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To improve the accuracy of ship track prediction, the improved Grey Wolf Optimizer (GWO) and Support Vector Regression
(SVR) models are incorporated for ship track prediction. *e hunting strategy of dimensional learning was used to optimize the
move search process of GWO and balance exploration and exploitation while maintaining population diversity. Selection and
updating procedures keep GWO from being stuck in locally optimal solutions. *e optimal parameters obtained by modified
GWO were substituted into the SVR model to predict ship trajectory. Dimension Learning Grey Wolf Optimizer and Support
Vector Regression (DLGWO-SVR), Grey Wolf Optimized Support Vector Regression (GWO-SVR), and Differential Evolution
Grey Wolf Optimized Support Vector Regression (DEGWO-SVR) model trajectory prediction simulations were carried out. A
comparison of the results shows that the trajectory prediction model based on DLGWO-SVR has higher prediction accuracy and
meets the requirements of ship track prediction.*e results of ship track prediction can not only improve the efficiency of marine
traffic management but also prevent the occurrence of traffic accidents and maintain marine safety.

1. Introduction

To introduce unmanned vessels into commercial shipping
lanes, an effective collision avoidance systemmust be built to
ensure the level of safety required for unmanned vessel
autonomy. Ship track prediction is the prediction of a ship’s
future navigation state based on the target ship’s history and
current trajectory.*e results of ship track prediction can be
used to evaluate collision risk, promote active collision
avoidance, serve as a reference for ship collision avoidance
decisions, and enhance the ability of situational awareness at
sea.

Ship track prediction methods can be classified into
three categories: Prediction methods based on a statistical
model, probability graph model, and machine learning
model. *e prediction methods based on the statistical
model include Gaussian regression [1], Kalman filter [2]
and Bayesian network [3], etc., whose characteristics are
as follows: In the modeling, the influence of wind, current,
and other environments on the ship movement generally
need to be considered. *e establishment of the ship
kinematics equation will increase the complexity of the

model. As the experiment goes on, the error increases. *e
prediction methods based on the probability graph model
include the Markov model [4] and grey model [5]. *eir
characteristics are as follows: It combines probability
theory and graph theory, abstruse knowledge in different
fields into probability model, and reduces problems in
application to the calculation of probability distribution
of probability model variables. Under the condition of a
large amount of data, the grey model has low performance
and long-running time, but the improved prediction effect
is better than that of the least square method. *is method
improves the prediction accuracy to some extent, but it is
still not ideal. Prediction methods based on the machine
learning model include recurrent neural network [6],
backpropagation neural network [7], long and short time
memory network [8], and Support Vector Regression
(SVR) [9]. With the following characteristics: As data
amount increases, gradient explosion or gradient disap-
pearance may occur, and the convergence rate is slow,
which leads to the decrease of prediction accuracy and the
low efficiency of sample training. SVR needs to choose
parameters independently, which is subjective, and the
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prediction time is short, but the prediction accuracy needs
to be further improved.

With the rise and widespread application of intelligent
optimization algorithms, an increasing number of re-
searchers have introduced optimization algorithms into
prediction tasks, such as Particle SwarmOptimization (PSO)
[10], Differential Evolution (DE) [11], Artificial Bee Colony
(ABC) [12], Gravitational Search Algorithm (GSA) [13],
Genetic Algorithm (GA) [14], and Ant Colony Optimization
(ACO) [15], and other algorithms are also proposed for
combinatorial optimization. *ese algorithms can explore
the search space continually and find the best or relatively
close answer in a reasonable time.

Compared to algorithms such as PSO, GSA, DE, ABC,
ACO, and the GWOmethod produces superior outcomes in
unknown space. *ere are several characteristics. First, the
GWO algorithm showed superior exploitation. Second, the
exploration ability of GWOwas confirmed.*ird, the GWO
showed high local optima avoidance to some extent. Finally,
the convergence analysis of GWO confirmed the conver-
gence of this algorithm [16]. GWO requires fewer control
parameters and is easy to implement. It has been used in
many disciplines to address various optimization issues,
such as parameter estimation [17], economic scheduling
[18], pattern recognition [19], feature selection [20], and
wind speed prediction [21].

In terms of prediction, GWO has not been found to be
used in the research of ship track prediction. *e GWO
search procedure is carried out by α wolf, β wolf, and δ wolf
in each iteration, ensuring that the algorithm is convergent.
At the same time, it has several limitations, such as lack of
population variety, a disparity between exploration and
exploitation, local optimization, and premature
convergence.

To balance the exploration and exploitation of GWO,
Malik et al. [22] proposed Weighted Distance Grey Wolf
Optimizer (WDGWO) to calculate the weighted average of
the optimal solution. Long et al. [23] proposed Random
Opposition-Based Learning Grey Wolf Optimizer (ROL-
GWO) by modifying parameter C, which increased the
searching ability of the algorithm. N. Singh and S. B. Singh
[24] proposed an improved Grey Wolf Optimization algo-
rithm to solve the economic dynamical load scheduling
problem, which can both increase the global search and local
search simultaneously.*is step can coordinate the behavior
of grey wolves, global and local random search, and op-
position learning. Jayabarathi et al. [18] solved the economic
scheduling problem by incorporating HGWO into GWO via
variation and crossover operations. It performs well in
solving the constrained nonkernel solution problem, al-
though it does not achieve the proper balance of global
search and local search. Gaidhane and Nigam [25] proposed
GWO-ABC, a hybrid that combines the benefits of GWO
and ABC. GWO adopted the information-sharing strategy
of ABC to improve the global search capability while
retaining the original hunting strategy of grey wolves for
local search. Saxena et al. [26] proposed Equipped GreyWolf
Optimizer (E-GWO), which used sinusoidal function
bridging, tournament selection, crossover, and mutation

operations in the position update stage. *e sinusoidal
bridging mechanism and evolutionary operation assist the
grey wolf in achieving greater accuracy and avoiding the
local optimal solution. It shows good searchability in local
scenes, but the lack of local search effect remains the main
issue in crossover operations with a single peak problem and
unbalanced search.

Many scholars enhanced GWO by modifying the GWO
mechanism to avoid it falling into local optimality. Mittal
et al. [27] developed Modified GWO (MGWO), which is
based on a nonlinear control parameter approach and fo-
cuses on the right balance of global and local search, and this
method may avoid the difficulties of the local optimal so-
lution and premature convergence. Long et al. [28] proposed
Exploration Enhanced GWO (EEGWO) to guide the search
of new candidates by applying random individuals in the
population for a location update. Nonlinear control pa-
rameters were employed to grow linearly during the itera-
tion phase to balance the global and local searches of GWO.
However, the primary issues remain falling into a local
optimum and early convergence. Nasrabadi et al. [29] im-
proved GWO by combining oppositional learning and
parallelization to improve the convergence speed and the
accuracy of the final result. However, in some cases, the
convergence performance of the algorithm was not good.
N. Singh and S. B. Singh [24] proposed Hybrid GWOSCA
(HGWOSCA) to update the position of α in GWO by using
the position update equation of the Sine Cosine Algorithm
(SCA), which improved the global convergence and
searchability of GWO when dealing with single-mode
problems. But its global searching ability in multimode
function is limited, and the combinatorial function balance
problem persists. Alomoush et al. [30] proposed Harmony
Search with Grey Wolf Optimizer (GWO-HS) Algorithm to
solve global optimization problems by using opposing
learning strategies. Meng et al. [31] proposed a hybrid
Crisscross Search-Based Grey Wolf Optimizer (CS-GWO)
algorithm, which used two crossover operators to improve
the global search ability of α, β and δ wolves while main-
taining the population diversity, but the algorithm con-
vergence occurred too soon.

To solve the problem of poor population diversity and
slow convergence rate of GWO, a hybrid Grey Wolf Op-
timizer based on Elite Opposition (EOGWO) was proposed
by introducing the elite opposition-based learning strategy
and simplex method into GWO [32]. Inspired by the hi-
erarchical social pyramid of the GWO, Rodrguez et al. [33]
proposed to introduce hierarchical operators into GWO to
simulate the search process and gives five variations. *e
cellular automata (CA) concept is embedded into the GWO.
A Cellular GreyWolf Optimizer (CGWO) with a topological
structure is proposed [34]. CGWO with a topological
structure can also help to improve the diversity of the
population. To solve the hybrid flow shop scheduling
problem considering noise pollution, Lu et al. [35] proposed
a Multiobjective Cellular Grey Wolf Optimizer
(MOCGWO) algorithm, which integrates the merits of
cellular automata for diversification and variable neigh-
borhood search for intensification.
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However, GWO is easy to fall into the local optimal
solution, and the balance exploration and exploitation re-
mains to be solved. Meanwhile, the selection parameters of
the SVR model are subjective.

Alaa and Abdel [36] explore the advantages of the GWO
algorithm in estimating the software reliability growth
model’s parameters with the objective of minimizing the
difference between the estimated and the actual number of
failures of the software system. Almazini and Mahamud [37]
proposed an enhanced binary grey wolf optimization
(EBGWO) algorithm for feature selection in anomaly de-
tection by controlling the balancing parameter. *is method
focused on obtaining a value for a parameter that controlled
the trade-off between exploration and exploitation.

Using the GWO, which was inspired by the previous
research, the problem of SVR parameter selection can be
solved. Improving the accuracy of ship track prediction for
real-time data training and modeling is critical for better
collision avoidance guidance at sea. A vessel trajectory
prediction model based on Grey Wolf Optimized Support
Vector Regression (GWO-SVR), which fully utilizes SVR’s
advantage of maintaining higher precision in the case of
nonlinearity and small samples. However, the model has
certain setbacks. *e GWO model suffers from the lack of
population diversity, the imbalance between exploitation
and exploration, and premature convergence. *us, if the
previously trained model is still used, the accuracy of pre-
diction decreases.

*e main purpose of this study is to overcome the above
deficiency of GWO and improve the effect of ship track
prediction.*eDimensional LearningHunting (DLH) strategy
was used to improve the search performance of GWO and
track the prediction accuracy of DLGWO-SVR. *e DLH
search approach is based on individual wolf hunting behavior
in nature, and it expands the global search domain by using
multineighbors learning. *e DLGWO then uses both can-
didate wolves created by the DLH andGWO search algorithms
to move the wolf Xi from its current location to a better one in
each iteration. In addition, the DLGWO employs a separate
selecting and updating process in each iteration to determine
the winner candidate wolf and update the current position for
the following iteration. *e main work of this paper is as
follows:

(1) Analyze the GWO and SVR models, apply the im-
proved GWO in the training process of the SVR
model, and establish the model of ship trajectory
prediction.

(2) *e hunting search strategy based on dimensional
learning is used to improve the search effect of grey
wolves. In each iteration, candidate wolves are
generated by the search strategy of DLH and GWO.

(3) Select and update operations are used in each iter-
ation to select the winning candidate wolf to update
the position of the grey wolf in the next iteration.

(4) *e prediction experiment was carried out with AIS
data, and the experimental results of GWO-SVR,
Differential Evolution GreyWolf Optimized Support

Vector Regression (DEGWO-SVR), and DLGWO-
SVR models were compared and analyzed.

*e remainder of this paper can be divided into the
following four parts. Section 2 mainly proposes the SVR and
GWO related principles. *e vessel track prediction based
on DLGWO-SVR is then presented in Section 3. Extensive
experiments are carried out in Section 4. We end this work
by summing up the main contributions in Section 5.

2. The Related Principles

2.1. Principle of SVR. SVR nonlinear mapping of the original
data to high-dimensional feature space for linear regression.

Figure 1 shows the structure of the SVR model in the
data regression. K(xi, yi) represents the kernel function.

In the SVR model, given the data set (xi, yi) 
N

i�1 ∈ R,
where xi is the input vector of the SVR model and yi is the
true output value. N is the total number of data points used.
*e output of the SVR model is as follows:

y � f(x) � 
N

i�1
wiϕi(x) + b � w

Tφ(x) + b. (1)

w � [w1w2, . . . , wN]T, φ � [ϕ1ϕ2, . . . , ϕN]T, the func-
tion ϕi(x) is called the feature. *e parameters ω and b are
the weight and deviation of the support vector machine,
respectively. In the feature space, the input vector x is
mapped to the high-dimensional kernel-induced feature
space vector φ(x), and the nonlinear regression is trans-
formed into linear regression. *ese parameters are calcu-
lated by minimizing the regular risk function:

R(w) �
1
2
w

T
w + λ

N

i�1
yi − f(x)


ε, (2)

yi − f(x)


ε �
0, if yi − f(x)


< ε,

yi − f(x)


 − ε, otherwise.
 (3)

In equation (2), R(ω) is a regular weight vector repre-
senting the complexity of the SVR model. Equation (3)
represents the estimated vector. Parameter λ and ε is a user-
defined parameter, |yi − f(x)|ε is ε intensive loss function. If
the predicted value of f(x) is within the error range ε, the
loss is equal to 0. For other predicted points outside the
range of the error ε, the loss is equal to the dimension of the
difference between the predicted value and the error ε.

*e regular parameter λ ensures that a good SVR model
is generated. Increasing regularization parameters can pe-
nalize larger estimation errors. *e estimation error can also
be reduced by increasing the weight vector norm of the first
expression in equation (2). However, an increase in the
weight vector norm does not guarantee the generation of the
SVR model.

In classical SVR, the appropriate value of the insensitive
parameter ε is difficult to determine in advance. *e regular
risk function of the minimization equation (2) is equivalent
to the minimization constrained risk function:
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R w, ξ, ξ∗(  �
1
2
w

T
w + λ

N

i�1
ξi + ξ∗i( . (4)

Constraints are as follows:

yi − w
Tφ(x) − b≤ ε + ξi,

w
Tφ(x) + b − yi≤ ε + ξ∗i , i � 1, 2, . . . , N,

ξi, ξ
∗
i ≥ 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(5)

Parameter ξ � [ξ1ξ2, . . . , ξN]T and ξ∗ � [ξ∗1 ξ
∗
2 ξ
∗
N]T are

the relaxation variable. It represents the maximum and
minimum limits on the output of the SVR model, both of
which are positive.

*e constrained optimization problem of equation (4)
can be solved by applying Lagrange multipliers to equations
(4) and (5) using standard quadratic programming. *e
regression function of equation (1) is derived as follows:

y � f(x) � 
N

i�1
ai − ai ∗( φT

xi( φ(x)

� 
N

i�1
βiK x, xi(  + b.

(6)

Under the Karush-Kuhn-Tucker complementary con-
dition, the parameters w and b are calculated. Parameter K

is the kernel function, which is expressed as follows:

K x, xi(  � φT
xi( φ(x). (7)

*e Lagrange multiplier ai and ai ∗ are used to express
the coefficient βi. In this study, the SVR model uses the
following radial basis kernel functions:

K x, xi(  � exp −
x − xi( 

T
x − xi( 

2δ2
 . (8)

A solution is obtained in equation (6) where the coef-
ficient βi is nonzero only for a subset of the training data.

2.2. Principle of GWO. *e grey wolf was inspired by social
hierarchy and hunting behavior. Initialize α, β and δ wolves

as the optimal solution, and guide the rest of ωwolves to find
the optimal solution. Starting from randomly generating the
initial wolves in the search space, the fitting function esti-
mated the position of the wolves and repeated the hunting
process of the grey wolves until the predefined number of
iterations so as to determine the optimal hunting position,
namely the position of α wolves.

*ere are three main stages in the hunting process:
encircling, hunting, and attacking prey.

2.2.1. Encircling Prey. Grey wolves encircle prey during the
hunt. Encircling prey is modeled as follows:

D � C · Xp(t) − X(t),

X(t + 1) � Xp(t) − A · D,

A � 2a · r1 − a,

C � 2 · r2,

(9)

where t indicates the current iteration, Xp is the prey po-
sition, and X is the position vector of a grey wolf. A and C

represent coefficient vectors. r1, r2 ∈ [0, 1].a decreases
linearly from 2 to 0.

2.2.2. Hunting. *e hunting behavior of grey wolves was
modeled on the assumption that α, β and δ wolves knew the
location of prey. *e following formulas are proposed in this
view:

Dα � C1 · Xα − X,

Dβ � C2 · Xβ − X,

Dδ � C3 · Xδ − X,

X1 � Xα − A1 · Dα,

X2 � Xβ − A2 · Dβ,

X3 � Xδ − A3 · Dδ,

X(t + 1) �
X1 + X2 + X3

3
,

(10)

where Xα, Xβ, Xδ represent the positions of α, β and δ wolves
in the t iteration, respectively. X1, X2 andX3 represent the
positions of α, β and δ wolves in the t + 1 iteration,
respectively.

2.2.3. Attacking Prey. *e prey ceases to move and the hunt
ends. *e wolves began to attack their prey. *e next po-
sition of a search agent can be in any position between its
current position and the position of the prey. *is process is
carried out by linear reduction of the iterative curve of local
and global search.

Each iteration a updates within the range of [2, 0], half of
which is used for global search to achieve a smooth tran-
sition effect. *e rest is used as a local search, updating the

b

yiˆ

K (xi ,x1)

x1 x2 xm

w2 w3 wN

......

......

K (xi ,x2) K (xi ,x3) K (xi ,xm)

w1

Figure 1: Structure of the support vector regression (SVR) model.
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location of the optimal solution to the location of the prey
and the current location of the wolf.

3. The Proposed DLGWO-SVR

3.1. DLGWO Model. In GWO, α, β, δ andω wolves move
toward the search region for the global optimal solution.
*is behavior could result in a locally optimal solution.
Furthermore, the decrease of population diversity makes it
easy for grey wolves to fall into local optimum. To address
this issue, grey wolf employs dimension learning hunting
search strategy to determine candidates and then improves
grey wolf algorithm through selection, update, and other
operations [38].

Improvements are made in the steps of initialization,
movement, and selection and update.

3.1.1. Initialization. In the search space composed of
[lj , uj], N wolves are randomly distributed.

Xij � lj + randj[0, 1] × uj − lj , i ∈ [1, N], j ∈ [1, D].

(11)

*e position of the i th Wolf in the t-th iteration is
expressed as Xi(t) � xi1, xi2, . . . , xi D . In this case, D

represents the dimension of the problem, and the entire
population of grey wolves will be stored in a matrix with N

rows and D columns. *e fitting value of Xi(t) is calculated
by the fitting function f(Xi(t)).

3.1.2. Movement. Individual hunting of wolves is considered
that is learned by its neighbors, the grey wolf in the

neighborhood teaches its neighbor to become another
candidate for the new position of Xi(t). *e position of
Xα, Xβ andXδ determines the position of prey. *e first
candidate set for the new position of the grey wolf Xi(t) is
called Xi − GWO(t + 1), and this value is calculated by the
traditional GWO search strategy.

Each dimension of the new position of the grey wolf
Xi(t) is calculated by learning its neighbors and then using
equation (14). Another candidate set for the new position of
grey wolf Xi(t) forms a DLH search strategy, called Xi −

DLH(t + 1), Ri(t) is solved by calculating the Euclidian
distance between the current position Xi(t) and the can-
didate position Xi − GWO(t + 1).

Ri(t) � Xi(t) − Xi−GWO(t + 1)
����

����, (12)

Ni(t) � Xj(t) | Di Xi(t), Xj(t) ≤Ri(t), Xj(t) ∈ Pop .

(13)

*rough equation (13), considering Ri, Di is the Eu-
clidian distance between Xi(t) and Xj(t), the neighbors of
Xi(t) are denoted as Ni(t). *e neighbors of Xi(t) are
constructed, and the neighbor Xn,d(t) of the D dimension is
randomly selected from Ni(t), and the wolf Xr,d(t) is
randomly selected from the population. Multineighbor
learning is performed through equation (14).

3.1.3. Selection and Update. By comparing the fitting values
of Xi − GWO(t + 1) and Xi − DLH(t + 1), the optimal so-
lution is selected.

Xi−DLH,d(t + 1) � Xi,d(t) + rand × Xn,d(t) − Xr,d(t) , (14)

Xi(t + 1) �
Xi − GWO(t + 1), if f Xi − GWO( <f Xi − DLH( ,

Xi − DLH(t + 1), otherwise.
 (15)

Finally, after all the individuals have completed this step,
the iteration counter is incremented by 1, and the next it-
eration is searched until the predefined number of iterations
is reached.

3.2. DLGWO-SVR Model. *e improved GWO is used to
establish the ship trajectory prediction model based on
DLGWO-SVR. Figure 2 shows the flow chart of the
DLGWO-SVR prediction model. *e detailed experimental
steps of DLGWO-SVR are as follows:

Step 1: Initialize the position of N wolves and the
relevant parameters of the grey wolf model.
Step 2: Calculate the positions of α, β and δ wolves,
input the SVR model for training, and calculate the
optimal solution.

Step 3: Update the position of the grey wolf according
to the optimal solution.
Step 4: Calculate the distances of α, β and δ wolves to
prey, and the positions of α, β and δ wolves, respec-
tively, and calculate the first candidate set
Xi − GWO(t + 1) for the new position of Xi(t).
Step 5: Calculate the Euclidian distance between the
candidate position Xi − GWO(t + 1) and the current
position Xi(t), denote as radius Ri(t).
Step 6: Build the neighborhood Ni(t) of Xi(t), and
calculate another candidate set Xi−DLH,d(t + 1) by using
the random neighbors of the d dimension.
Step 7: Select and update operations. By comparing the
function values of the candidate set, the position of the
next iteration of the grey wolf is determined from
(Xi − GWO(t + 1), Xi − DLH(t + 1)).
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Step 8: Repeat Steps 2–7 until the preset number of
iterations is reached. *e experiment is terminated and
the predicted results are returned.

4. Results and Discussion

4.1. Datasets. *e experiment was modeled and simulated
with the help of MATLAB toolbox libsvm-3.24. In this
experiment, the AIS data used for prediction are from
September to October 2018 of Gulei Port in Zhangzhou,
Fujian. *e raw data should remove the wrong in the
pretreatment and then carry out prediction and verification
experiments. *ere are three types of errors in AIS data.

(1) *e MMSI code of the ship is not 9 digits, or it is an
unreasonable record.

(2) *e longitude and latitude of the ship are beyond the
reasonable range. For example, the longitude is
greater than 180°, the latitude is greater than 90°, or
the value of the longitude and latitude is negative.

(3) *e ship’s speed and course are beyond the rea-
sonable range, such as the course is greater than 360
or the speed is less than 0.

Table 1 randomly lists part of the AIS data of September
2018. *ese data are sample data after preprocessing.

4.2. Predicted Results

4.2.1. Prediction Results for Different MMSI Ships. Input
different sample data to the prediction model for the ex-
periment. *e predicted experimental results are shown
below.

Figure 3 shows the prediction result of MMSI 259681317.
Figure 4 shows the prediction result of MMSI 412444715.

Figure 5 shows the prediction result ofMMSI 412358490.
Figure 6 shows the prediction result ofMMSI 412445837.
Figure 7 shows the prediction result of MMSI

600003568.
As can be seen from the above figures, the predicted

trajectory is basically coincident with the original trajectory,
or is parallel to the original trajectory with a very small
distance difference near the original trajectory. However, the
small distance difference will not affect the actual operation
of the staff but is helpful to judge the traffic situation and
greatly avoid the occurrence of maritime traffic accidents.
*erefore, the above figures show that the new model can
accurately predict the ship’s trajectory.

4.2.2. Prediction Errors for Different MMSI Ships. To further
verify the prediction accuracy of the proposed model, the
following is a comparison of the six experimental error
curves for trajectory prediction. In the following figure, the
num represents the number of track points, and the vertical
axis represents the value of the prediction error.

Figure 8 shows the prediction error of MMSI 259681317.
Figure 9 shows the prediction error of MMSI 412444715.
Figure 10 shows the prediction error of MMSI

412358490.
Figure 11 shows the prediction error of MMSI

412445837.
Figure 12 shows the prediction error of MMSI

600003568.
As can be seen from Figures 8–12, the prediction error

basically fluctuates around the value of 0. Unlike the others, the
error curves in Figure 10 aremostly below 0 and remainwithin
0.01°. However, they all meet the needs of the nautical practice.

4.3.Model Evaluation. *e prediction model is evaluated by
means of mean square error, mean absolute error, and mean
absolute percentage error. Assume that the true value
y � y1, y2, . . . , yn , y′ � y1′, y2′, . . . , yn

′ , then the evalua-
tion index is expressed as follows:

EMAE �
1
n



n

i�1
yi − yi
′


,

EMSE �
1
n



n

i�1
yi − yi
′( 
2
,

EMAPE �
1
n



n

i�1

yi − yi
′( 

yi




.

(16)

*e EMAE, EMSE, and EMAPE of six trajectories are
recorded in Table 2.*e prediction error of each trajectory is
very small, and the prediction accuracy of the model pro-
posed in this paper can meet the requirements of ship track
prediction.

4.4. Error Comparison before and after Model Improvement.
To further verify the prediction accuracy of the proposed
model, the prediction errors of DLGWO-SVR and GWO-

Start

Iter≤Maxiter

i≤N

Yes

Train the SVR model

Train the SVR model

Calculate the optimal
solution

Updated location of α,β,
and δ wolves

Calculate the candidate
position Xi-DLH

Calculate the candidate
position Xi-GWO

Input sample data for
prediction

Return the predicted results

End

No Yes

Initialize grey wolf
position and the optimal

solution

Update the grey wolf
position

Figure 2: Flowchart of the model of DLGWO-SVR.
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Table 1: Sample data structure.

MMSI Longitude (°) Latitude (°) Course (°) Speed (kn) Timestamp (s)
259681317 117.59288 23.687758 293.7 6.8 1535837149
412444715 117.676115 23.611697 305.3 9 1536839207
412358490 117.401963 23.9903 55.9 8.1 1536724254
412445837 117.57915 23.72888 183.4 7.5 1536604590
600003568 117.49264 23.58772 132.1 5.5 1535731218
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Figure 3: Prediction result of MMSI 259681317.
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Figure 4: Prediction result of MMSI 412444715.
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Figure 5: Prediction result of MMSI 412358490.
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SVR models were compared. In the following figure, num
represents the number of track points, and the vertical axis
represents the value of the prediction error.

Figure 13 shows the model error comparison of MMSI
259681317.

Figure 14 shows the model error comparison of MMSI
412444715.

Figure 15 shows the model error comparison of MMSI
412358490.

Figure 16 shows the model error comparison of MMSI
412445837.

Figure 17 shows the model error comparison of MMSI
600003568.

Figures 13–17 show that the overall prediction error of
DLGWO-SVR is smaller than that of GWO-SVR, and the
prediction error of DLGWO-SVR fluctuates less. On the

whole, the performance of the proposed method is better
than that of GWO-SVR.

4.5. Error Comparison between the DLGWO-SVR and Other
Models. To further verify the prediction accuracy of the
proposed model, it was compared with DEGWO-SVR and
GWO-SVR model. As the initial population of GWO is
randomly generated, the grey wolf individuals lack diversity
in the search space and are prone to fall into the local
optimum. DE algorithm maintains population diversity
through mutation and selection operations to improve the
performance of GWO in local and global search. Figure 18
shows that the prediction error of the proposed prediction
model and DEGWO-SVR model. Table 3 shows the mean
square error, mean absolute error, and mean absolute
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Figure 6: Prediction result of MMSI 600003568.

117.52

117.51

117.50

117.49

117.48

117.47

Lo
ng

itu
de

 (°
)

Latitude (°)

117.46

117.45
23.54 23.56 23.6023.58 23.62 23.64 23.66

original value
predicted value

Figure 7: Prediction result of MMSI 600003568.
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percentage error of the three models. It can be roughly seen
that the prediction errors of the DEGWO-SVR model and
DLGWO-SVR model are less than GWO-SVR.

Since the proposedmodel randomly distributesNwolves
in the search space during initialization to maintain pop-
ulation diversity and its neighbor learning mechanism
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Figure 8: *e prediction error of MMSI 259681317.

0.006

0.008

0.004

0.002

0.000

-0.002

Er
ro

r (
°)

num (°)

-0.004
0 10 3020 40 50
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Figure 10: *e prediction error of MMSI 412358490.
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Figure 11: *e prediction error of MMSI 412445837.
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Figure 12: *e prediction error of MMSI 600003568.

Table 2: Evaluation table of DLGWO-SVR prediction error.

MMSI EMAE(°) EMSE(°) EMAPE(°)

259681317 0.001865 0.0000054 0.0000788
412444715 0.005695 0.0002206 0.0002403
412358490 0.006816 0.0000558 0.0000608
412445837 0.001811 0.0000048 0.0000765
600003568 0.001390 0.00000437 0.0000589
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Figure 13: *e model error comparison of MMSI 259681317.
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Figure 15: *e model error comparison of MMSI 412358490.
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performs better than DE in balancing global and local
search, the proposed model performs better than DE and has
higher prediction accuracy. As a result, the suggested model
in this work meets the prediction requirements and in-
creases the accuracy of the GWO-SVR model greatly.

5. Conclusions

In this paper, we use a DLH strategy to improve GWO for
ship track prediction experiments. *e improved optimi-
zation model can well balance the exploration and

exploitation capabilities of GWO while maintaining the
diversity of the population to avoid GWO falling into the
local optimal solution, thus improving the accuracy of
trajectory prediction.

By conducting prediction experiments on ship trajectories
with different MMSI and different lengths, it is not difficult to
see that the prediction accuracy of the DLGWO-SVR model
meets the requirements of marine ship trajectories prediction
and improves the prediction accuracy of ship trajectories.
Compared with other methods, DLGWO-SVR can maintain
high prediction accuracy in small sample data.
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Figure 17: *e model error comparison of MMSI 600003568.
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Figure 18: Comparison of the prediction errors obtained using the three models.

Table 3: Prediction errors of the three models.

Model EMAE(°) EMSE(°) EMAPE(°)

GWO-SVR 0.013199 0.0001983384 0.000112287
DEGWO-SVR 0.0051 0.000069317 0.00021666
DLGWO-SVR 0.0063532 0.00005012 0.00005405
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Future research can be combined with the information
of surrounding ships and geographical environment to
predict the sailing state of ships, and more state infor-
mation of ships can also be considered for ship track
prediction. Furthermore, it is necessary to make a real-
time prediction of the trajectory of the target ship sailing
in the ocean.

In addition, there are many optimization algorithms not
mentioned in this paper, such as Monarch Butterfly Opti-
mization (MBO), earthworm optimization algorithm, Ele-
phant Herding Optimization (EHO), moth search
algorithm, slime mould algorithm, and Harris Hawks Op-
timization (HHO). *ese optimization algorithms are very
effective when dealing with certain problems. MBO and
HHO can be used in combination with other machine
learning algorithms to deal with issues such as numerical
optimization and feature selection. For example, the but-
terfly optimization algorithm can be combined with ACO
and ABC algorithm. EW algorithm can be combined with a
GA, PSO, and DE algorithm to deal with specific problems.
EHO and SVM sets are better than GA and grid search in
classification accuracy. *e hybrid optimization algorithm
shows better convergence and higher accuracy and lowers
computational complexity when solving some suitable
problems.
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