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Unmanned aerial vehicle (UAV) is regarded as a powerful tool to expand the existing ground wireless network into aerial space.
Since high mobility is an essential characteristic for UAV, it is important to carry out an accurate, real-time, and high-precision
localization in terms of safe operation and communication link maintenance. *e cellular network-based localization technology
has provided UAV a solution with both high coverage and seamless connection. However, the complex channel environment
between the UAV and terrestrial base station (BS) would have weakened the localization performance. To solve this problem, a
two-stage channel adaptive algorithm for cellular-connected UAV has been proposed. *e first stage of the algorithm is to revise
the observation error introduced by the complex channel environment using the model of DDPG.*e second stage is to locate the
UAV position with TDOA algorithm using the revised observation values. Simulation results have demonstrated that the
proposed algorithm can achieve the channel adaptive effect by revising the observation errors and improve location performance
greatly, especially for UAVs at a relative lower altitude.

1. Introduction

With the large-scale deployment and application of the fifth
generation (5G) cellular system, researchers start to focus their
studies on the sixth generation (6G) mobile communication
network. Compared with 5G, the most impressive improve-
ment of 6G network is the ability to provide an intelligent,
seamless, and three-dimensional (3D) aerial access network
connectivity with a data rate of several terabits per second
(TBPs) and ultralow delay of sub-millisecond [1]. In order to
fulfill the innovative objective in wireless communications for
the coming 6G communication systems and provide an on-
demand connectivity from the sky, new subjects such as sat-
ellites, high- and low-altitude platforms, drones, aircrafts, and
airships are being included to take the role as aerial base
stations. Among them, the unmanned aerial vehicles (UAVs)
have been regarded as a powerful tool to expand the existing 5G
wireless network into the aerial access network with its flexible
on-demand deployment capability [2].

Since high mobility is an essential characteristic for UAVs,
it is very important to carry out an accurate, real-time, and
high-precision localization in terms of the safe operation and
communication link maintenance. According to [3], GNSS
(Global Navigation Satellite System), INS (Inertial Navigation
System), and visual-based navigation are three technologies
used by UAV localization. GNSS is the most widely used one
for its global coverage; however the satellite signal is sensitive to
obstacles and blockings, leading to accuracy drops in complex
environments like city centers. INS does not rely on the satellite
signal, but the relatively high cost of equipment makes it not
suitable for small aircraft, and the accumulated offset error over
time due to integral drift is an unsettled problem [4]. Visual-
based localization depends onweather conditions; low visibility
environments like dusty or smoking can damage the visual
signal seriously, causing significant declines of accuracy [5].
Furthermore, visual-based localization demands large amount
of image processing, which requires high computing capability
and increases the system complexity.
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As the rise of 6G, the aerial-terrestrial integration net-
work has provided an alternative for UAV localization,
namely, the cellular-connected UAVs localization solution
[6–8]. 6G aerial network can provide cellular connectivity
with ubiquitous accessibility for UAVs and not restricted by
satellite signal attenuation and visual signal damage. Cel-
lular-connected UAV can also be a research model of user
experience for the high-altitude network as well to help
improving the service quality of the aerial network [7, 9].
Furthermore, the existing wireless communication tech-
nologies such as massive MIMO and millimeter wave
communication can also be exploited for UAV localization.

From 1G to 5G, various localization technologies have been
designed and implemented [10]. Network topology informa-
tion and radio signal from wireless network are the main
information source for mobile network localization. According
to the implementation principle, the location algorithm can be
divided into five categories: proximity, angle of arrival (AOA),
received signal strength (RSS), time of arrival (TOA)/time
difference of arrival (TDOA), and hybrid method [11]. Among
them, the proximity method depends on the density of the
network transmitter, leading higher cost of the positioning
equipment [12]; AOA is easily affected by the external envi-
ronment, and the need of additional hardware makes it not
suitable for the large-scale sensor networks respect to the
hardware size and power consumption [13]; the RSS method
shows good characteristics in the experimental environment,
but its low robustness of the environment temperature, hu-
midity, and propagation mode makes it difficult to implement
in the practical world [14]; TOA-based positioning also has a
relatively good performance on location accuracy, but it re-
quires accurate time synchronization among all the nodes,
which is very difficult to implement and requires a high cost
[15]; TDOA is widely implemented in the current mobile
network positioning technology, not only for it retains the
advantages of TOA’s small ranging error, but also for its no
need of the strict time synchronization between nodes [16].

Related research like drone detection and tracking using
technologies mentioned above has achieved positive results.
In [17], authors have designed a system in order to detect the
unlicensed small-sized drones in 5G mm wave cellular
networks. Schloemann et al. [18] have investigated the ap-
plication of cellular networks for localization of terrestrial
mobile terminals with the theory of stochastic geometry.
However, those studies have not considered the complex
aerial environment UAV works in; the new emerging aerial
users (such as cellular-connected UAVs) would have in-
troduced much more complexity to the existing location
model as well.

Generally, factors such as the three-dimensional mo-
bility of UAVs, altitude-dependent channel characteristics
(between BSs and UAVs), line of sight (LOS)/nonline of
sight (NLOS) conditions, and the interference from the
neighboring BSs contribute to the complex aerial environ-
ment. It is quite difficult to achieve a satisfied result by
adjusting only one factor at a time for the coexistence and
cooperation among parameters [19]. One creative way to
solve this is to observe the problem from a global view
instead of regional parts, oriented by factors affecting the

localization performance other than reasons complicated
UAV working environment. According to [18, 20], locali-
zation performance depends on three factors no matter
which technology was used. *ese factors are as follows:
number of participating BSs, accuracy of original observa-
tions, and relative distance between surrounding BSs and the
target device. Among them, location observation is the only
option with enough flexibility to be optimized; number of
participating BSs and relative distance between BSs and the
target device are related to the infrastructures which are
relatively difficult to be modified.

To improve the quality of location observations from a
global view, reinforcement learning (RF) is introduced to
compensate the errors. RF is a machine learning algorithm
trained by unlabelled data similar to the semisupervised
learning. Since the dynamic aerial model is difficult to de-
scribe and the action of TDOA is a continuous behaviour,
model-free policy optimization methods are good options
under these circumstances. Policy optimizationmethods can
solve problems of continuous behaviour space with con-
trollable computational complexity using a dual neural
network (actor-critical network). Gradient algorithm (VPG)
[21], trust region policy optimization (TRPO) [22], prox-
imity policy optimization (PPO) [23], and deep determin-
istic policy gradient (DDPG) [24] are typical policy
algorithms. In [25], Zhang et al. used the PPO algorithm to
correct the NLOS measurement error in AOA location and
achieved good results. However, PPO uses online strategy
which cannot take efficient usage of the historical data and
increases the cost of training set. However, DDPG has
skilfully combined the advantage of Q learning and policy
algorithm by using experience playback and a duel-double
network. *at means DDPG can solve the problem of
continuous action space and improve data utilization rate of
TDOA at the same time.

In this paper, a channel adaptive algorithm for UAV
localization by optimizing the location observations based
on DDPG has been proposed. *e proposed algorithm has
included two stages: firstly, revise the location observations
error introduced by the complex aerial channel environment
by studying the historical data using DDPGmodel; secondly,
calculate the location of target UAV using the TDOA al-
gorithm. Since the observation values are revised by the
learning model of the whole channel environment instead of
each single variable, the complexity of the algorithm can be
reduced while the location performance increased.

*e organization of the paper is as follows: the channel
propagation model of aerial environment UAV works in has
been analysed in Section 2. *e introduction of basic idea in
DDPG, observation revised model, and TDOA procedure
analysis have been constructed in Section 3. Simulation
results have been illustrated in Section 4. Section 5 has
concluded the whole paper and the future work plans.

2. Channel Model

Due to the complexity of the aerial wireless channel com-
munication environment, the location observation value will
be interfered by many factors such as three-dimensional

2 Scientific Programming



mobility of UAVs, altitude-dependent channel character-
istics between base stations (BSs) and UAVs, LOS/NLOS
conditions, and interference from neighboring BSs, who will
lead certain deviations to the final location accuracy. In this
section, the wireless transmission channel model of location
observation and the mathematical expression of error would
be illustrated.

Assume that there are M transmitting antennas at the
base station, N receiving antennas in the mobile receiving
terminal, one wireless propagation path between the
transmitting and receiving points. *en the signal received
by the receiving antenna at time t can be expressed as follows
[26, 27]:

yj � 􏽘
M

i�1
xi(t)h

l
i,j(t) + ni,j(t), (1)

where xi(t) is the transmitted signal, yj is the received
signal, hl

i,j(t) is the channel model between transmitting
antenna i and receiving antenna j at time t, and ni,j(t) is the
noise.

Assume t0 is the time delay caused by multipath
propagation, so that each multipath subchannel model of
MIMO system can be defined as

h
l
i,j(τ − t) � h

l
i,j(t)δ τ − t0( 􏼁. (2)

*e propagation delay is usually caused by the signal
reflection, refraction, and scattering introduced by the
NLOS condition in the environment. *erefore, the ob-
servation values used in the location algorithm as input of
the second stage will introduce certain errors to the location
system.*emathematical expression of the error is shown as
follows:

αi,j � α0,i,j + αn,i,j + αe,i,j, (3)

where α0,i,j is the location observation value in the ideal
environment, αn,i,j is the channel error caused by NLOS, αe,i,j

is the measurement error introduced by the complex en-
vironment, i is the number of transmitting antennas, and j is
the number of receiving antennas. Our goal is to minimize
the sum of αn,i,j and αe,i,j so that the value αi,j is as close to
α0,i,j as possible.

3. Channel Adaptive Algorithm

3.1. Deep Deterministic Policy Gradient. DDPG is a com-
bination of Q learning and policy gradient. *ere are four
networks in DDPG, namely, the critic, actor, target critic,
and target actor network. *e critic network responses for
the Q function updates using the loss function similar as
DQN (deep Q network) [28], except that the action is
calculated separately by the actor network. *is operation
makes DDPG possible to deal with complex and continuous
actions. *e actor network calculates an action result with
the highest Q value according to the policy gradient used in
DPG (deterministic policy gradient) [29]. It is deterministic
since DDPG does not calculate the probability of every
possible action but outputs only one deterministic action.

Since in many cases (for example, our localization
scenery), targets keep changing while update values are
calculated, which would lead in difficulties for update.
Similar as DDQN (deep reinforcement learning with double
Q learning) [30], DDPG has implicated the fix network
technology to fix the target network before assigning the new
parameters. *e parameter assignment of the target network
has taken usage of a soft update instead of the hard one to
assure the stability of learning.

In order to avoid the correlation of samples and different
feature unit, DDPG has introduced the replay buffer and
batch normalization mechanism. *e replay buffer stores a
finite set of state, action, and reward pair.*e actor and critic
network take samples from the replay buffer to calculate the
target at each time step. When the buffer is full, the oldest set
would be discarded, leaving room for the new comings.

*e core of the channel adaptive algorithm proposed
here is to revise the location observation with the help of the
DDPG model. Since the observation value is time-changing
and needs a continuous revised action, it is quite suitable for
taking use of DDPG. Once the observations are revised, the
UAV location will be calculated using the revised obser-
vation value by the TDOA algorithm.

3.2. Location Observation Revise Model. Assume {NIdeali,
i� 1, . . .,N1} are samples ofN1 observation values under the
real channel environment and {Ideali, i� 1, . . ., N2} are
samples of N2 observation values under ideal channel en-
vironment. According to formula (3), the relationship is as
follows:

NIdeali � Ideali + αn,i + αe.i. (4)

Let S� {NIdeali, i� 1, . . ., N1} and T� {TIdeali, i� 1, . . .,
N2}; denote S as the initial state of the revise model and T as
the training target. According to the DDPG algorithm, there
are four networks in the system. During the initialization
process, four networks and their caches would be assigned
initialized values. *e initialization process is as follows:

(i) Initialize the critic network Q(s, a|θQ) and actor
network μ(s|ϑμ) randomly, with s representing the
current state of two networks, a representing the
action to be executed, θQ and θμ are network
parameters.

(ii) Initialize the target networks Q′ and target actor μ′
randomly, with network parameters θQi � θQ,
θμ′ � θμ.

(iii) Empty the replay buffer and denote it as R.

After initialization, for i� 1, . . ., M, denote S to be the
initial state set and perform the following steps at time t� 1,
. . ., T:

(i) Obtain action at � μ(st|θ
μ) in the policy network

at state S,
where μ is a mapping from state to action with
function approximators parameterized by θμ and st

is the state action that at starts from.
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(ii) Execute action at and obtain the new state st+1 and
reward rt.

(iii) Store (st, at, rt, st+1) into the replay buffer R.
(iv) Select N groups of variables B� {(si, ai, ri, si+1)}

from R randomly and input B into the actor target
network and critical target network, respectively.

(v) Calculate the next action at+1 in the actor target
network with

at+1 � μ′ st+1 | θμ′􏼒 􏼓, (5)

where μ′ is the mapping function of state and
action at time t+ 1 whose function approximators
parameterized by θμ′ .

(vi) Calculate the target value yi of Q in the critical
target network:

yi � ri + cQ′ si+1, μ′ si+1 | θμ′􏼒 􏼓|θQ′
􏼒 􏼓, (6)

where ri is the reward at time step i, c is a dis-
counting factor with c ∈ [0, 1], and
Q′(si+1, μ′(si+1|θ

μ′)|θQ′) represents the expected
return after taking action ai+1 at state si+1. How-
ever, yi is also dependent on θQ′.

(vii) Calculate the loss function L of Q:

L �
1
N

􏽘
i

yi − Q si, ai|θ
Q

􏼐 􏼑􏼐 􏼑
2
, (7)

where N is the number of sets selected from the
replay buffer.

(viii) Update the critical network by minimizing the loss
function.

(ix) Update the actor network by the gradient back
propagation algorithm of the neural network:

∇θμJ ≈
1
N

􏽘
i

∇aQ s, a | θQ
􏼐 􏼑 s�si,a�μ si( )∇θμμ s | θμ( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
si

.

(8)

*is is the policy gradient calculation model, and
the derivation process can be found in [27].

(x) Update critical target network parameters and
actor target network parameters:

θQ′⟵τθQ
+(1 − τ)θQ′

,

θμ′⟵τθμ +(1 − τ)θμ′ ,
(9)

where τ is the soft update parameter with value of
τ ∈ [0, 1].

(xi) Complete the current iteration if st+1 is the ter-
mination state, otherwise return the first step.

Figure 1 has illustrated the training process of the ob-
servation data using DDPG. In our model, action at is a
continuous value that can make the location observation
samples as close as the samples in the ideal environment.*e

reward information rt represents the quality of the location
observation value of DDPG model, and the policy would
adopt corresponding correction actions according to rt, in
order to maximize the reward value.

Since the concept of “Replay Buffer” is quoted in this
paper, the data of the previous policy can be used for each
training episode instead of only the current cycle, which
would reduce the training data scale and improve the data
utilization efficiency.

3.3. UAV Location with TDOA. In the location system of
TDOA, once the observation value is determined, the dis-
tance between UAV and base station can be calculated.
Several observation values could constitute a set of hyper-
bolic equations about the terminal position of the target, and
the estimated position would be obtained by solving those
equations.

Assume there areN base stations distributed in the three-
dimensional (3D) space, the coordinate of the i-th base
station is (xi, yi, zi), the location of target UAV is (x, y, z), and
the distance between target UAV and the i-th BS is Ri, where
i� 1, 2, 3, . . ., M. *en we got

Ri �

��������������������������

x − xi( 􏼁
2

+ y − yi( 􏼁
2

+ z − zi( 􏼁
2

􏽱

. (10)

Denote signal from BS1 as signal 1, and mark it as the
reference signal. Record the time difference between signal i
(i ∈m) and signal 1 as ti1 and the distance as Ri1; then

ti1 � ti − t1,

Ri1 � c∗ ti1

� c ti − t1( 􏼁

� Ri − R1,

(11)

where c is the propagation velocity of electromagnetic wave.
After transposition, we got

R
2
i − R

2
1 � x − xi( 􏼁

2
+ y − yi( 􏼁

2
+ z − zi( 􏼁

2

− x − x1( 􏼁
2

− y − y1( 􏼁
2

− z − z1( 􏼁
2
.

(12)

After calculation, equation (12) can be presented as

Policy/Actor
Network

Q/Critic 
Network

R Buffer

Policy/Actor
Target

Q/Critic 
Target

St+1, rt

a′

yi

Actor Critic

at

B={(si,ai,ri,si+1)}
B={(si,ai,ri,si+1)}

(st,at,rt,st+1)′

′

′

Figure 1: *e training process of DDPG.
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2 x1 − xi( 􏼁x + 2 y1 − yi( 􏼁y + 2 z1 − zi( 􏼁z

+ x
2
i + y

2
i + z

2
i􏼐 􏼑 − x

2
1 + y

2
1 + z

2
1􏼐 􏼑.

(13)

Here, we denote

Ki � x
2
i + y

2
i + z

2
i ,

Xi,1 � x1 − xi,

Yi,1 � y1 − yi,

Zi,1 � z1 − zi.

(14)

After simplification, we got

R
2
i − R

2
1 � 2 Xi,1 Yi,1 Zi,1( 􏼁

x

y

z

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + Ki − K1. (15)

When there are four base stations participating in the
localization process successfully, at least three TDOA ob-
servations can be obtained. Assume R1 is known, and the
location of UAV can be calculated as

x

y

z
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� −
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∗
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
R1 +

1
2

R
2
2,1 − K2 − K1

R
2
3,1 − K3 − K1

R
2
4,1 − K4 − K1
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(16)

1.4

1.2

1

0.8

0.6

1.2

1

0.8

1.2

1

0.8

Er
ro

r R
at

e
Er

ro
r R

at
e

Er
ro

r R
at

e

Number of data

Error Rate at h=1.5 m

Error Rate at h=25 m

Error Rate at h=50 m

Original Observation
Revised Observation

Error Rate at h=50 m

Error Rate at h=25 m

0 10 20 30 40 50 60 70 80 90 100

Number of data
0 10 20 30 40 50 60 70 80 90 100

Number of data
0 10 20 30 40 50 60 70 80 90 100

Original Observation
Revised Observation

Original Observation
Revised Observation

Figure 2: Error rates of the observation value before and after using the revised model at different UE altitude.
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*is is the specific location information of the UAV to be
measured. It can be seen that to localize an UAVwith TDOA
algorithm, at least four base stations are required to par-
ticipate the localization. For simplification, we discussed
only the four base stations case in this paper.

4. Simulation Results

4.1. Simulation Parameters. *e 3GPP research project has
studied three cellular-connected UAV scenarios, namely,
urban-macro with aerial vehicles (UMa-AV), urban-micro
with aerial vehicles (UMi-AV), and rural-macro with aerial
vehicles (RMa-AV) [7]. *e eNodeB antennas mounted
above the rooftop levels of surrounding buildings in urban
environment are UMa-AV scenarios. UMi-AV represents
scenarios where eNodeB antennas are mounted below
rooftop. eNodeB antennas mounted on top of towers of
larger cells in rural environment are represented by RMa-
AV [31]. In our simulation study, the 3GPP channel model
of UMa-AV scenario for UAVs is considered.

*e simulation environment is set by assuming the
intersite distances of 500m, and the height of BS is 25m [4].
*e channel being used is with bandwidth of 10MHz and
the carrier frequency (fc) of 2GHz. Variance of the shad-
owing is modelled as 4.64exp (−0.0066hUT) and 6 dB for
LOS and NLOS conditions, respectively [4]. *e transmitted

power is taken as 46 dBm and the noise figure of the UAV as
9 dB.

4.2. Numerical Results. Since our proposed algorithm is a
two-staged process, there are two parts of numerical results
demonstrated in this section, that is, the observation revised
results and the final UAV location accuracy analysis.

Before setting the error revised model, it is necessary
to collect a set of reference data under the ideal envi-
ronment to help training and evaluating the revised effect.
Define error ratio as the ratio between observation value
and the reference data. An error ratio of 1 indicates that
the observed data are exactly the same as the reference
data.*at is, the closer the error ratio is to 1, the better the
correction effect will be.

Figure 2 shows the error ratio of observation data of
TDOA before and after using the revised model as the
UAV working at different altitudes. It is obvious that the
revised observations have smaller amplitude than the
original ones, which means their error rates are better.
*is advantage becomes more pronounced when the UAV
(UE) stays at a relatively lower altitude. *is phenomenon
is consistent with the probabilistic simulation results of
LOS at different UE heights. *e references [7, 20] have
shown the same result.
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For the location stage, the cumulative distribution of
positioning error is used to measure the final location ac-
curacy. *e cumulative error of positioning accuracy rep-
resents the cumulative probability value of positioning
results within a specific range. Within the same distance
range, the higher the cumulative probability value is, the
better the positioning accuracy is.

Figure 3 shows the cumulative distribution error of
location accuracy obtained by the TDOA algorithm before
and after optimization. *e UAV’s altitude (hUE) was set to
25m here. It can be seen that the proposed algorithm has a
probability of 64.4% that the location accuracy is within 2m,
and the probability of positioning error within 4m is 85.4%;
compared with the results of using the original TDOA al-
gorithm, the positioning accuracy within 2m has been
improved by 51.9%, and the positioning accuracy within 4m
has been improved by 37.7%.

Simulation results shown in this chapter have demon-
strated that the proposed algorithm can achieve the channel
adaptive effect by revising the observation errors and im-
proving location performance greatly, while the improved
effect is especially noticeable for UAVs at a relative lower
altitude.

5. Conclusions

In this paper, a two-stage channel adaptive algorithm for
cellular-connected UAV has been proposed. *e first stage
of the algorithm is to revise the observation error introduced
by the complex channel environment between UAV and
base stations. *e second stage is to locate the UAV position
with TDOA using the revised observation values. Simulation
results have demonstrated that the proposed algorithm can
achieve the channel adaptive effect by correcting the ob-
servation errors and improving location performance
greatly, especially for the UEs at a relatively lower altitude.

*e future work would be concentrated on the following
aspects: one is to replace the single TDOA algorithm in this
paper by the hybrid algorithm composed of TDOA, AOA, or
RSS to optimize the location algorithm itself; the second
aspect is to introduce the random policy factor represented
by the information entropy into the optimization algorithm,
in order to improve the randomness of the system and avoid
the problem of the local optimal trap. *e third aspect is to
expand the quality evaluation domain from single location
accuracy to a diversified set by introducing other user ex-
perience target, leading the model closer to user experience.
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