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Data computation and storage are essential parts of developing big data applications. *e memristor device technology could
remove the speed and energy efficiency bottleneck in the existing data processing. *e present experimental work investigates the
decision support system in a new architecture, computation-in-memory (CIM) architecture, which can be utilized to store and
process big data in the same physical location at a faster rate. *e decision support system is used for data computation and
storage, with the aims of helping memory units read, write, and erase data and supporting their decisions under big data
communication ambiguities. Data communication is realized within the crossbar by the support of peripheral controller blocks.
*e feasibility of the CIM architecture, adaptive read, write, and erase methods, and memory accuracy were investigated. *e
integrated circuit emphasis (SPICE) simulation results show that the proposed CIM architecture has the potential of improving
the computing efficiency, energy consumption, and performance area by at least two orders of magnitude. CIM architecture may
be used to mitigate big data processing limits caused by the conventional computer architecture and complementary metal-oxide-
semiconductor (CMOS) transistor process technologies.

1. Introduction

Digital datasets have been rapidly growing in size and
complexity, ranging from economics and business activities
to public administration and from national security to many
scientific research areas. Big data applications require
computing resources and storage systems that can scale to
manage a massive amount of diverse data, and improve-
ments in the energy consumption and throughput of digital
processors are reaching a plateau as CMOS technology
approaches the end of process scaling. Memristor material, a
kind of nanoscale analog memory, due to its special features
including nonvolatility, nanoscale dimensions, and low
power consumption, could be the best choice today for
realizing signal processing at the mobile big data scale [1, 2].

*rough symmetry arguments, Chua postulated the
memristor to be the fourth fundamental circuit element in

1971 [3]. However, memristor is not a physical device, so it
did not receive public attention until 2008, when Williams
and his research group in the HP laboratory unveiled a two-
terminal TiO2 nanoscale device that exhibited memristive
hysteresis characteristics [4], thus generating a strong in-
terest in the memristor [5–7]. Williams and his coworkers
showed that memristors could realize nanoscale crossbar
memory and replace the existing computer memory systems
in the future while taking up a much smaller area [8].

*e concept of computation-centric architecture has
been attracting a lot of attention for more than 40 years. In
1969, logic-in-memory (LIM) was originally introduced as a
memory accelerator. In 1992, LIM concept reappeared and
was named computational RAM. In the late 1990s and early
2000s, processor-in-memory (PIM) was presented. In 2004,
memory-in-logic (MIL) was proposed, which provides
massive addressable memory on the processor for
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supercomputer systems [9]. However, most of previous
works just focus on either processor speed or memory speed,
and computing is currently still stuck with the vonNeumann
architecture, which exchanges data between the CPU and the
memory (cache) [10–12]. It is unavoidable to suffer from a
memory bottleneck and negative impacts on the perfor-
mance. *is paper attempts to obtain a CIM architecture
with fewer controllable wires and higher memory capacity as
compared to the existing crossbar array architecture. A
memory cell structure and an adaptive read method are also
introduced to restrain the sneak paths.

2. Proposed Methodology

2.1. Memristor-Based CIM Architecture. Figure 1 shows the
concept of memristor-based CIM. *e storage and com-
putation are integrated together in a dense nanowire
crossbar array, and memristor devices are injected at each
junction. Data communication is realized within the
crossbar by the support of peripheral controller blocks.

Figure 2(a) shows the realistic CIM architecture, which is
arranged in massive layers. From Figure 2(b), it can be
observed that each layer comprises several columns and
rows that are interconnected in a stair-step shape. When the
cell is set to state “off,” its conductance is low, encoding “0”;
when the cell is set to state “on,” its conductance is high,
encoding “1.” In order to write to and read from such an
array, some peripheral circuitries are configured. *e write/
read control circuitry is the system control center, which
generates corresponding signals to the multiplex voltage
converter according to the target cell location. *e system
can be reset by reset circuitry.

*e control wires follow time-division multiplexing for
signal transmission, i.e., the same wire sends the control
signal to a memory cell vertically at one moment and sends
the control signal to another memory cell horizontally at
another moment. By contrast, the existing memristor-based
memory array is usually fabricated in a high-density crossbar
architecture that has been described in the literature; it is
referred to as an independent crossbar array in this paper.
*e memristors are located at each junction of a vertical and
a horizontal nanowire, and each memristor can also be used
as a 1 bit memory cell. According to the number of control
wires (m for the vertical wire and n for the horizontal wire),
the memory array size ism× n, wherem is usually equal to n.

In order to elucidate the interactive array, we present a
smaller array example, in which the number of control wires
is 5, as shown in Figure 2(b). *ere are 10 memory cells in
the interactive array, and the cell at the junction of the ith
and the jth control wire is denoted by (i, j), i� 1, . . . , 4 and
j� 2, . . . , 5, respectively. Vk (k� 1, . . . , 5) refers to the
voltage potentials on these wires. *e voltage across the
memristor cell (i, j) is denoted by Vji, and Vji � Vj − Vi.

*e memory cell is fabricated using a series connection
of a threshold memristor and two diodes in parallel and
reverse to each other, as shown in the right upper side of
Figure 2(b). When Vji is positive, switch Sji is on. In the
opposite case, when Vji is negative, switch Sij is on. *e
diodes in the memory cell can shut off some reverse current

flowing through the undesired sneak paths. *e threshold
memristor has specific switch characteristics. By applying a
positive voltage equal to or higher than the positive
threshold value VOPEN, the memristor is set to state “on”; the
resistance of the memristor is denoted by RON. Similarly, by
applying a negative voltage equal to or lower than the
negative threshold value VCLOSE, the memristor is set to state
“off”; the resistance of the memristor is denoted by ROFF.

Assume that we want to write “1” in the memory cell (i, j)
in Figure 2(b). To this end, the voltage potentials on the
control wires can be set as follows.

Let

0.75V<VOPEN < 1.5V

−1.5V<VCLOSE < − 0.75V.
(1)

Let

Vk �

0 (k � j)

1.50V (k � i)

0.75V (k≠ i, j)

.

⎧⎪⎪⎨

⎪⎪⎩
(2)

With these settings for the small array example, we have
selected the target memory cell (1, 3). *e voltage across the
control wires can be deduced as follows:
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V. (3)

Only the state of memory cell (1, 3) can be set; the states
of the other cells are invariable. If we want to write “0” in the
memory cell (i, j), the sign of all the above wire voltage
potentials should be simply reversed.

2.2. Read, Write, and Erase Operations. *e memristance of
the memristor is related to the lowest possible resistance RON
and the highest possible resistance ROFF, as well as the
boundary state constant ω/D. As can be seen in Figure 3, for
simplicity, the memristor state can be defined as logic zero
when 0<ω/D< 0.5 and logic one when 0.5<ω/D< 1. *e
corresponding limit states are ω/D� 0 and ω/D� 1, re-
spectively. In reality, to account for possible noise injection,
the memristor state can be defined as logic zero when 0<ω/
D< 0.4 and logic one when 0.6<ω/D< 1. In other words, a
confusion region in between 0.4<ω/D< 0.6 should be
avoided for read and write. *e block diagram is shown in
Figure 4.

Figure 5(a) shows the read circuit, which produces
several signals to implement read operation. Two sample
signals, which control the conversion of current-to-voltage
samples on capacitors C1 and C2, are controlled by switches
S1 and S2. At the beginning of write, read, and erase op-
erations, switch S3 is asserted to balance the charge on both
capacitors. Once the signals are sampled, then the sense-
enable operation is performed by first asserting HS high and
later LS high; HS and LS are shown in Figure 5(b). *e
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voltage at point VX is purposefully measured to produce a
low output of low resistance and a high output of high
resistance.

*e write and erase operations are the extensions of a
single-cycle read operation. When the write operation is
performed, the exciting source will generate the write one
pulse or write zero pulse depending on the incoming data,
but the write operation is not as simple as the read operation.
*is section delves into write operations with respect to the
flow diagram in Figure 6.

To avoid the destructive signal issue in write operations,
we propose to improve the memristor-based memory cell

structure. *e proposed structure is in Figure 7. Both read
and write operations are implemented by such a structure,
and the R/W-enable switch acts as an operation choice. In
the write operation, R/W enable switches to the ground. In
the read operation, it switches to VX.

*e comparator has two thresholds VH1 and VH2. It
compares VX with the two thresholds. If VX >VH2, output
VO isVOHwhich represents logic 1. Similarly, VO is VOH too.
When the value of VX is between VH1 and VH2, the output
of the comparator is VOL which represents logic 0.

We apply an exciting source pulse on the memristor and
produce a voltage signalVX, which is further amplified into a
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Figure 1: *e concept of memristor-based CIM.
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Figure 2: (a) A 3-layer realistic stack architecture of CIM. (b) An example of a 4× 4 stair-step crossbar architecture.
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comparator. After the pulse stage, the sense stage detects the
memristor state by the output of the comparator. When the
initial boundary state constant is higher than 0.6, its initial
state is logic 0, and the initial output of the comparator is
VOL. *e positive pulse is applied on the memristor from t0,
and then the initial boundary state constant becomes higher,
responding to that the memristance of the memristor be-
comes smaller. *e comparator output VO jumps from VOL

to VOH at t1. Similarly, the positive pulse is applied on the
memristor from T0, and the comparator output VO jumps

from VOH to VOL at T1 when the initial boundary state
constant is lower than 0.4, whose initial state presents logic 0.

Figure 8 shows an example of the read scheme.When the
initial boundary state constant is higher than 0.6, the
comparator output VO jumps from VOL to VOH at t1. Once
the jump signal is sampled by the inverter, then a negative
pulse is performed on the memristor until t2, where the time
interval between t1 and t0 is equal to that between t2 and t1;
this stage is convert stage. Similarly, when the initial
boundary state constant is lower than 0.4, the comparator
output VO jumps from VOH to VOL at T1; once the jump
signal is sampled by the inverter, then a negative pulse is
performed on the memristor until T2, where the time in-
terval between T1 and T0 is equal to that between T2 and T1,
but there is some difference from the former state; when the
negative pulse is performed on the memristor, the com-
parator output jumps from VOL to VOH again. *e com-
parator jumps twice for an instant, and the worst case is that
the initial boundary state constant is 1, and then the
comparator output maintains the same without a jump step.

3. Experimental Results and Discussion

In order to validate the proposed stair-step array structure
performance and read method, we present our simulation
results in this section.We write to thememristors that can be
switched to an “ON” or “OFF” state and read the states by
measuring the current from memristors. *e simulation is
based on a SPICE model built upon TiO2 memristive
switching made in the HP laboratory. *e simulation pa-
rameters are set as follows: VCLOSE �1.0V, VOPEN � −1.0V,
ROFF � 2.5×106Ω, and RON � 2.5×102Ω. *e simulation
approach consists of considering different memory condi-
tions on an m+ n� 8 array. *e memristor of interest is
situated in the center of the array.

As mentioned before, the write and erase operations are
the extensions of a single-cycle read operation. *e signals
VH1 and VH2 presented in Figure 5 are appropriately
renamed as VRH and VRL, which helps facilitate the un-
derstanding of simulation results. *e renamed logic signals
denote the memristor of interest in high resistance state and
low resistance state. Figure 9(a) shows the number of cycles
required for a write operation, while Figure 9(b) shows the
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number of cycles required for an erase operation. Each read
operation provides the memristor state feedback, and the
memristor only changes from high resistance to low resis-
tance when the memristor is written to its lowest level. *e
simulation results imply that, during memory operation, the
number of read operations necessary for a write after an
erase may be different. And this adaptive method will
prevent any overerasing and overwriting.

Along with the read, write, and erase operations, we are
also interested in the memory capacity of arrays with the
same number of nanowires. Assume that both the inde-
pendent crossbar array and the interactive crossbar array
possess the same number of control wires; this means that
the number of control wires of the latter one ism+ n, and the
number of memory cells can be calculated as

1 + 2 + · · · +(m + n − 1) �
1
2

(m + n)(m + n − 1)

� m × n +
1
2

m
2

+ n
2

− m − n􏼐 􏼑.

(4)

If and only if m� 1, n� 1, and the number of memory
cells is the same, then the latter one has more memory cells.
*e detailed comparisons between the independent crossbar
array and the interactive crossbar array are given in Table 1.

*e memory capacity (i.e., array size) of the interactive
array can be compared to that of an independent array for
the case where the control wire numbers are the same, as
shown in Figure 10. It is obvious that the interactive crossbar
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array has a higher memory capacity, and the larger the array
size, the higher the memory capacity.

Another concern besides the memory operation is the
read operation error rate. From Figure 11, it can be observed

that the sample memory cells form a 3× 3 independent
crossbar array (9 memory cells) and an interactive crossbar
(15 memory cells), respectively. Both arrays are fabricated by
6 control wires and the same memory cell structure. *e

Table 1: Comparison between the two crossbar arrays.

Items Independent Interactive
Array size m� n� 4 m+ n� 8
Cell number 16 28
Array size m� n� 8 m+ n� 16
Cell number 64 120
Array size m� n� 16 m+ n� 32
Cell number 256 496
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memory cells in the former array are denoted as (m, n),
wherem and n are the number of control lines, andm� 1, 2,
3 and n� 1, 2, 3, respectively. *e memory cells in the latter
array are denoted as (i, j); we write to and read from each
sample memory cell 105 times and count the read operation
error rate. *e simulation results show that the interactive
crossbar array has a higher accuracy in the read operation
than the independent crossbar array. *is may be attributed
to the fact that the interactive crossbar array has fewer
current paths and, as a result, less sneak paths.

*e diode in memory cells is another factor that may
contribute to the restraining of sneak paths. In Figure 12, the
sample memory cells are from two interactive crossbar
arrays: one array with memory cells that are fabricated only
by a memristor (without a diode) and another array with
memory cells that are described in Section 2 (with a diode).
*e results show that the memory cell structure proposed in
this paper is an effective solution to the sneak path problem.

4. Conclusions

*is paper presented an experimental study on the CIM
architecture, which can be utilized to store and process big
data in the same physical location. *e feasibility of the CIM
architecture and adaptive read, write, and erase operation
methods were investigated.*e following conclusions can be
drawn from this study.

*e showcased CIM architecture is more effective in
memory capacity than the independent crossbar array. On
the one hand, the interactive crossbar CIM architecture has a
higher memory capacity, and the larger the array size, the
higher the memory capacity. On the other hand, CIM ar-
chitecture prevents overerasing and overwriting and has
fewer sneak paths. *e method of achieving the memory
operation relates adaptively to each memristor cell thereby
allowing for the increased yield when it comes to using
devices that differ from high to low (or low to high) re-
sistance states. *e CIM architecture also exhibits higher
operation accuracy and lower energy consumption, which is
the crux of mobile data processing. *e CIM architecture

emphasizes the importance of storing multibit data. *is
may indeed enable and prepare to process massive data in
the big data era.
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