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In order to ensure optimal operation of the existing environmental monitoring information system, it has become essential to use
mathematical modeling based on the data assimilation algorithm. In this paper, a data assimilation algorithm has been designed
and implemented. An algorithmic approach was tested for the assimilation of city atmosphere monitoring data from an industrial
area. An industrial district of Karaganda city was selected for the investigation of the algorithm. +e industrial district of
Karaganda was taken as a research object due to the high level of atmospheric air pollution in industrial cities in the Republic of
Kazakhstan. +e result of our research and testing of the algorithm showed the effectiveness of the data assimilation algorithm for
monitoring the atmosphere of the selected city. +e practical value of the work lies on the fact that the presented results can be
used to assess the state of atmospheric air in real time, to model the state of atmospheric air at each point of the city, and to
determine the zone of increased environmental risk in an industrial city.

1. Introduction

Nowadays, the environmental monitoring problems have
received considerable attention due to the high level of
atmospheric air pollution in industrial cities of many
countries [1–6]. For the effective operation of the existing
information system for monitoring the atmosphere for
pollution by heavy metals, it has become essential to use
mathematical modeling based on the data assimilation
algorithm.

Data assimilation technology is used to improve fore-
casts of air quality in atmospheric chemistry, as well as to
perform a reanalysis of three-dimensional chemical (in-
cluding aerosol) concentrations and determine the values of
input variables (parameters) of the inverse simulation model
(for example, emissions). +e concept of “data assimilation”

combines a sequence of operations starting with observa-
tions of the system and ending with the assessment of its
state based on additional statistical and dynamic informa-
tion. Currently, data assimilation technology is widely used
in the fields of modeling the atmosphere, climate, ocean, and
environment under any conditions, particularly if it is
necessary to assess the state of a large dynamic system based
on limited information. +e purpose of data assimilation for
atmospheric modeling is to obtain a better understanding of
the atmosphere in terms of its meteorological and chemical
parameters.

Several decades ago, I. Sasaki developed the variational
method of data assimilation, and his approach is currently
widely used for modern-day analysis and for prediction in
meteorology [7]. R.E. Kalman also demonstrated an opti-
mization method for linear filtering, and this filter is named
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after him. +e data assimilation model based on the Kaman
filter has allowed the generalization of assimilation systems,
such as the cycle of forecast analysis [8, 9]. +e main
problems of using the Kalman filter are the high order of the
covariance matrix in forecasting errors and the nonlinearity
of the system equations describing meteorological processes.
In order to solve these problems, a method was adopted
based on the Lagrange variational principle using conjugate
equations for estimating and predicting natural processes.
V.V. Penenko expanded this method to the assimilation of
variational data using the methods of sensitivity theory and
related problems [10, 11]. In dynamic meteorology, data
assimilation technology has been applied for many decades
to improve weather forecasting and reanalysis results. To
date, research in this field has been actively conducted by
many scientists [12–14].

Chemical analysis has been utilized to predict air
quality since the mid-1990s with the creation of primitive
databases regarding pollution, such as an air pollution
index for five pollutants for each year without analytical
processing and forecasts. Despite the fact that, as Zhang
et al. [15–17] showed in their research, it is preferable to
make air quality forecasts based on statistical approaches,
data assimilation techniques have been used since the 1990s
in air quality modeling to understand air pollutants, such as
in concentration maps [18]. Furthermore, inverse model-
ing has been used to improve (or detect errors) the radi-
ation rate [19–23], boundary conditions [24], and model
parameters [25–27]. S. Rakhmetullina et al. used variational
data assimilation algorithms to detect atmospheric pollu-
tion sources [28]. +e 3D-Var algorithm was first imple-
mented in 1992 by the National Center for Environmental
Forecasts (NCEP) [29]. Later, in 1996, it was urgently
implemented at the European Center for Medium-Term
Weather Forecasts (ECMWF); then, in 1997, the 4D-Var
algorithm was first applied in the ECMWF forecasting
system [30]. Various models are also used to simulate
atmospheric ventilation processes and, accordingly,
methods for modeling the temporal and spatial dispersion
of various pollutants in the atmosphere of industrial cities
such as MLDP0 (Modèle Lagrangien de Dispersion de
Particules d’ordre 0), HYSPLIT (Hybrid Single-Particle
Lagrangian Integrated Trajectory Model), NAME (Nu-
merical Atmospheric-dispersion Modelling Environment),
RATM (Regional Atmospheric Transport Model), FLEX-
PART (Lagrangian Particle Dispersion Model), a Local
Scale Atmospheric Circulation Complex-Field Model
(LACCM) and others. Methods and algorithms to mod-
eling, processing, and assimilation of the industrial city
atmosphere monitoring data were considered in the works
[31–40].

According to previous studies, in this work, algorithm
for the assimilation of atmospheric monitoring data was
designed and tested for the highly air-polluted city of
Karaganda, the Republic of Kazakhstan (RK). A “data as-
similation” module has been developed for the information
system of monitoring atmospheric air pollution.

2. Materials and Methods

+e government of the RK approved a state program,
“Digital Kazakhstan,” and considered the creation of a
“unified state system for monitoring the environment and
natural resources” [41]. Based on the current environmental
code of the RK, this system monitors the means of con-
trolling, forecasting, and evaluating pollution and is also a
comprehensive system for observing the state of the envi-
ronment and natural resources [42]. Currently, 146 posts
and 14 mobile laboratories located in the largest cities and
national industrial centers of Kazakhstan are engaged in the
analysis of the state of atmospheric air pollution. According
to the reports of national environmental authorities, the
highest levels of air pollution are observed over industrial
centers. Generally, national environmental authorities allow
a maximum permissible concentration (MPC) of pollutants;
this indicator also includes heavy metals (HM). For example,
for the specified period of March 10–16, 2020, the following
measurements were registered:

In Karaganda city, in the district of observation post 6
for atmospheric air pollution, 141 cases exceeding the
maximum permissible concentration (MPC) for sus-
pended particles PM2.5 were found.
In Nur-Sultan city, 430 cases of excess in the range of
1.0–3.8 of theMPC for sulfur dioxide were found, along
with 997 cases of excess in the range of 1.1–3.0 of the
MPC for hydrogen sulfide, etc. In Ust-Kamenogorsk
city, 371 cases of excess in the range of 1.0–1.9 of the
MPC for hydrogen sulfide were found [43].

According to the newsletters of the Republican State
Enterprise “Kazhydromet,” Karaganda occupies a leading
position in terms of the cities with high air pollution in the
RK [43]. +erefore, the object of our research was to in-
vestigate the atmospheric air pollution of the industrial city
of Karaganda, which is characterized by a sharply conti-
nental and arid climate due to its great distance from the
seas, free access in summer to warm dry winds of the deserts
of Central Asia, and cold, moisture-poor arctic air in the cold
season. In this city, the monitoring process is carried out by
eight posts: four automatic and four manual sampling posts.
+e northern industrial zone of the territory in Karaganda
was selected to solve the problem of data assimilation; the
third regional thermal power plant (TPP-3) is located in this
area. A location map of the thermal power plant in Kar-
aganda is shown in Figure 1.

Generally speaking, the scope of our research consists of
two stages (Figure 2): the first stage is the process of forming
an observation plan, the selection of areas for air sampling,
the analysis of meteorological data, and the determination of
the content of heavy metals in air samples of Karaganda city.

Technical details and explanations of the air sampling
process to assess the content of heavy metals in this selected
area are shown in Table 1.

Figure 3 illustrates the main characteristics of atmo-
spheric air pollution in Karaganda city, in which

2 Scientific Programming



Figure 1: Map of the industrial area in Karaganda city.
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Figure 2: Flow chart of research framework.
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phenols—1.8 of the MPC—and formaldehyde—1.5 of the
MPC—show the greatest excess values.

+e chemical analysis of the HM content was deter-
mined as follows. First, air at a volume of 18m3 was passed
through the “ABX” filter, meaning that the HM contained in
the atmospheric air was collected on this filter. +en, the
filter was burned by the method of “wet salinity” in 4mL of
5M HNO3. +e resulting mixture of HNO3 with a filter was
slightly evaporated in a water bath under a hood until wet.
+en, 0.3mL of concentrated H2O2 was added to the
mixture, and the mixture was settled for 0.5 h. +e mixture
was then evaporated to dryness; then, 0.2mL of HNO3 was
added to the dry residue and brought to a volume of 25mL
in the cylinder with distilled water. In the obtained sample,
the HM content was determined using an atomic adsorption
spectrophotometer “Shimadzu” with AA-6650 electro-
thermal atomization [44, 45]. +e chemical analysis of air
samples from Karaganda city showed their HM content.

To implement algorithms for data assimilation, the re-
sults of monitoring the content of heavy metals in the air of
Karaganda in the amount of 4380 measurements were used.

+e obtained data regarding atmospheric pollution with
HM were verified using correlation-regression analysis.
According to the calculations, the value of the correlation
coefficient r� 0.9 shows a strong relationship between the
content of Cu and Pb in the air of Karaganda city, which is
reflected in the regression equation y� 0.7866x+ 0.0134 and
shown in Figure 4.

+e validation of air pollution in Karaganda with HM
was carried out from 1March 2020 to 31March 2020. Table 2
shows the values of the mean average deviation (MAD) and
errors (mean square error (MSE), root mean square error
(RMSE)) for this operation. Since the actual values of HM
concentration are close to zero, it would be incorrect to use
the mean average percentage error (MAPE).

+e impurity content of the atmosphere is also affected
by the wind direction. Moreover, seasonal changes in at-
mospheric pollution are important in this research, as they
may influence the volume of atmospheric pollution. At-
mospheric pollution is not only characterized by daily
changes but also by the seasons of the year and by mete-
orological conditions. In order to achieve a comprehensive
monitoring solution, information on wind, air temperature,
and humidity in Karaganda was analyzed for the period of
1–31 March 2020. Weather information of the city was
collected from the weather station in Karaganda (the geo-
graphic coordinates of the station are as follows: latitude
49.80, longitude 73.15, and altitude 553m.).

+e second stage of this research was applying the data
assimilation algorithm to predict the spread of air pollution.
Variational algorithms play an important role in modeling
the distribution of pollutants and working in real time,
especially when solving environmental pollution problems
in the development of ecosystems. Data assimilation is the
most used technique in variation algorithms. +e term data
assimilation covers the entire sequence of operations that
begins with observations of the system with additional
statistical and dynamic information that gives an assessment
of its state. Data assimilation technology is a standard
practice in numerical weather forecasting, and its applica-
tion is becoming widespread in any circumstances in which
it is intended to assess the state of a large dynamic system
based on limited information. In data assimilation problems,
it is necessary to predict the value of the model state function
in accordance with the available observational data.+erefore,
the approach is used to restore the “real” state of the system as
accurately as possible, using a mathematical model, a priori
information, and measurement data. +e problem statement
with the nonstationary transfer equation and diffusion was
considered for this study [46, 47]. After multiplying the
original equation by a sufficiently smooth conjugate function,
the integral identity was obtained to construct discrete ap-
proximations. To evaluate and predict natural processes, the
Lagrange variational principle was chosen using conjugate
equations. Variational data assimilation was developed by
V.V. Penenko based on the methods of sensitivity theory and
conjugate problems [10, 11]. +e sequential variational as-
similation of observational data in real time was performed,
and it was assumed that the values of the concentration field
could be measured in a finite set of points in space and time.
+e grid function is 1 at points in the space-time grid where
measurement data are available, and 0 otherwise. +e ap-
proach of modeling using functions includes observational
data that express the degree of proximity of the measured
values and their images calculated from the models of pro-
cesses and measurements. +e values of the concentration
field are measured in a finite set of points in space and time.

3. Results and Discussion

+e existing information system for monitoring atmo-
spheric pollution in the RK has a number of disadvantages,
as its main function is to store and collect data. In this
regard, for the effective operation of an atmospheric
monitoring information system, it has become necessary to
use mathematical modeling based on a data assimilation

Table 1: General characteristics of measurement.

Post
Number

Address of
concerns

Frequency and time of
sampling

Protocol for conducting observations and pollutant contents, including heavy
metals

1 Aerological
station

4 times per day 1 a.m., 7
a.m., 13 p.m., 7 p.m.

(i) Daily manual
sampling (discrete

methods)

Lead, copper, chromium; suspended particles (dust),
sulfur dioxide, sulfates, carbon monoxide, nitrogen

dioxide, phenol

4 15 biryuzova
street

4 times per day 1 a.m., 7
a.m., 13 p.m., 7 p.m.

(ii) Daily manual
sampling (discrete

methods)

Lead, copper, chromium; suspended particles (dust),
sulfur dioxide, carbon monoxide, nitrogen dioxide,

phenol, formaldehyde
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Figure 3: Characteristics of atmospheric air pollution in Karaganda city: heavy metals (HM) (a), particulate matter (PM2.5), (b) and other
elements (c).
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algorithm and to develop an appropriate module for this
[48–51].

3.1. Mathematical Support of the Environmental Monitoring
System Based on the Data Assimilation Algorithm. As a
model of impurity transfer for the nonstationary transfer
equation with diffusion, we consider the following problem
statement [11, 46]:

Lϕ ≡
z

zx
μ

zϕ
zx

− u
zϕ
zx

�
zϕ
zx

+ cϕ − f(x, t).

(1)

We set the boundary conditions as the third kind:

− μ
zϕ
zx

+ aϕ � qL, x � 0,

μ
zϕ
zx

+ aϕ � qR, x � L.

(2)

We take as the initial condition

ϕ � ϕ0,

t0 � 0,
(3)

where ϕ—impurity concentration function, ϕ0—initial
concentration distribution, µ ˃ 0—turbulent exchange co-
efficient, u—impurity transfer rate, c—decay rate, f(x,t)—
source function, x ϵ (0,N)—spacing interval, t ϵ (0,M)—time
interval, a—given coefficients, and q1, qR—given functions.

We assume that the function ϕ and flow μ(zϕ/zx) are
continuous in space.

Let us introduce a grid region into consideration: uni-
form grids with steps of Δt and Δx, and the numbers of
partition nodes are M and N, respectively.

For the numerical solution of the problem under con-
sideration, we use the discrete method described in
[46, 52, 53], in which a two-layer second-order approxi-
mation was used to approximate the time derivative:

(3/2)ϕj+1
− 2ϕj

+(1/2)ϕj− 1

Δt

�
zϕj+1

zt
+
1
3
(Δt)2

z
3ϕ

zt
3 τ1(  +

z
3ϕ

zt
3 τ2(  ,

τ1 ∈ tj, tj+1 ,

τ2 ∈ tj, tj+1 .

(4)

As an approximation of the original differential equa-
tion, we use the discrete-analytic method proposed in
[46, 52, 53] and obtain

− Δtu
zϕj+1

zx
+

z

zx
Δtμ

zϕj+1

zx
−

3
2

+ Δtc ϕj+1

� − Δtfj+1
(x, t) + − 2ϕj

+
1
2
ϕj− 1

 ,

(5)

where Δt is the time step and j is the step number.
Next, after writing down the integral identity and

multiplying all the terms of the equation under consider-
ation by a smooth function φ∗, which we call the conjugate,
in the standard way, i.e., as a result of two integrations by
parts, we obtain the discrete-analytical scheme:


xi

xi− 1

−
z(Δtu)ϕ∗

zx
+

z

zx
Δtμ

zϕ∗

zx
 ϕj+1dx + Δtuϕϕ∗

xi

xi− 1

+ Δtμ
zϕ
zx

ϕ∗




xi

xi− 1

− Δtμ
zϕ∗

zx
ϕ|

xi

xi− 1

− 
xi

xi− 1

3
2

+ Δtc ϕj+1
+ Δtfj+1

(x, t) − − 2ϕj
+
1
2
ϕj− 1

  ϕ∗dx � 0.

(6)
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Figure 4: Correlation between Pb and Cu concentrations in the
atmospheric air.

Table 2: Values of mean average deviation (MAD), mean square
error (MSE), and root mean square error (RMSE) for HM.

Heavy metals MAD MSE RMSE
Pb 0.009 0.001 0.023
Cu 0.026 0.003 0.055
Cr 0.004 0.001 0.004
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On the intervals (xi-1, xi) and (xi, xi+1), we place the
boundary conditions

ϕ∗ xi− 1(  � 0,

ϕ∗ xi(  � 1,

ϕ∗ xi(  � 1,

ϕ∗ xi+1(  � 0.

⎧⎨

⎩

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(7)

Using the summated identity method [53], let us build a
three-point diagram of the general form

Biϕi − Ci ϕi+1 � Fi, i � 0,

− Aiϕi− 1 + Biϕi − Ciϕi+1 � Fi, 1≤ i≤N − 2,

− Aiϕi− 1 + Biϕi � Fi, i � N − 1,

(8)

where ϕi � ϕj+1(xi) and

Ai �
e
Δx uLΔt +

����
p2

L
Δt2

√
( )/2ΔtμL( )

�����

p
2
LΔt

2


 

− 1 + e
Δx

����
p2

L
Δt2

√
/ΔtμL( ) 

,
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1
2

− uLΔt +

�����

p
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2


Coth
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���

p
2
L



2μL

⎛⎜⎜⎝ ⎞⎟⎟⎠⎛⎜⎜⎝ ⎞⎟⎟⎠ +
1
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Coth
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R



2μR

⎛⎜⎜⎝ ⎞⎟⎟⎠⎛⎜⎜⎝ ⎞⎟⎟⎠,

Ci � −
e

− Δx uRΔt+
����
p2

R
Δt2

√
( )/2ΔtμR( )

�����

p
2
RΔt

2


− 1 + e
− Δx

����
p2Δt2

√
/ΔtμR( )

,

Fi � 
xi

xi− 1

S(x)ϕ∗R(x)dx + 
xi+1

xi

S(x)ϕ∗R(x)dx, i � 2, . . . , N − 2.

(9)

+e resulting three-point scheme with the found coef-
ficients is solved using the matrix sweeping method.

3.2. Sequential Variational Assimilation of Observational
Data in Real Time. Let the concentration field values be
measured at a finite set of points in space and time. Let us
denote by I

j+1
i the result of measurements at the j-th mo-

ment of time at the grid point with index i and through the

I
j+1
i mask of the measurement system. To apply the method
of summation identities, we assume that the grid function is
equal to 1 at the points of the space-time grid where
measurement data are available and 0 otherwise. +e al-
gorithm used to solve the problem of the sequential vari-
ational assimilation of data is presented in matrix notation
form [46, 54] as follows:

For i � 0,

Ai 0

0Ci+1

⎛⎝ ⎞⎠
ϕj+1

i+1

ψi+1

⎛⎜⎜⎝ ⎞⎟⎟⎠ +

Bi −
Δt
2

2M
j+1
i Δt Bi
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i

ψi
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ϕj

i

2M
j+1
i ΔtI

j+1
i

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠. (10)
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To minimize this, we considered a quadratic functional
of the form

V ϕj+1
, ξj+1

  � 
N− 1

i�0
ϕj+1

i − I
j+1
i 

2
M

j+1
i Δt + 

N− 1

i�0
ξj+1

i 
2
Δt.

(13)

+e following Figure 5 shows relative errors of the numerical
solution in comparison with the exact analytical solution for
different values of the time step and for different steps in space.

According to the above-described mathematical model-
ing, a software module has been created for the information
monitoring system. Figure 6 describes the class diagram of the
developed software module for data assimilation.

With the help of the data assimilation software module, a
dat-file is created in which the input and output data of the
observation data assimilation algorithm are recorded. +ese
data are required to interact with the data visualizationmodule.
+e dat-file has a structure that is partially shown in Figure 7.

3.3. Testing the Implemented Algorithm. In order to test the
generated algorithms, 3D graphical functions fromWolfram
Mathematica 10.4 were applied. Figure 8 shows the model of
the industrial area which was used to test the data

assimilation algorithm. A two-dimensional version of the
data assimilation was selected.

In parallel, nX (the number of points in space along the X
axis� 100) ∗ mY (the number of points in space along the Y
axis� 100) of the one-dimensional data assimilation prob-
lem for each time layer was solved. Data were selected from
the industrial city of Karaganda. +e turbulent exchange
coefficient µ (nCoefficient) was 0.1m2/s, and the transfer
speed (nSpeed) was 0.1m/s.

Figures 8(b) and 8(c) shows the solution to the data
assimilation problem at different points in time and the
“real” state of the system.When solving the data assimilation
problems, in contrast to direct problems of modeling the
propagation of pollutants, process models were com-
plemented by observation models that describe the observed
quantities in terms of state functions and the parameters of
process models. +is makes the procedures of applying the
data assimilation algorithm correct from a mathematical
point of view and increases the information content of
observations. An effective algorithm for predicting the
propagation of impurities in the atmosphere that simulta-
neously involves the parallelization of problems reduces the
time required for numerical calculations, which contributes
to immediate decision-making in real time whenmonitoring
atmospheric air pollution.

dx=0,00333
dx=0,0025

dx=0,01
dx=0,005
dx=0,002

0,012 0,014 0,016 0,018 0,020
dt

3×10(-12)

2,5×10(-12)

2×10(-12)

1,5×10(-12)

1×10(-12)

0,5×10(-12)

Figure 5: Relative errors of the numerical solution.
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Figure 7: An example dat-file containing the input and output data of the observational data assimilation algorithm.

Fields
Methods

Fields
Methods

Fields

Methods~dataassim ~MathematicaInterface

~DebugPrinter

DebugPrinter (+1 overloaded)
LablePrint
MathematicaArryPrint (+2 overloaded)
resetNPrints

ArrayPrintf (+5 overloaded)
ArrayPrintfNPrintsMathematicaInterface (+1 overloaded)

openFileList (+2 overloaded)
snd (+3 overloaded)
sndFile (+3 overloaded)
sndFileName (+7 overloaded)
sndName (+1 overloaded)

closeFileList

nPrints

continueFileListdataassim
dataassimilation
deletematrix (+1 overloaded)

makematrix (+1 overloaded)

multiply (+1 overloaded)
plus (+1 overloaded)

progonka (+1 overloaded)

saveData (+1 overloaded)
solveDirectProblem

right

printMatrix

makeVector
minus

formula
invert

coefficient

Figure 6: Class diagram of the concentration calculation module.
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4. Conclusions and Further Work

A data assimilation algorithm for monitoring the at-
mosphere of an industrial area was investigated. To study
the algorithm, the industrial district of Karaganda city
was selected as a research object. As a result of the re-
search, an algorithm was implemented that combines
two-layer discrete-analytical numerical schemes for
convection-diffusion equations and algorithms for se-
quential data assimilation in real time. A two-dimen-
sional version of a two-layer time-based numerical
scheme based on splitting was implemented. An addi-
tional module for data assimilation was developed in
order to expand the functions of the environmental
monitoring information system.

In future, we plan to adapt the model to the conditions of
Karaganda city, taking into account the terrain relief and
trends of seasonal changes.

Abbreviations

HM: Heavy metals
MPC: Maximum permissible concentration
ECMWF: European Center for Medium-Term Weather

Forecasts
RK: Republic of Kazakhstan
MAD: Mean absolute deviation
MSE: Mean square error
RMSE: Root mean square error
MAPE: Mean absolute percentage error.
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Figure 8: Algorithm testing model for an industrial area (a). +e solution of the data assimilation problem and the “real” state of the system
where t� 20 (b) and t� 40 (c).
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Data Availability

Data on atmospheric air pollution are taken from infor-
mation bulletins on the environmental situation of the
Republic of Kazakhstan, which are publicly available
(https://kazhydromet.kz/en/ecology/ezhemesyachnyy-
informacionnyy-byulleten-o-sostoyanii-okruzhayuschey-
sredy/2020).
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