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To explore the performance of the improved DenseNet network in diagnosing pulmonary nodules (PNs) and differentiating
benign and malignant PNs, improved DenseNet network was applied to segment MRI images of 60 PN patients, which were
defined as the test group, while those segmented by the traditional one were undertaken as the control group.*eMRI results were
compared with the pathological diagnostic results, and the segmentation effects were evaluated factoring in precision, recall, Dice
similarity coefficient, and intersection-over-union (IoU). *e results showed that the improved DenseNet network algorithm
showed higher accuracy, recall rate, Dice coefficient, and IoU versus the traditional one, and the difference was notable (P< 0.05).
*e improved DenseNet network algorithm had higher diagnostic accuracy in terms of the PN volume, lobes, burrs, edges, and
adhesion to surrounding tissue, with notable differences noted (P< 0.05). *e accuracy in differentiating benign and malignant
PNs in the test group was higher (92.38± 8.74% vs. 75.56± 7.56%) versus the control group, and the difference was notable
(P< 0.05). In short, the MRI image segmentation algorithm based on the improved DenseNet network shows high accuracy in
diagnosing PNs and differentiating benign and malignant PNs, and it is worthy of further promotion in the clinic.

1. Introduction

Pulmonary nodule (PN) refers to round- or irregular-
shaped lesions with a diameter of less than or equal to 3 cm
(i.e., 30mm) in the lung. *e imaging manifestation is a
shadow of increased density, with clear or unclear
boundaries, which can be single or multiple [1, 2]. It is
usually discovered accidentally during physical examina-
tion or during diagnosis and treatment of other diseases.
Most patients have unobvious symptoms, and common
symptoms include dyspnea, chest pain, cough, and he-
moptysis [3, 4]. Among the asymptomatic populations of
lung cancer in high-risk East Asia, the incidence of PN is
35.5% [5]. Clinically, it is divided into solitary nodules and
multiple nodules according to the numbers. *e commonly
used imaging methods include chest X-ray examination,
chest CT scan, positron emission tomography (PET-CT),
and MRI [6]. Among them, the MRI examination is su-
perior because of the multisequence scan, no ionizing
radiation damage, and better resolution of the soft tissue of

the thoracic cavity and the mediastinal vessel structure
versus CT examination [7]. Plus, the influence of heartbeat
artifacts and respiratory motion on lung MRI imaging has
been eliminated [7], and its proton density index can well
highlight the diseased lung tissue. *erefore, MRI is in-
creasingly used in the imaging diagnosis of lung diseases
[8]. Nevertheless, MRI examinations for lung diseases are
still interfered by noise, artifacts, and the subjective
judgment of the diagnostician, leading to misdiagnosis and
missed diagnosis sometimes [9]. Hence, it is urgent to
optimize MRI images.

*e convolutional neural network is widely used in the
analysis of medical images, among which the fully con-
volutional DenseNet is one of the most popular artificial
neural networks [10]. *e principle of fully convolutional
DenseNet is to reuse image features in the network through
densely connected blocks, thereby lifting the utilization rate
of image features and optimizing neural network parame-
ters. Studies have shown that the fully convolutional Den-
seNet performs well in segmenting medical images, such as
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CT and MRI [11], but there are rare studies on the MRI
image for PNs, which was the focus of this study.

As mentioned above, using the deep learning-based
convolutional neural network to optimize MRI images to
assist physicians in diagnosing PNs is a hotspot. In this
study, the optimized DenseNet network algorithm was used
to process MRI images of 60 PN patients in the test group.
*e receiver operating characteristic (ROC) curve revealed
the performance of MRI image to diagnose PNs and dif-
ferentiate benign and malignant PNs, so as to compre-
hensively evaluate the application value of the improved
DenseNet network algorithm in processing MRI images of
PN patients.

2. Materials and Methods

2.1. Research Subjects. In this study, 120 PN patients ad-
mitted to hospital were selected as the research subjects,
including 72 males and 48 females, aged from 45 to 76 years
old. *ey were randomly divided into the test group and the
control group, with 60 people in each. MRI scans were
performed on both groups of patients. *e MRI images of
the test group were analyzed by the improved Net network
algorithm, while those in the control group were analyzed by
a professional physician.*e study has been approved by the
ethics committee of the hospital, and the patients and their
families included in the study were informed and had signed
an informed consent form.

*e subjects were selected as per the following inclusion
criteria: (1) PN patients diagnosed by chest MRI scan at xxx
hospital; (2) patients with complete basic clinical data; (3)
MRI images including at least three sequences of DWI,
T1WI, and T2WI; (4) lesion size between 9 and 31mm.
Exclusion criteria: (1) patients with atelectasis or pneumonia
around the PN lesion; (2) patients with other malignant
tumors; (3) MRI images having many artifacts and poor
quality.

2.2. MRI Image Scan. *e Siemens Avanto 1.5T (MAG-
NETOM Aera, Erlangen, Germany) is used to collect MRI
plain scan image information, involving at least three se-
quences: axial DWI (diffusion weighted imaging), T1WI (T1
weighted imaging), and T2WI (T2 weighted imaging). *e
EPI sequence is used for DWI axis scan, and the spatial
presaturation technology is used to suppress the fat signal in
the scanning process, thereby eliminating chemical shift
artifacts. *e corresponding parameters include TR
(1500ms), TE (82ms), the number of excitations (2 times),
and b value (b� 50, 800 s/mm2). *e breath-holding two-
dimensional spoiled GRE double-echo sequence is used for
T1WI axis scan, and corresponding parameters include TE
(4.9ms), flip angle (70°), TR (160ms), matrix (256× 256),
number of excitations (1), FOV (380mm× 360mm),
number of layers (30), layer spacing (1mm), and layer
thickness (5.5mm). T2WI axial scan adopts free breathing
diaphragm gated navigation FSE sequence, and corre-
sponding parameters include TE (90ms), flip angle (140°),
TR (2200ms), matrix (320× 320), number of excitations (1

time), FOV (380mm× 360mm), number of layers (30),
layer spacing (1mm), and layer thickness (5.5mm). SPAIR is
used for grease pressure. *e EPI sequence is used for DWI
axis scan, and the spatial presaturation technology is used to
suppress the fat signal during the scanning process, thereby
eliminating chemical shift artifacts. *e corresponding pa-
rameters include TE (82ms), TR (1500ms), the number of
excitations (2 times), and b value (b� 50, 800 s/mm2).

2.3. �e Improved DenseNet Network. *e deep learning is
used to automatically segment MRI images which can
greatly reduce the dependence on the subjective judgment of
physicians. *e traditional convolutional neural network
(CNN) includes a convolutional layer, a pooling layer, and a
full-connected layer. *e neural unit layers of various
functions are stacked to form deep convolutional neural
network. *e equation of any one of the convolutional layer
feature maps can be expressed as follows:

Hx � g Mx ∗y( , (1)

where x represents the x neuron of a certain convolutional
layer, Hx represents the x feature map obtained by con-
volution, and y represents the input image.*e weight of the
x neuron can be expressed as Mx, ∗ is the 2D convolution
operator, which can calculate the inner product of pixels and
weights in the filter window, and g( ) represents a nonlinear
activation function.

*e maximum pooling equation can be expressed as
follows:

Hxab � max
(m,n)∈Dab

yxmn, (2)

where Hxab represents the pooling operation related to the
feature map and yxmn represents the elements in the pooling
area Dab. *e last layer of the convolutional layer or the
pooling layer that is alternately connected is connected to the
fully connected layer by establishing a connection between
features and labels. *e activation function of the fully
connected layer is usually expressed by the Softmax func-
tion, defined as follows:
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where Z represents the number of target categories and sR
z

represents the predicted value of the z category, and sz

represents the z category. *e Softmax function outputs the
probability that the sample belongs to each category, and the
sum of the probabilities is 1.

*e algorithm is optimized to analyze MRI images of PN
patients. *en, 3D convolutional neural networks are in-
troduced to make up for the 2D convolutional neural net-
work’s inability to obtain temporal information in video
images. *e mathematical equation for 3D convolution is as
follows:
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where u
ij

ab represents the eigenvalue of the (i, j) position on
the b feature map on the a layer, g( ) represents the acti-
vation function, and fab represents the bias term. t repre-
sents the feature map index of the layer connected to the
current feature map, vmn

abt represents the weight value, and
Ea, Fa represent the height and width of the convolution
kernel. Bias and weights need to be determined through
training, and other values can be preset.

*e maximum pooling operation of 3D convolution can
be expressed as follows:

P � s
a
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a
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Q×W×E×R
, (5)

where R represents the number of feature spaces, (Q, W, E)

represents the size of the feature map, and sa
x represents the x

feature output map of the a convolutional layer. *e 3D
convolution maximum pooling operation is to calculate the
maximum value in the feature cube.

*e dropout is introduced to reduce the overfitting
degree and improve its generalization ability in the calcu-
lation process of the convolutional neural network. Dropout
is to randomly discard the output value of neurons in a
certain layer. *e entire dropout process is to take the av-
erage of many different neural networks, and different
networks produce different overfittings, some of which are
“reverse” to each other, thereby offsetting some overfittings.
During the dropout process, the output value of neurons in a
certain layer can propagate downward in two circumstances
where one is to retain the original value, and the other is to
be converted to 0. Provided the probability of being retained
is x, and the probability of being converted to 0 is 1 − x,
usually, x � 0.5. When dropout is used as a fully connected
layer, the output of this layer is expressed as (6), and the
output value after dropout can be expressed as (7).

B � B1, B2, . . . , Bn 
Y

, (6)

B � a∗g(vu), (7)

where ∗ represents the element-wise product of the output
g(vu) of the fully connected layer and the binary mask
vector a, g(·) represents the activation function of the fully
connected layer, u is the input value vector of the fully
connected layer, v is the weight matrix of z × c, the length of
the binary mask vector a is z, and the value of each element
in a conforms to the Bernoulli distribution with statistical
magnitude of c.

On this basis, to maximize the efficiency to use MRI
image features, the DenseNet network algorithm connects
the output feature map of the dense block (DB) composed of
several convolutional layers to the next layer, to reuse it as an
input item. *rough several pooling operation layers, an
equal number of deconvolution layers follow to restore the
resolution of the corresponding feature image. At the same
time, the feature maps of the same resolution are connected
and serve as an input of a processing layer of higher reso-
lution. *e transition layer connects and reintegrates two
feature maps with different resolutions, which is divided into
a transition up layer (TU) and a transition down layer (TD).
Figure 1 is a schematic diagram depicting the operation

process of the fully convolutional DenseNet network
algorithm.

In the study, the MRI image of the PN patient is seg-
mented pixel by pixel to obtain the characteristic infor-
mation of nodule size, edges, burrs, and lobes and is
classified using the gray value data of the receptive field
corresponding to each pixel. In this process, the cross en-
tropy (CE) loss function is used, expressed as follows:

CE(A, B) � − 
i

j�1
Ailog Bi, (8)

where A represents the true value, B represents the network
predicted value, and i represents the number of pixels in each
image block. If there are n image blocks in the input network
in a batch of data, the number of pixels in the network can be
expressed as ni, and the loss value can be expressed as
follows:

CE(A, B) � − 
n

j



i

j�1
Asjlog Bsj,

CE(A, B) � − 
ni

t

Atlog Bt.

(9)

On this basis, to reduce the redundancy of parameters
and the difficulty in learning multiregion features with a
single convolution kernel, the structure of the last few layers
of the network is optimized, and themulti-Dice loss function
is introduced to guide parameter optimization.*is function
consists of a main loss function and multiple auxiliary loss
functions with relatively small weights, and the precise
optimization of the parameters is achieved by reconstructing
the error loss.*e segmentation process of the MRI image of
the PN patient based on the improved DenseNet network
algorithm is shown in Figure 2.

2.4. Evaluation Indicators of Segmentation Effects of the Im-
proved DenseNet. To understand the pros and cons of the
algorithm, several evaluation indicators were selected, such
as precision (PREC) and recall for pixels, Dice similarity
coefficient for areas, and intersection-over-union (IoU).
Among them, precision refers to the precision rate, reflecting
the accuracy of segmentation, expressed as (10); recall rate is
also known as sensitivity, which represents the proportion of
positive samples in the prediction result, expressed as (11);
Dice similarity coefficient reflects the overlap between the
segmentation result and the gold standard area, expressed as
equation (13); IoU reflects the degree of coincidence between
the real result and the predicted result, expressed as (13).

Precision �
A∩B

A
× 100%, (10)

recall �
A∩B

B
× 100%, (11)

Dice(A, B) � 2 ×
A∩B

A + B
, (12)
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IoU �
A∩B

A∪B
, (13)

where A represents the standard value segmented by the
doctor and B represents the predicted value segmented by
the convolutional neural network model. A smaller Dice
coefficient indicates a larger gap between the predicted result
and the real result.

2.5. Evaluation Indicators of PN. To distinguish benign and
malignant nodules, the diagnosis of PN involves the nodule
volume, substantial proportion, surface area, surface roughness,
and burr degree, while the MRI analysis factors include size,
edge, burr, leaf, and the connection with surrounding tissue. In
this study, the MRI image analysis results were compared with
the pathological diagnosis results to comprehensively evaluate
the performance of the improved DenseNet algorithm in di-
agnosing and differentiating benign and malignant PNs.

2.6. Statistics. *e data was processed by SPSS 19.0. *e
measurement data were expressed as mean± standard de-
viation (x± s). *e comparison of the means between each
group adopted the t-test. *e count data were expressed as a
percentage (%), and the χ2 test was used. P< 0.05 was the
threshold for significance.

3. Results

3.1. �e Changes in Loss Values and Dice Coefficients.
Figure 3 shows the loss and the Dice coefficients of the two
DenseNet network algorithms during the segmentation
training process. Figure 3(a) is for the loss. *e black curve

described the loss of the traditional DenseNet network al-
gorithm during the training process, and the red color was
the improved DenseNet network. It was noted that the loss
values were high in the first 14 epochs in both the two curves,
and then, the loss value gradually decreased with the increase
of the segmentation ability, and the loss value of the black
curve was higher than the red curve all the time. Figure 3(b)
shows the variation of the Dice coefficient of the two
DenseNet network algorithms on the validation set during
the segmentation training process. *e blue curve described
the Dice coefficient of the improved DenseNet network
during the training process, and the pink was the traditional
DenseNet network. It was noted that the accuracy of the
DenseNet network algorithm was higher at the beginning,
but as the Epoch value increased, the improved DenseNet
network algorithm had a higher Dice value.

3.2. MRI Images. Figure 4 shows the MRI images of PN
patients processed by two DenseNet network algorithms.
Compared to the original ones, theMRI images processed by
traditional DenseNet network algorithm were clearer and it
was easier to distinguish PN characteristics. *e improved
DenseNet network algorithm reused the features through
multiple iterations of feature information based on the
traditional algorithm. It used multiple Dice loss functions to
guide parameter optimization so that the features were more
refined, facilitating diagnosing PNs and distinguishing be-
nign and malignant PNs.

3.3. MRI Quality Evaluation. Figure 5 shows a quantifica-
tion comparison between the traditional DenseNet network
algorithm and the improved one, involving accuracy, recall

Transition 
layer

INPUT: x1
Y1

Y4
INPUT: x1 + 3

N

Y3
INPUT: x1 + 2

N

Y2
INPUT: x1 + N

A AA

Figure 1: A schematic diagram depicting the operation process of the fully convolutional DenseNet network algorithm.

Figure 2: *e segmentation process of the MRI image of the PN patient based on the improved DenseNet network algorithm.
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rate, Dice coefficient, and IoU. Obviously, the accuracy,
recall rate, Dice coefficient, and IoU of the improved
DenseNet network algorithm were higher than those of the
traditional one (P< 0.05).

3.4. Diagnosis and Differentiation of Benign and Malignant
PNs. *e MRI results were compared with the pathological
diagnostic results in terms of the PN volume, lobes, burrs,
edges, and connection with surrounding tissue, and the
accuracy rates were calculated (Figure 6). It was found that
the improved DenseNet network algorithm exhibited higher
diagnostic accuracy for PNs, with notable differences noted
(P< 0.05). Figure 7 shows the MRI features of different types
of lung nodules. Figures 7(a)–7(j) show the pulmonary
nodule lobular signs, burr sign, spinous protrusion, vascular
concentration sign, pleural depression sign, cancerous
lymphangitis, bronchial air sign, vacuole sign, cancerous
cavity, and nodular calcification, respectively.

Figure 8 shows the accuracy in differentiating benign and
malignant PNs. Obviously, the accuracy rate in the test group
was higher (92.38± 8.74% vs. 75.56± 7.56%) (P< 0.05).

4. Discussion

As a common lung disease, PN tends to develop into a more
serious disease because its early symptoms are not obvious

and it is easy to be ignored [12, 13]. Malignant PNmetastasis
may involve the central nervous system, leading to limb
weakness, hemiplegia, and even being life-threatening. For
PNs caused by infection, pathogenic bacteria can travel
throughout the body with the blood, leading to local or
systemic abscesses. *erefore, early diagnosis of PNs and
benign and malignant identification are of great significance
for the prevention and treatment of lung diseases [14, 15].
MRI is currently one of the common imaging methods for
clinical diagnosis of PNs. It can identify PNs based on the
characteristics of PN volume, lobes, burrs, edges, and ad-
hesion to surrounding tissue. However, the presence of
artifacts and noise results in missed diagnosis and misdi-
agnosis of benign andmalignant PNs to a certain extent [16].
Although the convolutional neural network algorithm for
MRI images has been widely used in the preoperative di-
agnosis of many diseases, how to accurately locate the focus
and differentiating benign and malignant foci still needs
further research.

Studies have shown that the convolutional neural net-
work demonstrates good image segmentation results, in-
dicating that it should be suggested in clinical MRI image
analysis [17, 18]. In this study, the traditional and improved
DenseNet networks were applied to segment MRI images of
PN patients. *e results showed that, compared with the
traditional one, the improved DenseNet network algorithm
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Figure 3:*e loss and the Dice coefficients of the two DenseNet network algorithms during the segmentation training process. (a)*e loss;
(b) Dice coefficient.

(a) (b) (c)

Figure 4: MRI image of a 63-year-old male patient with PNs. (a) *e original MRI image; (b) the MRI image processed by the traditional
DenseNet network algorithm; (c) the MRI image processed by the improved DenseNet network algorithm.
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Figure 5: Image quality comparison. (a) *e Dice coefficient; (b) the IoU; (c) the precision; (d) the recall rate.
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6 Scientific Programming



had higher diagnostic accuracy in terms of PN volume,
lobes, burrs, edges, and adhesion to surrounding tissue.
Compared with the control group, the difference was notable
(P< 0.05); the accuracy rates in differentiating benign and
malignant PNs in the test group were higher (92.38± 8.74%
vs. 75.56± 7.56%), and the difference was notable (P< 0.05).
In short, the improved DenseNet network shows high ac-
curacy in diagnosing PNs and differentiating benign and
malignant PNs, and it is worthy of further promotion in the
clinic.

5. Conclusion

In this study, the traditional and improved DenseNet net-
works were applied to segment MRI images of PN patients.
It was found that the MRI image based on the improved

DenseNet network algorithm showed higher accuracy in
diagnosing PNs and differentiating benign and malignant
PNs. However, some limitations should be noted in the
study.*e sample size is small and the selection of subjects is
not representative enough, because they are from the same
hospital. Additionally, the distinct manifestations of dif-
ferent types of PNs are not discussed in detail, and it is
impossible to verify the impact of these characteristics on the
accuracy of diagnosis. In the follow-up, an expanded sample
size is needed, and the multicenter collaborative analysis
method is recommended. All in all, the results of this study
provide a good theoretical basis for using the improved
DenseNet network algorithm to diagnose PNs and differ-
entiate benign and malignant PNs.
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*e data used to support the findings of this study are
available from the author upon request.
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