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Modulation recognition of communication signals plays an important role in both civil and military uses. Neural network-based
modulation recognition methods can extract high-level abstract features which can be adopted for classification of modulation
types. Compared with traditional recognition methods based on manually defined features, they have the advantage of higher
recognition rate. However, in actual modulation recognition scenarios, due to inaccurate estimation of receiving parameters and
other reasons, the input signal samples for modulation recognition may have large phase, frequency offsets, and time scale
changes. Existing deep learning-based modulation recognition methods have not considered the influences brought by the above
issues, thus resulting in a decreased recognition rate. A modulation recognition method based on the spatial transformation
network is proposed in this paper. In the proposed network, some prior models for synchronization in communication are
introduced, and the priori models are realized through the spatial transformation subnetwork, so as to reduce the influence of
phase, frequency offsets, and time scale differences. Experiments on simulated datasets prove that compared with the traditional
CNN, ResNet, and the CLDNN, the recognition rate of the proposed method has increased by 8.0%, 5.8%, and 4.6%, respectively,
when the signal-to-noise ratio is greater than 0. Moreover, the proposed network is also easier to train. )e training time required
for convergence has reduced by 4.5% and 80.7% compared to the ResNet and CLDNN, respectively.

1. Introduction

Modulation recognition of communication signals plays an
important role in both civil andmilitary applications. In civil
use, modulation recognition technology is the basis for both
the communication parties to automatically adjust the
modulation type according to the current channel condi-
tions or transmission quality, i.e., adaptive communication.
In military applications, especially when receiving signals
blindly, it is often impossible to know the relevant infor-
mation of the received signal in advance, especially the
information of modulation type. However, for further
processing, the modulation type should be known in ad-
vance in many military applications.

For current modulation recognition technologies, there
are mainly two types of methods: traditional methods and
deep learning-based methods. )e two methods are intro-
duced as follows. In traditional methods, the features of the

signal are manually defined, such as spectral characteristics,
instantaneous feature statistics, high-order moments, high-
order cumulants, and so on [1–3]. )en, classification
models can be established according to classic classifiers,
such as decision tree (DT), support vector machine (SVM),
and so on. )e advantage for the type of methods is that the
manually defined features can have better theoretical sup-
port. Because they have clear physical meanings, the syn-
chronization parameters of the signal can be analyzed and
extracted in the process of modulation recognition. )e
shortcomings for this type of methods are mainly as follows:
(1) there is a lack of generalization ability, which affects the
extraction of features under different channel conditions,
resulting in a decrease in accuracy; (2) when there are many
modulation types for recognition, the methods will also lead
to a decline in the recognition rate due to limited number of
manual features. For methods based on deep learning, the
features for modulation recognition are automatically
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extracted through training sample adopting deep neural
networks, which can effectively avoid the shortcomings of
traditional methods and achieve a higher recognition rate.
However, deep learning-based methods also have short-
comings, such as the lack of interpretability of features and
the inability to estimate signal parameters, such as symbol
rate, in the process of modulation recognition.

Artificial intelligence has been successfully applied in the
field of image and natural language processing (NLP). As the
modulation recognition problem can be transferred to an
image recognition problem, deep learning-based modula-
tion recognition has also become a research hot spot. )e
following publications have summarized the application of
deep learning in modulation recognition. References [4–6]
directly adopt baseband samples for modulation recogni-
tion, which assumes that the input contains the same
number of symbols. )e effects of different neural network
structures on modulation recognition rates are compared.
)e authors in [7, 8] adopt the constellation diagram for
modulation recognition after preprocessing. )e pre-
processing includes procedures such as sampling time
synchronization and symbol rate synchronization. Note that
there are blind estimation processes in the preprocessing,
including symbol rate estimation, frequency offset estima-
tion, and so on.)e author in [2] directly assumes that under
the condition of cooperative communication, the phase jitter
has been eliminated, and the symbol synchronization has
been completed. )e convolutional neural network is then
adopted for modulation recognition.

From the aforementioned modulation recognition
methods, the influence of different symbol rates, frequencies,
and phase offsets is eliminated through the receiving syn-
chronization process under both cooperative communica-
tion condition and blind receiving condition. However, in
real application, due to the inaccurate estimation of blind
receiving parameters, the input signal samples for modu-
lation recognition still have large phase and frequency offsets
and different time scales. Existing deep learning modulation
recognition methods have not taken the mentioned situa-
tions into consideration, which can lead to a decrease in the
modulation accuracy. A novel modulation recognition
method based on the spatial transformation network is
proposed in this paper. In the network, prior models for
synchronization in communication are introduced, and the
priori models are realized through the spatial transformation
subnetwork, which can reduce the phase and frequency
offsets. )e influence of different time scales or the number
of symbols on modulation recognition can also be reduced.
)rough the simulation dataset generated adopting gnur-
adio [9, 10], the experiments are carried out. )e difference
between the proposed method and the spatial transformer-
based method in [11] is threefold. (1) )e structure of the
parameter regression module is different. )e paper has
adopted both time and frequency-domain samples as input,
which have better ability to extract features from both
domains. (2) )e paper has given more details about the
spatial transformer-based model. (3) For the model, the
training process has added the supervision of symbol rate
according to the baseline symbol rate model. )erefore, the

proposed method has the ability for symbol rate estimation.
Overall, the paper can be regarded as an improvement of
[11], which has better parameter regression capability and
ability for symbol rate estimation. )e results show that in
the presence of different symbol rates and different fre-
quency offsets and phase offsets, the proposed method has a
recognition rate of 8.3%, 4.9%, and 5.2% higher compared
with the traditional CNN, ResNet, and CLDNN, but the
training convergence time has reduced by 3.5%, 27%, and
85%, respectively.

2. Methods

)e overall structure of the proposed method is shown in
Figure 1. In the proposed network, the spatial transfor-
mation subnetwork is inserted into the traditional con-
volutional neural network, where other parts are similar to
the traditional convolutional neural network. )e structure
of the spatial transformation subnetwork is also shown in
Figure 1, which is mainly composed of three substructures:
the parameter regression estimation module, the time
compensation module, and the phase frequency offset
compensation module. Among them, the parameter re-
gression estimation module is composed of a few con-
volutional layers, the input of which is the feature extracted
by the previous layer. )e output of the last convolutional
layer can output some parameter estimations. In our
implementation, these parameters include time scaling pa-
rameters, frequency offset, and phase offset parameters. )e
dimension of the output parameters is 5, where the time
compensation-related dimension is 3, and the phase fre-
quency offset compensation-related dimension is 2. )e
design of output parameters is related to the subsequent
parameter-based transformation model, which will be dis-
cussed in detail in the following section. )e time com-
pensation module adopts the time-related parameters to
perform the corresponding transformations on the input
samples, thereby compensating for problems introduced by
different number of symbols in the signal sample. For the
frequency and phase offsets, they are compensated according
to the phase and frequency offsets estimations obtained by
the parameter regression module. )e compensated samples
are then adopted to identify the modulation type. )e fol-
lowing is a detailed discussion of the proposed spatial
transformation-based method.

2.1. &e Parameter Regression Module. )e function of the
parameter regression estimation module is to estimate the
parameters for subsequent transformation. )e estimated
parameters can transform the samples accordingly to
compensate for the time offset, scale changes, frequency
offset, and phase offset of the input signal samples. In
modulation recognition, the mentioned parameters have an
impact on the accuracy of modulation recognition. )e cost
function of the recognition network also has a correlation
with the mentioned parameters. )erefore, the parameter
can be estimated through network training. In addition, in
order to enable more direct extract of frequency-based
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features, the frequency spectrum of the signal is also adopted
as input to the network. )is can better guide the network to
learn the frequency-domain-based features, thereby avoid-
ing the time-frequency domain conversion learning in the
neural network. )e structure of the parameter regression
estimation module is shown in Figure 2. )e time-domain
and frequency-domain-based signals go through two feature
extraction networks, respectively. )en, the obtained feature
vectors are joined to form a larger feature vector. Another
feature extraction network is added with input of the vector
to obtain the estimation of the 5-dimension transformation
parameters. Features A, B, and C are made of two con-
volutional layers and an all connected layer. In the model,
there are in total 9 layers in depth. However, there are
parallel layers in the model.

2.2. &e Time Compensation Module. In real scenario
modulation recognition applications, the signal samples may
have different time scales and frequency offsets. For the
explanation convenience, it is assumed that the signal
samples have been already converted to baseband and the
signal-to-noise ratio is high. For neural network input, al-
though the length of the signal samples or the number of
sampling points are the same, the following situations may
exist: (1) due to different SPS (samples per symbol), there are
different numbers of symbols in the signal sample with the
same number of sampling point; for example, if one signal
sample has SPS twice as the other, the number of symbols is
also twice; (2) the number of symbols in the signal samples is
the same, but the position of the signal starting point is
different.)e difference can be regarded as the offset in time.
)e factors of time offset and different numbers of symbols
in the signal samples may cause the decrease of the mod-
ulation recognition rate. )erefore, after the time offset and
time scale transformation parameters are obtained through
parameter regression, the corresponding model is adopted
to transform the signal samples. )e transformation can
compensate the time scale and offset, thereby reducing the
effects in recognition rate. )e transformation herein is

based on the two-dimension affine transformation in the
field of image processing [11, 12]:
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where xs, ys denote the pixel position of the original image,
xt, yt denote the positions of the transformed image, and
θ1 ∼ θ6 are the transformation parameters. In the afore-
mentioned transformation, translation, rotation, and scaling
are all included. In our application, since there is only
translation and scaling in time, the transformation model
can be simplified as follows:
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After simplification, only 3 parameters are adopted to for
translation (representing the offset in time) and scaling (rep-
resenting the change in scale due to the difference in symbol
rate). Note that xs, ys denote the position of the input signal
feature and xt, yt denote the position of the transformed signal
feature. After the transformation, the corresponding original
coordinate position may be a decimal number and can exceed
the range of feature dimension. )erefore, in practical appli-
cations, it is also necessary to interpolate for the value of the
feature in the following equation, and the value of at position l

after interpolation can be written as
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Figure 1: )e overall structure of the method.
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where Vt
l represents the value at the corresponding position l

after interpolation, I and J denote the dimensions of the
features, Vs

ij denotes the value of the input feature at the
position of ij, k(.) represents the metric between two var-
iables defined by the kernel function, Φx and Φy represent
the corresponding kernel functions, and xs

l and ys
l denote

the corresponding position of the input after the simplified
affine transformation at position l. Note that here the po-
sition may be decimal. Generally speaking, if bilinear
transformation is selected as the corresponding kernel
function, the above equation can be written as
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)e above equation can be regarded as the weighted
average of the values near the position before the simplified
affine transformation [13, 14]. Overall, the corresponding
position can be obtained through affine transformation, and
the value of the corresponding position can be obtained
through bilinear interpolation. According to the mentioned
processes, the feature output after time translation and
scaling can be obtained. Figure 3 shows the processing flow
of the time compensation module. It can be seen that the
position of the output domain xt, yt is subjected to affine
transformation according to the estimated parameters to
obtain the position in the corresponding input domain xs, ys

firstly. )en, the values at different positions in the output
domain can be obtained through interpolation. Since the
calculation of the bilinear transformation is differentiable,
the time compensation module can be trained through the
network.

For the training process, the supervision of symbol rate is
added for enhancing parameter regression. As a matter of
fact, the parameters of θ1 and θ3 represent the time scaling,
which is symbol rate related. If the symbol rate is equal to the
baseline symbol rate, then the parameter should be

θ1 � 1,

θ3 � 1.
(5)

During the training, we added the following loss to the
overall loss function:

θ1 − θ



2

+ θ3 − θ



2
, (6)

where θ1 and θ3 represent the estimated parameters and θ
represents the actual relative symbol rate. Note that for each
input sample, the value of θ is different. )en, in the testing
process, after the parameters θ1 and θ3 are acquired. )e
actual symbol rate can be estimated as

θ1 + θ3( ∗ θbase
2

, (7)

where θbase denotes the baseline symbol rate signal.

2.3. &e Phase Offset Compensation Module. )e phase and
frequency offset compensation is more intuitive, and it is
processed directly according to the following equation:

xout � xin ∗ exp nθ4 + θ5( j( . (8)

Assuming that the processing of the above formula is
complex value based, where xin is the input and xout is the
output, the parameter θ4 represents the frequency offset
estimation, the parameter θ5 represents the phase offset
estimation, and n represents the time. In real imple-
mentation, since the input data are IQ time domain based,
which can be regarded as the real and imaginary parts of
complex values, the actual transformation can be written as
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I
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Q
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)e corresponding real part output is
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)e corresponding imaginary part output is

x
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As the transformation is also differentiable, the network
can be trained. For the frequency compensation module, the
number of n can be estimated. Adopting the estimation of n,
the relative SPS can be estimated according to the original
samples.

3. Experiments

In this paper, the spatial transformation network is adopted
for modulation recognition, which takes into account dif-
ferent time scales, frequencies, and phase offsets in the
model.)e following describes the experimental process and
results from the aspects of experimental dataset generation
and method comparisons.

3.1. Dataset Generation. In order to verify the effectiveness
of the proposed method, the open-source software radio
platform gnuradio [15] is adopted for generating the dataset.
)e generated dataset contains 11 different modulation
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Figure 3: )e processing flow of the time compensation module.
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types, including digital modulation types for BPSK, QPSK,
8PSK, PAM4, QAM16, QAM64, and CPFSK and analog
modulation types for GFSK, AM-DSB, AM-SSB, and FM.
When generating the dataset, the methods in [9] are adopted
for reference. )e source for the dataset includes real text
and audio sources. For generation of modulated signals,
including BPSK, QPSK, 8PSK, PAM4, QAM16, and
QAM64, a root raised cosine filter is adopted to shape the
transmitted signal to obtain a baseband modulated signal.
For the GFSK signal, Gaussian filter is adopted for shaping,
and the analog frequency modulation signal is adopted to
obtain the corresponding two frequency peaks. After the
modulated signals are generated, they are truncated in time
to generate signal samples, in order to obtain samples of the
same length. )e dimension of the sample is 2∗128, where 2
denotes the IQ channels and 128 denotes number of sam-
pling points in time. In the process of dataset generation,
different from the dataset in [9], the different frequency
offset and time scale changes are added. For frequency
offsets, the related frequency offset parameter is set in the
channel function dynamic_channel_model in gnuradio.
Figure 4 shows the normalized frequency comparison of the
same 8PSK signal with and without frequency offset. It can
be seen that the frequency offset of the baseband signal can
be generated by the frequency offset parameter in the
channel model. In practical applications, such frequency
offsets are prevalent due to inaccurate signal detection. In
our experiment, we have adopted the open-source RadioML
dataset for modulation recognition. In the dataset, we have
additional added different frequency offsets and time scales
adopting the gnuradio software. In the software, there are
multirate signal processing modules for decimation and
interpolation.

)e scale changes are generated by changing the SPS ac-
cordingly. In Figure 5, the signal sample for the 8PSK mod-
ulation type is shown, and the corresponding dimension of the
sample is 2 ∗ 128. In the figure, the upper one has set SPS to 4,
and the bottom one has set the SPS to 6. It can be seen that the
two signal samples contain different numbers of symbols,
which are 6 and 4, respectively.)is figure can intuitively show
the problemof different time scales under the samemodulation
mode. )e problems of different SPS are common in actual
situations due to different signal bandwidths.

After the dataset is generated according to the above
method, each signal sample is normalized according to the
sample energy. )en, the dataset is split randomly into 50%
for training and 50% for testing.

3.2. Method Comparisons. In order to fully illustrate the
effectiveness of the proposed method, the recognition rate of
the proposed method is compared with that of several
classical neural network-based methods. )e recognition
rate of different methods under different signal-to-noise
ratio conditions is shown in Figure 6. From the statistics in
Table 1, it can be seen that when the signal-to-noise ratio is
greater than 0, the recognition rate of the proposed method
in this paper is 8.0%, 5.8%, and 4.6% higher than that of the
traditional CNN, ResNet, and CLDNN, respectively [16].

Table 2 lists the comparisons of the total number of
parameters and the training convergence time between the
proposed method in this paper and the traditional CNN,
ResNet, and CLDNN. It can be seen that, compared with
the classic CNN, the proposed method has increased the
number of network parameters by about 300% due to the
addition of the parameter regression module, the time
compensation module, and the phase frequency offset
compensation module. However, as the proposed network
structure is designed with a priori time scale change and
frequency phase offset model, it is easier to train. )e
training time required for convergence is reduced by 4.5%
and 80.7% compared to the ResNet and CLDNN, which has
fully demonstrated the effectiveness of the proposed
method.
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3.3. SPSEstimation. As mentioned, from the estimation of n
in the phase and frequency offset compensation module, the
SPS of the signal sample can be estimated. )e SPS esti-
mation accuracy of the proposed method can reach 98.8%.
)is is another advantage over other deep neural network-
based methods, which are not able to extract knowledge on
SPS on the signal samples. Noting that as the estimated n
can be a decimal number, the original estimated SPS can
also be decimal. For the accuracy statistics, the estimated
SPS are rounded. For the training process, the supervision
of symbol rate is added for enhancing parameter regres-
sion. For the experiment, we have chosen the SPS 4 as the
baseline symbol rate model. For both training and testing,
the symbol rate ranges from 2 to 8. )en, ground truth
parameter of θ1 and θ3 should be in the range of 0.5 to 2
accordingly.

4. Conclusions

Blind signal modulation recognition has great application
potential in both civil and military uses. For real scenario
modulation recognition applications, signals of the same
modulation type may have encountered the effects of dif-
ferent time scales and frequency offsets. A modulation
recognition method based on spatial transformation net-
work is proposed in this paper. Compared with the classic
CNN recognition network, a parameter regression estima-
tion module, a time compensation module, and phase fre-
quency offset compensation module are added. Among
them, the parameter regression module can estimate the
time scale transformation parameters (3 dimensions) and
the frequency and phase offset parameters (2 dimensions).
)e time compensation module and the phase frequency
offset compensation module can perform the corresponding
compensational transformations on the original signal
samples according to the estimated parameters. )rough the
open-source software radio gnuradio, the experimental
dataset is generated. )e dataset includes signal samples of
11 modulation types with different signal-to-noise ratios,
different SPS, and different frequency offsets. Experiments
adopting the generated dataset prove that compared with the
traditional CNN, ResNet, and CLDNN, the recognition rate
of the proposed method has increased by 8.0%, 5.8%, and
4.6%, respectively, when the signal-to-noise ratio is greater
than 0. Moreover, the proposed network in this paper is
easier to train, and the training time required for conver-
gence has reduced by 4.5% and 80% compared with the
ResNet and CLDNN, respectively.
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