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.e work proposed a denoising speech method using deep learning. .e predictor and target network signals were the amplitude
spectra of the wavelet-decomposition vectors of the noisy audio signal and clean audio signal, respectively. .e output of the
network was the amplitude spectrum of the denoised signal. Besides, the regression network used the input of the predictor to
minimize the mean square error between its output and input targets. .e denoised wavelet-decomposition vector was
transformed back to the time domain by the output amplitude spectrum and the phase of the wavelet-decomposition vector..en,
the denoised speech was obtained by the inverse wavelet transform. .is method overcame the problem that the frequency and
time resolution of the short-time Fourier transform could not be adjusted. .e noise reduction effect in each frequency band was
improved due to the gradual reduction of the noise energy in the wavelet-decomposition process..e experimental results showed
that the method has a good denoising effect in the whole frequency band.

1. Introduction

In the actual environment, speech signals are inevitably
affected by the noises from the surrounding environment,
transmission media, and electrical noise inside the com-
munication equipment. .ese interferences greatly degrade
the performance of the speech processing system and affect
the quality of speech. Speech denoising aims to reproduce
clean speech from noise-polluted signals, which is crucial for
various applications, such as automatic speech recognition
(ASR) and hearing aids. Several speech-denoising and
speech-enhancement methods have been proposed based on
the statistical difference between the speech and noise
characteristics, including spectral subtraction [1], based
estimation [2], Wiener filtering [3], subspace method [4],
nonnegative matrix factorization (NMF) [5], and minimum
mean square error (MMSE) [6].

Most of the filtering methods are limited to window-
adding or masking operation in the frequency domain or

time domain due to the strong time-frequency coupling
between speech signals and noises. It is difficult for these
filteringmethods to achieve effective signal-noise separation.
As a nonlinear filter, the neural network was applied to this
problem in the past, such as the early use of the shallow
neural network (SNN) for speech-denoising study. How-
ever, the constraints on computing power and the size of
training data lead to the implementations of relatively small
neural networks, limiting denoising performance.

By learning a deep nonlinear network structure, deep
learning has the following advantages: achieving the ap-
proximation of complex functions, representing the dis-
tributed representation of input data, and demonstrating its
powerful ability to learn data and essential characteristics
from a few sample sets. Meanwhile, it emphasizes the deep
structure of the learning model. .e current learning
framework usually adopts a multilevel model. In this way,
the training of the model relies on a large number of data
sets, highlighting the importance of big data for a complete
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and complex model. Deep learning also focuses on feature
learning. Deep neural networks (DNNs) contain multiple
nonlinear hiding layers, showing great potential to capture
the complex relationship between noises and clean speeches.
Many training algorithms have been proposed to train a
deep network. DNNs have been applied to speech recog-
nition [7], speech denoising [8], and speech separation [9].

Recently, Zhao et al. [10] used both convolutional and
recurrent neural network architectures to exploit local
structures in both the frequency and temporal domains for
speech enhancement. Tan and Wang [11] combined the
convolutional code-decoder (CED) and long short-term
memory (LSTM) into the convolutional recurrent network
(CRN) to achieve real-time monophonic speech enhance-
ment. .e proposed model is independent of noise and
speaker. Moreover, the trainable parameters of CRN are
much smaller. .e full connection layer involved in deep
neural networks (DNN) and convolutional neural networks
(CNN) may not accurately describe the local information of
the speech signal, especially for the high-frequency com-
ponent. .erefore, Fu et al. [12] proposed an enhancement
model of a full convolutional network (FCN) based on the
original waveform. .e system performs speech enhance-
ment in an end-to-end manner, different from most existing
denoising methods only dealing with amplitude spectrum.

Speech is a time-varying signal, in which usually changes
occur at syllabic rates of 10 times/sec and exceeds the fixed
time intervals of 10–30 msec. Short-time Fourier transform
(STFT) is often used to analyze the speech on a time-fre-
quency range [8, 9]. However, the window length of the
STFT is fixed, that is, the time-domain resolution is fixed.
According to the Heisenberg uncertainty principle, the
frequency-domain resolution is also fixed. For a low-fre-
quency signal, the time interval should be wider to deter-
mine the frequency better; however, for high-frequency
signals, the time domain should be narrower to locate them
better in the time domain. .e resolution of STFT is not
adjustable in the time domain and frequency domain, so it is
not suitable for broadband analysis.

Wavelet analysis, developed in the 1980s, plays an im-
portant role in signal processing [13]. Wavelet transform
(WT) has multiresolution and can adjust the window
function adaptively according to the signal frequency. For
low-frequency signals, WT provides low time-domain res-
olution and high-frequency domain resolution. For high-
frequency signals, it provides high resolution in the time
domain and low resolution in the frequency domain [14].
.e wavelet transform coefficient reaches a maximum value
in a certain region, and this point is called the modulus
maximum of the wavelet transform in the region. .e
modulus maxima of useful signals in the multiresolution
analysis increase with the decreased resolution; however, the
modulus maxima of noisy signals in the multiresolution
analysis decrease with the decreased resolution [15].
.reshold values are set according to the characteristics of
useful signals and noise, and the wavelet coefficient is an-
alyzed using this threshold value. When the wavelet coef-
ficient is lower than this threshold value, the wavelet
coefficient corresponds to a noise signal. In the wavelet

domain, the threshold is used to distinguish the useful signal
from the noise signal. Finally, processed wavelet coefficients
are reconstructed to obtain denoised signals [16].

.e work proposed a speech denoising method based on
deep learning. .e predictor and target network signals were
the amplitude spectrumof the wavelet-decomposition vector of
the noisy audio signal and clean audio signal, respectively. .e
output of the network was the amplitude spectrum of the
denoising signal. .e output spectrum and the phase of the
wavelet-decomposition vector were used to transform the
denoised wavelet-decomposition vector back to the time do-
main. .en, the denoised speech was obtained by the inverse-
wavelet transform..ismethod overcame the problem that the
frequency and time resolution of STFT could not be adjusted.

2. General Theory

2.1. Short-Time Fourier Transform. STFT is widely used in
speech analysis and processing, suitable for slow signal and
time-varying signal spectrum analysis. In this method, the
speech signal is first divided into frames, and then, the
Fourier transform is carried out for each frame. Each frame
of the speech signal can be intercepted from a variety of
stationary signal waveforms, and the short-time spectrum of
each frame of speech is an approximation of the spectrum
value of the smooth signal waveform. Since the signal of each
frame is short and stable, the Fourier transform of the frame
signal is calculated to obtain the STFT:

STFTx(t, f) � 
∞

−∞
x(t)h(t − τ)e

− j2πfτ
dτ, (1)

where STFTx(t, f) is the coefficient of STFT. STFT is a
function of time t and frequency f, which shows how the
frequency of the speech signal changes with time.

According to the above STFT transformation, its inverse
transformation can be defined as

xt � 
∞

−∞

∞

−∞
STFTx t′, f′( w t − t′( e

− j2πf′t′
dt′df′,

(2)

where w(t) is a window function. .e longer window length
means higher spectral resolution; however, the time reso-
lution of the long window decreases correspondingly. Due to
the contradiction between the time resolution and the fre-
quency resolution, the practical operation should be based
on the STFT analysis, and the appropriate window length
should be determined.

2.2. Wavelet Transform. STFT is a windowed FT transform.
FT is based on sinusoidal functions of different frequencies,
so the signal is often decomposed into the superposition sum
of sinusoidal waves of different frequencies. .e wavelet
transform replaces the infinitesimal trigonometric basis
function with the wavelet basis of finite length and atten-
uation, thus locating frequency and time. .e continuous
wavelet transform (CWT) is the inner product of wavelet
function ϕ(t) and square-integrable function x(t) with good
local properties in the time-frequency domain:
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CWTx(a, b) � f,

ϕa,b �
1
��
a

√ 
∞

−∞
x(t)ϕ∗

t − b

a
 dt ,

(3)

where a> 0 is the scale factor and b the displacement factor.
.e scale factor plays an important role in wavelet trans-
form. When it is very small, it will show the details of the
signal changing rapidly. When it is large, the wavelet is
extended to show the coarse features of the signal. When
ϕ(t) meets the admissibility condition, the inverse contin-
uous wavelet transform (ICWT) is

x(t) �
1

Cϕ


∞

−∞


∞

−∞
CWTx(a, b)

1
��
a

√ ϕ
t − b

a
 

1
a
2 dt da, (4)

where ϕ(t) is a dual function of ϕ(t) and Cϕ an admissible
constant. .e data from CWT has large redundancy, which
may not be suitable for DNN training for denoising speech.
Discrete WT (DWT) uses filter banks to implement the
Mallat algorithm. Figure 1 shows the three-level DWT,
where cA1, cA2, and CA3 are approximate coefficients
containing low-frequency information of the signal. cd1,
cd2, and cd3 are detail coefficients and contain high-fre-
quency information of the signal. c is the wavelet-decom-
position vector; l is the bookkeeping vector containing the
number of coefficients of each level.

2.3. Convolution Neural Networks for Deep Learning. A
convolution neural network of deep learning is a deep-
learning network generated on the theoretical basis of a
neural network. .e neural network is a fully connected
network, that is, each neuron in the upper layer is connected
to a neuron in the next layer. In this case, for multidi-
mensional input information such as sound or image, the
amount of information contained is relatively large; for the
hidden layer, the traditional BP algorithm requires more
weight parameters..e resulting slow training speed leads to
more samples required for training. Overfitting is more
likely to occur with insufficient training. In this way, the
parameters learned are not universal, so they cannot rep-
resent and restore the input signal.

Ordinary neural network structure does not consider the
characteristics of the input data. Even for a little change in
the original data, the neural network does not take into
account the data characteristics for optimized training. .e
neural network is fully connected, and all input data need to
be considered; thus, it is impossible to identify and train the
local regional features in the data.

Given the problems existing in the above ordinary neural
network structure, the convolutional neural network trans-
forms the ordinary neural network through local connection
to feel the field of vision, weight sharing, and subsampling
process through a local connection. It is used to learn features.
Figure 2 shows the convolutional neural network model.

.e total core operation of convolution in the convo-
lution layer is as follows:

x
l
j � f 

i∈Mj

x
l−1
i × k

l
ij + b

l
j

⎛⎜⎝ ⎞⎟⎠, (5)

where k is the convolution kernel (filter), l is the number of
layers, M is the jth feature map, b is the corresponding bias,
and f is the activation function..e result of the convolution
layer output goes to the downsampling layer, and down
sampling is performed on each feature of the output in the
convolution layer.

3. Proposed Method

Wavelet-decomposition vector c can be denoted as

c � cAn cDn . . . cDi . . . cD1 . (6)

Assuming that the length of the signal is L and the
frequency is Fs, the highest frequency of the signal is Fs/2.
.e frequency range of the lowest layer cAn is (0, Fs/2n+ 1),
with the size of L/2n. .e frequency range of cDi is (Fs/2i+ 1,
Fs/2i), with the size of L/2i. If we do STFTfor c and select the
window width as nw, the sampling of cAn is equivalent to the
window width of about 2n−1∗nw for the original signal, and
the window width of cDi is equivalent to that of the original
signal 2i−1∗nw. In other words, if the frequency drops by one
time, the window width increases by one time. .us, we
realize the effect of wavelet transform of large time windows
at low frequency and small-time windows at high fre-
quencies, almost without data redundancy.

Figure 3 shows the proposed deep-learning training. .e
predictor and target network signals are the magnitude
spectra of the wavelet-decomposition vector of the noisy and
clean audio signals, respectively. .e network’s output is the
magnitude spectrum of the denoised signal. .e regression
network uses the predictor input to minimize the mean
square error between its output and the input target. .e
denoised wavelet-decomposition vector is converted back to
the time domain using the output magnitude spectrum and
the phase of the noisy wavelet-decomposition vector. .en,
the denoised speech can be obtained from the inverse
wavelet transform.

4. Experiments and Discussion

.e work used the Chinese Common Voice Corpus 6.1
subset of the Mozilla Common Voice dataset [17] to train
and test our proposed method. Vehicle noise (Volvo) from
the NOISEX-92 database [18] was taken as the noise source.
.e speech and noise were resampled at 16 kHz. .e signal-
to-noise ratios (SNR) of 5, 0, and -5 dB were set to compare
the denoising effect.

Morse wavelet function was used in DWT. Another
DNN method used STFT and convolution neural network
for comparison [19]. .e window length of 64 of STFT was
adopted for our proposed method and those of 64 and 256
were adopted for the compared method. Hamming window
with an overlap of 75% was used in all cases.

Figure 4 shows the clean speech and the noisy speech
with different SNRs in the time domain and spectrogram.
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.e noise pollutes the noise in the broadband frequency. As
the SNR decreases, more speech information is drowned out.

Figure 5 shows the speech signal enhanced by sub-
tracting amplitude spectra. .e noise has been reduced
partly. .e spectrogram shows that the rough points of the
original noisy speech have been reduced to a large extent.
Due to the half-wave rectification of negative values, small,
independent peaks appear on the random frequency of the
multiframe spectrum. Transformed to the time domain,
these peaks sound like multiple vibratos with random

frequency changes between frames, which is commonly
referred to as music noise.

In Figure 6, after Wiener filtering, the speech signal
polluted by noise has been improved to a certain extent.
However, there are still some noises after Wiener filtering,
related to the filtering characteristics of the Wiener filter.

Figures 7–9 show the denoising results using the proposed
method and the compared method, respectively..e results of
the proposed method show a better denoising effect from high
to low SNRs in the whole frequency range. .e compared

Input Output

Convolution layer Convolution layer

Downsampling layer Downsampling layer

Figure 2: .e diagram of the convolutional neural network model.
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Figure 4: Clean speech and noise speech. (a) clean speech; (b) noisy speech (SNR 5 dB); (c) noisy speech (SNR 0 dB); (d) noisy speech (SNR-
5 dB). Left: time domain. Right: spectrogram.
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Figure 5: Continued.
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Figure 5: Enhanced speech using spectral subtraction. (a) SNR� 5Db; (b) SNR� 0 dB; (c) SNR� −5 dB. Left: time domain. Right:
spectrogram.
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Figure 6: Enhanced speech using Wiener filtering. (a) SNR� 5 dB; (b) SNR� 0 dB; (c) SNR� −5 dB. Left: time domain. Right: spectrogram.
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Figure 7: Enhanced speech (SNR� 5 dB). (a) .e proposed method. (b) .e comparison method with 256 window lengths. (c) .e
comparison method with 64 window lengths. Left: time domain. Right: spectrogram.
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Figure 8: Continued.
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method with the window length of 256 achieves some noise
reduction effect, but it performs poorly in the high-frequency
band. .e compared method with 64 window lengths per-
forms some superiority in the high-frequency band, but is still
inferior to the proposed method. In the process of the wavelet

transform, the signal energy in the frequency band remains the
same with the reduced noise energy, which improves the SNR
in the frequency band and denoising effect. Table 1 shows the
SNR of the denoising speech, indicating the proposed method
is an improvement of the compared method.
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Figure 8: Enhanced speech (SNR� 0 dB). (a) .e proposed method. (b) .e comparison method with 256 window lengths. (c) .e
comparison method with 64 window lengths. Left: time domain. Right: spectrogram.
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Figure 9: Enhanced speech (SNR� −5 dB). (a) .e proposed method. (b) .e comparison method with 256 window lengths. (c) .e
comparison method with 64 window lengths. Left: time domain. Right: spectrogram.
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5. Conclusions

For the proposed method in the work, the predictor and the
target network signals were the amplitude spectra of the
wavelet-decomposition vector of the noisy audio signal and
the clean audio signal, respectively. .e output of the
network was the amplitude spectrum of the denoising
signal. .e regression network used the input of the pre-
dictor to minimize the mean square error between its
output and input targets. .e denoised wavelet-decom-
position vector was transformed back to the time domain
using the output amplitude spectrum and the phase of the
denoised wavelet-decomposition vector. .en, the
denoised speech was obtained by the inverse wavelet
transform.

.e proposed method overcame the problem that the
frequency and time resolution of STFT could not be ad-
justed. Besides, since the noise energy was gradually reduced
during wavelet decomposition, the noise reduction effect of
each frequency band was improved. .e experimental re-
sults showed that the proposed method has a good denoising
effect in the whole frequency band.

Data Availability

.e datasets and codes of this paper for the simulation are
available from the corresponding author upon request.

Conflicts of Interest

.e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

.is study was supported by the project of Hubei University
of Arts and Science (XK2020021), Natural Science Foun-
dation of Guangxi (No. 2018GXNSFAA281276), and Liu-
dong Science and Technology Project (20200108).

References

[1] S. Boll, “Suppression of acoustic noise in speech using spectral
subtraction,” IEEE Transactions on Acoustics, Speech, & Signal
Processing, vol. 27, no. 2, pp. 113–120, 1979.

[2] Y. Ephraim and D. Malah, “Speech enhancement using a
minimum-mean square error short-time spectral amplitude
estimator,” IEEE Transactions on Acoustics, Speech, & Signal
Processing, vol. 32, no. 6, pp. 1109–1121, 1984.

[3] P. Scalart and J.V. Filho, “Speech enhancement based on a
priori signal to noise estimation,” in Proceedings of the
Acoustics, Speech, and Signal Processing, 1996 ICASSP-96,
pp. 629–632, IEEE, Atlanta, Georgia, USA, May 1996.

[4] Y. Ephraim and H. L. Van Trees, “A signal subspace approach
for speech enhancement,” IEEE Transactions on Speech and
Audio Processing, vol. 3, no. 4, pp. 251–266, 1995.

[5] K.W.Wilson, B. Raj, P. Smaragdis, and A. Divakaran, “Speech
denoising using nonnegative matrix factorization with
priors,” in Proceedings of the 2008 IEEE International Con-
ference on Acoustics, Speech and Signal Processing, pp. 4029–
4032, IEEE, Las Vegas, NV, USA, March 2008.

[6] P. C. Loizou, Speech Enhancement: ?eory and Practice, CRC
Press, Florida, United States, 2007.

[7] O. Abdel-Hamid, A.-R. Mohamed, H. Jiang, L. Deng,
G. Penn, and D. Yu, “Convolutional neural networks for
speech recognition,” IEEE/ACM Transactions on audio,
speech, and language processing, vol. 22, no. 10, pp. 1533–
1545, 2014.

[8] D. Liu, P. Smaragdis, and M. Kim, “Experiments on Deep
Learning for Speech denoising,” in Proceedings of the Fif-
teenth Annual Conference of the International Speech
Communication Association, pp. 1–5, (ISCA), Singapore,
September 2014.

[9] Y. Wang, J. Du, L.-R. Dai, and C.-H. Lee, “A gender mixture
detection approach to unsupervised single-channel speech
separation based on deep neural networks,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing,
vol. 25, no. 7, pp. 1535–1546, 2017.

[10] H. Zhao, S. Zarar, I. Tashev, and C.-H. Lee, “Convolutional-
recurrent neural networks for speech enhancement,” in
Proceedings of the 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 2401–
2405, IEEE, Calgary, AB, Canada, April 2018.

[11] K. Tan and D. Wang, “A convolutional recurrent neural
network for real-time speech enhancement,” in Proceedings of
the Proc. Interspeech, pp. 3229–3233, Hyderabad, India, June
2018.

[12] S.-W. Fu, Y. Tsao, X. Lu, and H. Kawai, “Raw waveform-based
speech enhancement by fully convolutional networks,” in
Proceedings of the 2017 Asia-Pacific Signal and Information
Processing Association Annual Summit and Conference
(APSIPA ASC), pp. 6–12, IEEE, Kuala Lumpur, Malaysia,
December 2017.

[13] I. Daubechies, “Where do wavelets come from? A personal
point of view,” Proceedings of the IEEE, vol. 84, no. 4,
pp. 510–513, 1992.

[14] S. He, J. Chen, Z. Zhou, Y. Zi, Y. Wang, and X. Wang,
“Multifractal entropy based adaptive multiwavelet construc-
tion and its application for mechanical compound-fault di-
agnosis,” Mechanical Systems and Signal Processing, vol. 76-
77, pp. 742–758, 2016.

[15] A. Cohen, I. Daubechies, and J.-C. Feauveau, “Biorthogonal
bases of compactly supported wavelets,” Communications on
Pure and Applied Mathematics, vol. 45, no. 5, pp. 485–560,
1992.

[16] X. Ma, C. Zhou, and I. J. Kemp, “Automated wavelet selection
and thresholding for PD detection,” IEEE Electrical Insulation
Magazine, vol. 18, no. 2, pp. 37–45, 2002.

[17] https://voice.mozilla.org/en.

Table 1: SNR for denoising speech.

Noisy speech Proposed method Comparing method (256 window length) Comparing method (64 window length)
5 16.7 15.5 12.6
0 14.3 13.7 12.3
−5 13.2 12.5 9.5

Scientific Programming 9

https://voice.mozilla.org/en


[18] A. Varga and H. J. M. Steeneken, “Assessment for automatic
speech recognition: II. NOISEX-92: a database and an ex-
periment to study the effect of additive noise on speech
recognition systems,” Speech Communication, vol. 12, no. 3,
pp. 247–251, 1993.

[19] https://ww2.mathworks.cn/help/deeplearning/ug/denoise-
speech-using-deep-learning-networks.html.

10 Scientific Programming

https://ww2.mathworks.cn/help/deeplearning/ug/denoise-speech-using-deep-learning-networks.html
https://ww2.mathworks.cn/help/deeplearning/ug/denoise-speech-using-deep-learning-networks.html

