-
mentation, which prove that a well-trained deep learning
model can improve the accuracy and velocity in medical
image segmentation [5–7]. Karimi et al. put forward a two-
step segmentation method which contains two
convolutional neural networks (CNNs), where the first CNN
determines a prostate bounding box and the second CNN
provides accurate delineation of the prostate boundary [5].
Guo et al. designed a deformable MR prostate segmentation
method by integrating deep feature learning with sparse
patch matching [6]. Cheng et al. presented a supervised
learning framework which merges the atlas-based active
appearance model (AAM) and support vector machines
(SVM) to achieve a high segmentation result of the prostate
boundary [7]. However, all the methods mentioned above
have a common disadvantage in which it is difficult to
achieve a pixelwise level segmentation with high accuracy.

Fully convolutional networks (FCN) proposed by Long
et al., where the last fully connected layer of regular CNN is
replaced with a convolution layer, can obtain the classifi-
cation information of every pixel; therefore, it solves the
problem of pixelwise level segmentation [8]. Roneneberger
et al. made a further optimisation based on FCN and pre-
sented a symmetric structure called U-Net, which is a regular
CNN with an upsampling operation, where deconvolutions
are utilized to increase the size of feature maps [9]. At
present, FCN or U-Net becomes the most popular backbone
network in the medical image segmentation field. .ere are
many new structures derived from the FCN or U-Net model
after that time. For example, Zhou et al. modified the skip
connection between encoder layers and decoder layers based
on U-Net and then designed a new model called U-Net++
[10] and Milletari et al. put forward a variant model named
as V-Net which can realize 3D segmentation [11]. However,
these methods have a common disadvantage that the similar
low-level features are extracted by the model repeatedly
which results in unnecessary waste of computational
resources.

In order to solve the problems above, in this paper, we
proposed a more effective model, which utilizes the U-Net as
the backbone of our network, and a squeeze-and-excitation
layer is added to every convolution operation to select the
emphasize the features which are contributed to the prostate
cancer segmentation.

2. Related Works

.ere are many research studies [5, 6, 10–12] took the deep
learning method the same with as to achieve prostate cancer
segmentation on MRI because it comes to more remarkable
performance in the field compared to the traditional
method..e idea of making an optimisation based on U-net
has attracted much attention in recent years; many related

research studies have made good results. For examples, the
U-Net++ was proposed by Zhou et al. which modifies the
skip connection between the encoder and the decoder to
achieve an optimisation [10], and the 3DU-Net called V-Net
was put forward by Milletari et al. based on 2D U-Net [11].

.e application of the SE layer took much inspiration
from the channel attention utilized in a biattention adver-
sarial network designed by Zhang et al. [12], which proves to
have a positive effect on improving model performance.

3. Background

3.1. Structure. Our proposed model refers to the U-Net
model and fully convolutional network (FCN), which divide
the model into the encoder stage and the decoder stage
(autoencoder). .e overall structure of our model can be
seen in Figure 1. .e encoder (also called the contraction
path) is used to capture the context in the image, and the
decoder (also called the symmetric expanding path) is used
to enable precise localization. U-Net and FCN are actually
very similar and both of them are published in 2015;
however, U-Net is a little bit later than FCN. However, there
are still some differences between them. Compared with
FCN, U-Net is completely symmetrical whose encoder stage
and decoder stage are similar while FCN’s decoder stage
structure is simpler which only uses one deconvolution
operation and no more convolution structures such as
U-Net. .e second difference is about skip connection, FCN
uses summation operation while U-Net uses concatenation
operation.

3.2.'e Activation Layer. An activation layer is always used
after a convolution layer to choose if a particular neuron
should be activated or not to be activated in U-Net..ere are
two most common activation functions used in U-Net. .e
first is rectified linear unit (ReLU) and the second is leaky
rectified linear unit (Leaky ReLU).We are going to introduce
these two functions in this section.

.e ReLU formula is as follows:

f(x) �
0, if x ≤ 0,

x, if x > 0.
 (1)

For the Leaky ReLU,

f(x) �
x, if x < 0,

cx, if x ≥ 0.
 (2)

Compared to the traditional activation function, such as
logistic sigmoid, tanh, and other hyperbolic functions, the
rectified linear function has the following advantages:

(1) Imitation of biological principles: brain studies have
shown that the message encoding of biological
neurons is relatively scattered and sparse [13]. .ere
are about 1–4% of neurons working in the brain at
the same time. With linear rectification and regu-
larization, we can know the detailed activities in the
machine neural network. .e logic function reaches
12 at input 0, which is already half full and stable
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which is not the same as the expectation of the
scientist who think a simulated neural network is the
same as the real biology [14].

(2) More efficient gradient descent and backpropagation.
(3) Simplify the calculation: ReLU function can prevent

the influence of complicated function, for example,
exponential functions, and reduce the total com-
puting cost of the model.

3.3. Dropout Layer. Dropout is a popular way to prevent
overfitting in neural network training. In the training
process of deep learning network, dropout temporarily
discards neural network units from the network with a
certain probability, which causes each batch to train a dif-
ferent network model. Use the average to improve the
generalization ability of the model. In addition to overfitting,
dropout also alleviates the problem of long training time for
large-scale neural networks.

3.4. Skip Connections. Skip connection is an operation that
skips some of the layer of the network and then takes the
output of the layer to feed to the next layers. In U-Net, skip
connections were used to fight the vanishing gradient
problem and learn pyramid level features [9]. .e main idea
of skip connections in U-Net is to have the pretrained
features and reuse them in the later layer to improve the
performance. .e features are transferred from the encoder
layer to the decoder layer by skip connections which are
combined with concatenation instead of summation.

4. Proposed Methods

In this paper, we proposed an improved 2D U-Net model
integrated squeeze-and-excitation layer which is used to
segment prostate cancer automatically. We are going to
introduce our proposed model and the main blocks.

4.1. Model Structure. We did some improvements to the
traditional U-Net. Inspired by [8, 9], we added some
squeeze-and-excitation (SE) layers, which will be introduced
later, based on U-Net. Our model is divided into the encoder
stage and the decoder stage; on the encoder stage, the model
can effectively extract the input image feature by continuous
convolution layer and pooling layer; on the decoder stage,
the model will step by step map the extracted features to the
original image by the continuous upsampling layer and
output predicted mask eventually. Figure 2 is our proposed
model, which is more complex than the traditional U-Net. In
particular, we added a SE layer before each encoder’s pooling
layer and after each decoder’s upsampling layer.

4.2. CONV BLOCK. We use skip connection operation to
concatenate two continuous convolution layer and activa-
tion layer and consist of a block and put them into a block
which we named as CONV BLOCK. Figure 3 is its inner
structure.

4.3. SE Layer. Inspired by [10], calculating the importance
weights of each channel and then marking the more useful
features, referring to Se-Net’s [15] practice, we implemented
a method which can extract important features from
channels and named it the SE layer; Figure 4 shows its
detailed structure.

First of all, we assume feature F ∈ RH×W×C, H, W, and C
represent the height, width, and channel and number of
features is F, respectively, and the function of F is

F � F1, F2, . . . , Fi, . . . , FC . (3)

Fi is the ith feature of the channel. For feature F, we use a
global average pooling layer (GAP) to generate a vector and
named it zi whose function is

zi �
1

H × W
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Figure 1: Overall structure of the segmentation network. .e network includes the encoder and decoder stage connected with skip
connection operation. .e base components are Conv Block, SE layer, max-pooling layer, and upsampling layer. .e first two components
will be introduced later.
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zi is the ith global averaged channel. After that, we use a
ReLU activation layer and a sigmoid activation layer to
achieve information aggregation as

z′ � σ W2δ W1z( ( , (5)

where σ refers to the ReLU function, W1 ∈ RC×C/r and
W2 ∈ RC/r×C refer to the two fully connected layers, and r is a
ratio parameter to reduce the dimensional complexity which
is set to 4. .e importance of each feature channel can be
learned and named as z′.

CONV BLOCK

CONV BLOCK CONV BLOCK

CONV BLOCKCONV BLOCK

CONV BLOCKCONV BLOCK

CONV BLOCK

MAX POOLING

MAX POOLING

MAX POOLING

MAX POOLING
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Figure 2: Our proposed model structure. .e input size is 320× 320. And the encoder consists of a series of CONV BLOCK, SE layer, max-
pooling layer, and two dropout layers. .e decoder consists of a series of CONV BLOCK, upsampling layer, and SE layer. In order to get a
320× 320 output, the tail of the decoder consists of two convolution layers, two batch normalisation layers, a ReLU function, and a sigmoid.
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We can extract important features by multiplying F with
z′, and it can be described as

F � F∗ z′

� F1 ∗ z1′, F2 ∗ z2′, . . . , Fi ∗ zi
′, . . . , FC ∗ zC

′ .
(6)

.e SE layer is a good way to enhance the ability to learn
globally of the model, which is proved to be correct and valid
in [15], by strengthening more important features. We use it
in both the encoder stage and decoder stage; the detailed
location is described in Section 3.1.

4.4. Evaluation Function. We choose Dice similarity coef-
ficient (DSC) as our evaluation function according to [16].
Denote P the predicted mask and GT the ground truth:

DSC �
2|P ∩ GT|

|P| +|GT|
. (7)

In addition to this, we also choose accuracy (AC), Jac-
card index (JA), and sensitivity (SE). TP, FP, TN, and FN

represent true positive, false positive, true negative, and false
negative, respectively. .eir functions can be described as

AC �
TP + TN

TP + FP + TN + FN
,

JA �
TP

TP + FP + FN
,

SE �
TP

TP + FN
.

(8)

5. Results

5.1.Dataset. .e performance of the model is evaluated on a
public dataset, PROMISE12 dataset, which includes 50
training sets and 30 continuous T2 weighted MR images in
each set. We will resize the original image to 320× 320 as the
input of the model after loading the origin images.

5.2. Training. .e designed model is based Tensorflow-
Keras library. Our test set and training set all run on 6GB

Convolution (3 × 3)

ReLU Activation

ReLU Activation

Convolution (3 × 3)

Concatenation

Figure 3: .e inner structure of the CONV BLOCK. It consists of two continuous convolution layer and activation layer using concatenate
operation.

Multiply

F~SigmoidReLU

GAP
F

C

H

W

Figure 4:.e structure of the SE (squeeze-and-excitation) layer, including a GlobalAveragePooling layer, a ReLU activation, and a Sigmoid
activation. F will select important features by a multiply operation as F.
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NVIDIA GTX 1660TI GPU with Intel (R) Core (TM)
i7-9750H CPU @ 2.60GHz 16RAM..e initial learning rate
is 10−4, and the epoch is 150. Before training, we use random
flip, rotation, and cropping to augment our training sets to
get better training results.

We use an Adam optimizer [17] with a 10−4 learning rate
as we mention above and a binary cross-entropy loss
function [18], given by

Loss � − yilogf xi, θ(  + 1 − yi( log 1 − f xi, θ( ( ( , (9)

wheref(xi, θ) is the prediction of the network on sample i in
a range between 0 and 1 and yi is the ground truth of sample
i in binary 0 or 1.

5.3. Results and Discussion. After the training of 150 epochs
using five folds to pick each train set and test set, we can get
the model loss and accuracy curves.

As can be seen in Figures 5 and 6, both the loss and
accuracy curves perform well, and the effectiveness of the
training was preliminarily proved. Two curves remain stable
in dozens of epochs, which showed the model is not
overfitted. And the gradual decline of the curve demon-
strates good convergence of the model.

To show the effectiveness of our model, we implemented
three traditional prostate segmentation methods [8, 9, 19].
.e work in [8] is fully convolutional networks (FCN), [9] is
traditional U-Net, and [19] is a multiatlas method. We will
compare our model results to the other three model results
mentioned above.

After examining the score in the whole dataset using
five-fold cross validation, our model performed well com-
pared to the other three models whose mean DSC is 0.87 and
median DSC is 0.89. And the remaining three were also
higher than the others.

.e detailed five-fold cross-validation results can be seen
in Figure 7.

As can be seen in Figure 7, our model performed well on
five-fold cross validation. Most of its DSC scores are in the
range of 0.70 to 0.95. On the first fold, the median DSC score
is above 0.90 and the mean DSC score is a little lower in the
range of 0.85 to 0.90. And the second, fourth, and fifth folds

are almost like the first fold whose median DSC is around
0.9. And the mean DSC of all five folds is 0.87 which can be
seen in Table 1.
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Figure 6: .e accuracy curve of the model. .e train accuracy
curve increased gradually to about 0.95 until 150 epochs.
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Figure 7: Five-fold cross-validation Dice’s similarity coefficient
(DSC) scores plotting with box-and-whisker. .e orange line
represents the median DSC score and the green triangle icon
represents the mean DSC score on the first fold, the median DSC
score is above 0.90, and the mean DSC score is about 0.88. .e
other folds performed well like the first fold, whose median DSC
score is above 0.90 and the mean DSC is in the range of 0.85 to 0.90,
except the third fold whose median DSC score is above 0.85 and
mean DSC score is a little lower than 0.85.
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Figure 5: .e loss curve of the model. .e train loss curve dropped gradually to 0.05 and lower until 150 epochs.
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Table 1: Performance comparison between our model and the traditional methods.

Method Mean DSC Median DSC Mean AC (%) Mean JA (%) Mean SE (%)
FCN 0.79 0.81 84.6 72.5 90.6
U-Net 0.81 0.82 85.8 74.0 92.7
Multiatlas 0.80 0.82 85.0 73.5 90.1
Our model 0.87 0.89 87.3 75.3 93.2

Image Ground Truth Model Prediction

Figure 8: .e visualization of some segmentation results in test sets.
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6. Conclusion

In this paper, we develop an improved 2D U-Net model
integrated Squeeze-and-excitation layer for prostate cancer
segmentation. We divided two important components: SE
layer and CONV BLOCK. With the SE layer, our model can
learn more global and local features. In the CONV BLOCK,
we combined feature maps and skip connection with a
concatenation operation to bring further improvement in
the model performance. In future work, different MRI
modalities are going to be tried on our model to segment
prostate cancer automatically.
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