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Public health is very important in big cities, and data analysis on public health studies is always a demanding issue that determines
the study effectiveness. E-value was proposed as a standard sensitivity analysis tool to assess unmeasured confounders in ob-
servational studies, but its value is doubted. To evaluate the usefulness of E-value, in this paper, we collected 368 observational
studies on drug effectiveness evaluation published from 1998 to September 2019 (out of 3426 searched studies) and evaluated the
features of E-value. We selected the effects of primary outcomes or the largest effects in terms of hazard ratio, risk ratio, or odds
ratio. Effects were transformed into estimated effect sizes following a standard E-value computation. In all 368 studies, the disease
with the highest percentage was infections and infestations, at 21.7% (80/368). Our results showed that the median relative effect
size was 1.89 (Q1-Q3: 1.41–2.95), and the corresponding median E-value was 3.19 with 95% confidence interval lower bound 1.77.
Smaller studies yielded larger E-values for the effect size estimate and the relationship was considerably attenuated when
considering the E-value for the lower bound of 95% confidence interval on the effect size. Notably, E-values have a monotonic,
almost linear relationship with effect estimates. We found that E-value may causemisimpressions on the unmeasured confounder,
and the same E-value does not reflect the varying nature of the unmeasured confounders in different studies, and there lacks a
guidance on how E-value can be deemed as small or large, all of which limits the capability of E-value as a standard sensitivity
analysis tool in real applications.

1. Introduction

Public health issues are drawing more and more attentions
since they may cause harm to a large proportion of the
population, especially in big cities where the density of
population is high. One main problem of dealing with public
health events is that these events often involve large amount
of data and complex factors that may affect the results. In
practice, it is quite important, but also in the meantime, very
difficult, to assess if the results are reliable given that some of
the factors are inevitably not addressed, due to ignorance or
missing, called “confounding analysis.”

A formal definition of “confounding” is in terms of
dependence of counterfactual outcomes and exposure,
possibly conditional on covariates, while a “confounder” is
defined as a preexposure covariate C for which there exists a
set of other covariates X such that effect of the exposure on
the outcome is unconfounded conditional on (X, C) and for
no proper subset of (X, C) is the effect of the exposure on the
outcome unconfounded, given the subset [1]. A study with a
good design can control the confounders from the begin-
ning, such as randomized controlled trials. However, when a
randomized clinical trial (RCT) is not available, or the
analysis is required to be based on real world data, an
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increased attention has to be paid for the application of
observational studies [2–4].

When treatment is not randomized, confounder is the
common bias which is not easily controllable, especially
unmeasured confounders [5, 6]. An important approach to
evaluating evidence for causation in the face of unmeasured
confounding is “sensitivity analysis,” that considers how
strong unmeasured confounding would have to be to explain
away the association [7, 8]. Such methods often require
additional untestable assumptions. Some assume a single
binary confounder [9, 10], and others assume there is no
interaction between the effects of the exposure and the
confounder on the outcome [11, 12]. Recently, VanderWeele
and Ding introduced the “E-value,” a new measure which
quantifies the minimum strength of association between the
unmeasured confounder(s) and exposure and outcome to
fully explain away a specific treatment outcome association,
conditional on the measured covariates [13, 14]. 0e E-value
is a general tool for sensitivity analysis that does not require
assumptions about the nature of the unmeasured con-
founder. 0e authors recommended to report E-values in all
epidemiologic investigations, as unmeasured confounding is
often the central challenge in assessing evidence for causality
in observational research. E-values can assess the robustness
of the unmeasured confounding, thereby supplementing P

values. Given the novelty of E-value with many appealing
features, its applications are increasing rapidly.

0e U.S. Food and Drug Administration published
“Framework for FDA’s real-world evidence program” at the
end of 2018, in which retrospective observational study was
covered that such a study should identify the population and
determine the exposure/treatment from historical data [15].
In light of this regulation, in this paper, we explore the use of
E-value to evaluate the potential impact of unmeasured
confounder(s) in retrospective observational pharmaceutical
studies.

2. Methods

2.1. Selection of Studies. We selected observational phar-
maceutical studies that reported results on drug effects. We
always chose the most prominent associations stated in the
abstracts of the articles in terms of hazard ratio (HR), risk
ratio (RR), or odds ratio (OR), among which some were
from the subgroup analysis. 0e exclusion criteria are shown
in Figure 1.

Figure 1 describes the process how we selected the final
studies from the whole search results.

We identified studies by searching MEDLINE and
Embase databases (last search on September 29th, 2019,
using keywords ((“drug screening”/exp OR “drug screening”)
OR (“drug effect”/exp OR “drug effectiveness”) OR ′drug
evaluation”) AND ((’observational study’/exp OR “observa-
tional study”) OR “real world study”)). We only considered
articles published in English for inclusion in the analysis,
and we only kept studies that measured direct efficacy on
HR, RR, or OR outcomes. We excluded systematic reviews,
articles on animal tests, Chinese Medicine, case reports,
computer simulation, methodology, policy demonstration,

and machine learning algorithms, as well as other research
studies not focusing on drug effectiveness evaluation. Two
reviewers screened all titles/abstracts to apply the inclusion/
exclusion criteria independently and in duplicate. 0e two
reviewers resolved any discrepancy at each stage through a
consensus process, and all studies were screened by two
reviewers in parallel; the resulting list of the included ar-
ticles/trials was discussed by all researchers to ensure the
accuracy of the final decision.

2.2. Data Extraction. We collected data regarding the drug
efficacy outcome on the sample size, the effect measure
(hazard ratio, relative risk, or odds ratio), the adjusted effect
size estimate, the event proportion of the effect, and the
associated 95% confidence interval. Note that when multiple
treatments were measured, we only focus on the most
prominent contrast in terms of HR, RR, or OR, whichever
deviates from the null effect the most, assuming it would
yield the largest effect, thus the most robustness to un-
measured confounding [16]. 0e commonality of an out-
come (common or uncommon) is defined as the result if the
total number of events (at the end of follow-up) is great than
or equal to 15% of the total number of participants.

We prespecified the following rules to select a single
effect size per study. We gave priority to the primary out-
come; when no primary outcome was specified or multiple
treatments were measured, we selected the one giving the
largest association with the selected outcome. 0e corre-
sponding extracted information was retrieved from the full-
text whenever necessary. Reviewer discrepancies were re-
solved following a consensus procedure.

2.3. Data Analyses. All effect sizes were transformed into an
estimated relative effect (ERE) by the following procedure
[17]:

(a) If the outcome was uncommon and the ratio was
greater than 1, we set the ERE to the original HR, RR,
or OR.

(b) If the ratio was less than 1, regardless if the outcome
was common or uncommon, it was inverted for the
subsequent consistent operations. So, it came to that
all EREs were more than or equal to 1 afterwards.
Here, we should note that once a relative effect is
inverted, we also invert the corresponding 95%
confidence interval (CI) bounds such that (low, high)
becomes (1/high, 1/low).

(c) After step (b), if the ratio was HR and the outcome
was common, we set ERE to (1−0.5sqrt(HR))/
(1−0.5sqrt(1/HR)).

(d) After step (b), if the ratio was OR and the outcome
was common, we set ERE to sqrt(OR).

Using the ERE, we calculated its E-value using the fol-
lowing equation:

E − Value � ERE + sqrt ERE∗(ERE − 1)( . (1)
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0e above workflow of E-value calculations is also shown
in Figure 2.

Figure 2 describes the workflow of E-value calculations.
We also computed the E-value for the lower bound (LB)

of the 95% CI using the following equation (note that some
of the bounds had been inverted along with their corre-
sponding effects):

E − Value � LB + sqrt LB∗(LB − 1)( . (2)

As standard errors were also used for illustration, for
figure clarity, we used logged standard errors (LSE) as

LSE �
(Ln(UB) − Ln(LB))

3.92
, (3)

where UB and LB are upper and lower bounds of 95% CI.
For abbreviation, in all the figures in this paper, instead of
logged standard error, we simply use the phrase standard
error when there is no confusion.

0e number of publications were summarized annually
and by disease categories in system organ class (SOC) of
MedDRA (Medical Dictionary for Regulatory Activities).

We summarized the distribution of the EREs, E-values, and
standard errors across all studies by the median, 25% and
75% percentiles in original values and logged values. In order
to assess the association between the effect size estimate and
study size, we produced a funnel plot showing the standard
error against the effect size. We also produced scatter plots
depicting the logged E-value and logged effect size against
the standard errors. Finally, we produced scatter plots
showing the EREs against the E-values.

We used Python 3.7 for all analyses. 0e codes on ERE
and E-value calculation are listed in Appendix. All data and
statistical codes are available on request.

3. Results

We selected all the 3426 articles from 1998 to the last
searching day of September 2019. We identified 368 articles
that were eligible for the final analysis (Figure 2), and the
details of the study characteristics are shown in Table 1.

During the study period, the number of publications was
increased. 0e studies after 2014 accounted for more than
65% (65.2%, 240/368) of all publications (Figure 3(a)). In all

3426 Articles
through database searching

2966 Articles

Excluded :
291 not in English
217 systematic reviews or meta analyses
127 animal studies

6 Chinese medicine studies 
5 case reports
3 computer simulation studies
3 methodology studies
2 policy demonstration studies
2 machine learning algorithms studies
4 other reasons (medical device studies, 

duplicated, comparison with RCT)

Excluded :
2334 articles without HR, RR or OR results

12 articles without confidence interval

420 Articles

368 Articles

Excluded :
52 articles on surgical and medical

procedures assessments

Figure 1: Selection of observational pharmaceutical studies.
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368 studies, the disease with the highest percentage of the
observational pharmaceutical studies was infections and
infestations, at 21.7% (80/368), followed with cardiac dis-
orders (13.9%, 51/368) and neoplasms benign, malignant,
and unspecified (including cysts and polyps) (7.1%, 26/368).
0e distribution of the studies by disease categories in SOC
of MedDRA is shown in Figure 3(b).

Figure 3(a) presents the numbers of publications in years
from 1998 to 2019. Note that our search day was Sep. 29th,
2019, so the number of publications in the whole year 2019
would be higher.

Figure 3(b) depicts the proportions of outcomes by the
Meddra disease categories. It can be seen that the odds ratio
was used the most in observational pharmaceutical studies,
as expected. Note. Blocks 1–16 represent “infections and
infestations,”, “cardiac disorders,” “neoplasms benign, ma-
lignant, and unspecified (incl cysts and polyps),” “nervous
system disorders,” “musculoskeletal and connective tissue
disorders,” “not a single disease,” “general disorders and
administration site conditions,” “endocrine disorders,”

“respiratory, thoracic, and mediastinal disorders,” “injury,
poisoning, and procedural complications,” “renal and uri-
nary disorders,” “gastrointestinal disorders,” “psychiatric
disorders,” “vascular disorders,” “metabolism and nutrition
disorders,” and “all others.”

After inverting, effect sizes were necessary so that all
relative effects were greater than 1, the selected studies had
median relative effect of 1.89 (Q1 � 1.41 and Q3 � 2.95), and
the corresponding median E-value for all selected studies
was 3.19, which means that, in an observational pharma-
ceutical research, it would typically assume an uncontrolled
confounder that is associated with both the exposure and the
outcome by a relative effect of 3.19 each to turn the estimate
into a null estimate (Table 2).

From the funnel plot in Figure 4, although most of the
selected studies showed statistically significant associa-
tions, there were still a few negative results published, and
smaller studies (i.e., with larger standard errors) necessarily
showed larger effect size. Figure 5(c) shows that smaller
studies yielded larger E-values for the effect size estimate.

Table 1: Study characteristics of the observational pharmaceutical studies.

Characteristics Total Infections and
infestations

Cardiac
disorders

Neoplasms benign, malignant, and
unspecified

Study Numbers (N) 368 80 51 26

Sample size, median (Q1, Q3) 634 (205, 4721) 314 (157, 1064) 3005 (610,
14033) 506 (105, 4036)

Publication year, median (Q1,
Q3)

2016 (2012,
2018) 2016 (2012, 2017) 2014 (2010,

2017) 2016 (2011, 2018)

Effect measure:
Hazard ratio, n (%) 156 (42.4) 25 (31.3) 35 (68.6) 12 (46.2)
Risk ratio, n (%) 31 (8.4) 7 (8.8) 3 (5.9) 3 (11.5)
Odds ratio, n (%) 181 (49.2) 48 (60.0) 13 (25.5) 11 (42.3)
Uncommon (<15%)
outcome, n (%) 203 (55.2) 37 (46.3) 34 (66.7) 15 (57.7)

Protective effect
(effect size <1), n (%) 148 (40.2) 24 (30.0) 28 (54.9) 17 (65.4)

Negative result, n (%) 47 (12.8) 11 (13.8) 9 (17.6) 3 (11.5)

No

ERE=HR/RR/OR

ERE=1/EREERE<1 Yes

Ratio=HR 
and

Outcome is 
common

Ratio=HR 
and

Outcome is 
common

No No

ERE = sqrt (ERE)

E-Value =
ERE+sqrt (ERE*(ERE-1)) 

ERE = (1-0.5sqrt(ERE))/(1-
0.5sqrt(1/ERE))

Figure 2: E-value calculation workflow.

4 Scientific Programming



In fact, smaller studies show larger effect size estimates and
large effect size estimates give larger E-values (Figures 5(a)
and 5(c)). Figures 5(b) and 5(d) show that the relationship

is considerably attenuated when considering the E-value
for the lower bound of 95% confidence interval on the effect
size.

Table 2: Effect size estimates, precision, and E-values in observational pharmaceutical studies.

Disease Statistics Median (Q1,
Q3)

Logged: median (Q1,
Q3)

All (N� 368)

Relative effect size 1.89 (1.41, 2.95) 0.64 (0.35, 1.08)

Standard error 0.63 (0.22,
2.28) 0.27 (0.13, 0.49)

E-value 3.19 (2.18, 5.35) 1.16 (0.78, 1.68)
E-value for the 95% CI lower

bound 1.77 (1.31, 2.71) 0.57 (0.27, 1.00)

Infections and infestations (N� 80)

Relative effect size 2.18 (1.64, 2.88) 0.78 (0.50, 1.06)
Standard error 1.31 (0.44, 3.86) 0.38 (0.21, 0.61)

E-value 3.78 (2.67,
5.20) 1.33 (0.98, 1.65)

E-value for the 95% CI lower
bound 1.69 (1.28, 2.68) 0.52 (0.25, 0.98)

Cardiac disorders (N� 51)

Relative effect size 1.54 (1.30, 1.93) 0.43 (0.27, 0.66)
Standard error 0.31 (0.14, 0.59) 0.15 (0.10, 0.26)

E-value 2.45 (1.93, 3.27) 0.90 (0.66, 1.18)
E-value for the 95% CI lower

bound 1.54 (1.22, 2.08) 0.43 (0.20, 0.73)

Neoplasms benign, malignant and unspecified (incl cysts and
polyps) (N� 26)

Relative effect size 1.85 (1.58, 2.59) 0.61 (0.46, 0.95)
Standard error 0.59 (0.30, 2.19) 0.29 (0.15, 0.49)

E-value 3.10 (2.54, 4.63) 1.13 (0.93, 1.53)
E-value for the 95% CI lower

bound 2.06 (1.56, 3.25) 0.72 (0.45, 1.17)

CI, confidence interval on the effect size. Note that, for consistency, we inverted effect size was necessary so that all effects were greater than 1. Here, for logged
standard error (LSE), we use the equation LSE� (Ln(UB)-Ln(LB))/3.92, where UB and LB are upper and lower bounds of 95% CI.
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Figure 3: Description of the observational pharmaceutical publications: (a) yearly publication number and (b) proportion of outcomes by
disease categories in SOC of MedDRA.
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Figures 5(a) and 5(c) plot the effect size and E-value
against the standard error, respectively. Figures 5(b) and
5(d) show the 95% CI lower bounds of the effect size and
E-value against the standard error, respectively. 0e red
curves indicate the least square simulation.

Figure 6 shows the association between the estimated
effect size and E-value. For all investigated effect sizes, in-
cluding both common and uncommon HRs (Figure 6(a)),
RRs (Figure 6(b)); note that RRs do not change by the
commonality), and both common and uncommon ORs
(Figure 6(c)), E-values have a monotonic, almost linear
relationship with effect estimates. Monotonic rise or
monotonic decline depends on whether the estimated effect
size is greater than or less than 1.

Figure 6 plots the association between estimated effect
size and E-value. An outcome is common if the total number
of events (at the end of follow-up) is great than or equal to
15% of the total number of participants. HR and OR are
transformed into an estimated effect size based on the
outcome commonality, so in Figures 6(a) and 6(c), two
curves indicate the common and uncommon least square fit
curves. RR does not change on the outcome commonality, so
there is only one curve in Figure 6(b).

4. Discussion

Observational studies are noninterventional clinical study
designs that are covered by FDA real world evidence pro-
gram [16]. However, observational studies may be much less
convincing due to the lack of randomization and the
presence of confounding bias [17]. While traditional re-
gression-based and propensity score analyses provide some
control of confounding, they can only take into account
factors that are measured. To assess how much unmeasured

confounding factors may pose to a study, researchers may
conduct a sensitivity analysis, and here, the E-value analysis
answers the question: how strong would the unmeasured
confoundings have to be to negate the observed results? In
this paper, we calculated the E-values for the published
observational pharmaceutical studies, aiming to evaluate the
features of this sensitivity indicator.

With the development of the electronic medical data,
observational studies were applied more and more in drug
evaluation, as indicated by the increasing trend of publication
numbers. Although most of the published studies showed
statistically significant associations, there were still few negative
results published, which indicated the importance of the drug
evaluation in the real clinical practice. Similar with the previous
study [18], our results also showed the E-values based on the
lower bound of the confidence interval are less influenced by
study size, suggesting it is better to report the E-value based on
the confidence interval, rather than the E-value based on the
estimate. However, our results showed that the overall E-value
for the observational pharmaceutical studies was 3.19 with 95%
CI lower bound 1.77; it is hard for us to determine whether this
estimated E-value is bigger enough to eliminate the concern
about the unmeasured confounder(s).

As observed by Localio et al. [19], it is worth noting that our
publication data-based results also showed that the E-value is
almost linearly related to the absolute value of the effect es-
timate and the relationship is monotonic; the more the effect
estimate deviates from the null, the larger the E-value is. In our
results, the studies with small sample sizes will have larger
standard errors on the effect size and will yield larger effect size
estimates as compared to larger studies. As a monotonic
consequence, smaller studies with larger effect size are more
likely to give larger E-values, thus giving the misimpression of
being more robust to unmeasured confounder(s).
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Figure 4: Funnel plot.
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0erefore, E-value is an alternative approach to sensi-
tivity analyses for unmeasured confounding in observational
studies, with some advantages and disadvantages. It has two
major appealing features. First, in contrast to standard
methods for sensitivity, it requires much less assumptions
from investigators, such as assuming that exposure preva-
lence and confounder prevalence are at the point that
maximizes confounding. Second, it is intuitive because the
lowest limit is 1, and the higher the E-value is, the stronger
the unmeasured confounder must be to explain the observed
association [20]. Notably, E-value does have some limita-
tions. First, E-values have a monotonic, almost linear re-
lationship with effect estimates, and, therefore, provide little
additional information, thus have the risk to provide the
misimpression of the unmeasured confounder. Second,
from the formula of the E-value, it is a transformation of
effect estimates, so a given effect estimate always produces
the same E-value, but the reality of the unmeasured con-
founder varies from study to study.0ird, there is no specific
guidance on the range within which an E-value should be

deemed as small and thus the residual confounder is still a
serious threat [21].

It is worth mentioning that causal inference from the
observational study is a vital problem, but it comes with
strong assumptions. Most method assume that we observe
all confounders. 0erefore, it is crucial to diagnose the
unmeasured confounder in the observational study. Ideally,
if we can control the measured confounders very well and
determine that the unmeasured confounders do not exist,
then there is no need to worry about the impact of the
confounders. Several methods have been reported for
detecting confounders, Wang and Blei developed the al-
gorithm “deconfounder” which uses the multiplicity of
causes to infer unmeasured confounders [22] and “negative
controls” which is to repeat the experiment under conditions
in which it is expected to produce a null result and verify that
it does indeed produce a null result and also is a tool for
evaluating confounders in observational studies [23]. As a
sensitivity tool of detecting unmeasured confounders,
E-value had been applied in some observational studies, and
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Figure 5: Scatter plots depicting the estimated effect size or E-value against standard error. (a) Logged effect size. (b) Logged effect size for
the lower limit of 95% CI. (c) Logged E-value. (d) Logged E-value for the lower limit of 95% CI.
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it was reported that 87 papers with 516 E-values were
identified till the end of 2018 in an empirical assessment of
the observational studies [24]. Because of the above several
limitations of E-value, we have summarized E-value should
not be a substitute for careful consideration of potential
sources of unmeasured confounders; if used, the evaluation
criteria should be interpreted in the context of expected
confounding in specific fields.

5. Conclusion

With lots of data and factors being involved in public health
events in big cities, confounding analysis has to play a key
role in determining the quality of the study results. In
particular, confounding control is a big challenge in ob-
servational pharmaceutical studies, especially the unmea-
sured confounder(s). E-value analysis could provide
information on how strong the unmeasured confounders
would have to be to negate the observed results, but

researchers may still ask for other analysis methods to
remedy the limitations of E-value. Researchers need to
consider confounder in a systematic, thorough, and bal-
anced way. Sensitivity analysis is a common applied method
to evaluate the unmeasured confounder. More and better
methods are expected for the observational pharmaceutical
studies.

Appendix

ThePythoncodeonEREandE-value calculation

import math
def standardev(r):

return r+math.sqrt(r∗(r-1))
def relativer(r,whichr,common� False):

myr� r
if(common):

0.025 0.05 0.1 0.2 0.5 1 2 5 10 20 40
Hazard Ratio

40

35

30

25

20

15

10

5

0

E-
Va

lu
e

Common outcome fit
Uncommon outcome fit

Common outcomes
Uncommon outcomes

(a)

0.025 0.05 0.1 0.2 0.5 1 2 5 10 20 40
Risk Ratio

E-
Va

lu
e

20

15

10

5

Polyfit
All Outcomes

(b)

0.025 0.05 0.1 0.2 0.5 1 2 5 10 20 40
Odd Ratio

E-
Va

lu
e

80

60

40

20

0

Common outcome fit
Uncommon outcome fit

Common outcomes
Uncommon outcomes

(c)

Figure 6: Association between estimated effect size and E-value. (a) Hazard ratio. (b) Risk ratio. (c) Odds ratio.

8 Scientific Programming



if(whichr�� ’hr’):
myr� (1-pow(0.5,math.sqrt(r)))/(1-pow(0.5,-

math.sqrt(1/r)))
elif(whichr�� ’or’):

myr�math.sqrt(r)
return myr

def rtoev(r,whichr,common� False):
return standardev(relativer(r,whichr,common))

def rrcitoev(rrci):
l� rrci[0]
if(l<�1): return 1
else: return l+math.sqrt(l∗(l-1))

def geteffectsize(hr,rr,anor):
es� hr
index� ’hr’
isrev� False
if (hr>0 and hr<1):
es� 1/hr
isrev�True

if(rr>0 and max(rr,1/rr)>es):
es�max(rr,1/rr)
index� ’rr’
if(rr<1):

isrev�True
if(anor>0 and max(anor,1/anor)>es):

es�max(anor,1/anor)
index� ’or’
if(anor<1):

isrev�True
return es, index, isrev

Data Availability

0e data used to support the findings of this study are
available online at MEDLINE and Embase databases (last
search on September 29th, 2019, using keywords ((“drug
screening”/exp OR “drug screening”) OR (“drug effect”/exp
OR “drug effectiveness”) OR “drug evaluation”) AND
((’observational study’/exp OR “observational study”) OR
“real world study”)).

Conflicts of Interest

0e authors have no conflicts of interest to declare.

Authors’ Contributions

H. H. and J.M. contributed to the study design. H. H. and
X. Q. contributed to data collection. H. H. and J. M. per-
formed statistical analysis and interpretation and drafted the
manuscript. H. H., J. M., and T. S. revised the manuscript.

All authors contributed to critical revision of the manuscript
and approved its final version.

Acknowledgments

0e present study was supported by the Sichuan Provincial
Key Research and Development Program (no. 2021YFG0345
to Jianbing Ma) and National Natural Science Foundation of
China (no. 81903407 to Lihong Huang).

References

[1] T. J. VanderWeele and I. Shpitser, “On the definition of a
confounder,” Annals of Statistics, vol. 41, no. 1, pp. 196–220,
2013.

[2] J. P. Vandenbroucke, “When are observational studies as
credible as randomised trials?”/e Lancet, vol. 363, no. 9422,
pp. 1728–1731, 2004.

[3] A. R. Feinstein, “Current problems and future challenges in
randomized clinical trials,” Circulation, vol. 70, no. 5,
pp. 767–774, 1984.

[4] N. Black, “Why we need observational studies to evaluate the
effectiveness of health care,” BMJ, vol. 312, no. 7040,
pp. 1215–1218, 1996.

[5] S. Greenland and H. Morgenstern, “Confounding in health
research,” Annual Review of Public Health, vol. 22, no. 1,
pp. 189–212, 2001.

[6] F. Shaya and A. Gu, “Confounding in health services research:
issues and solutions,” Research in Human Capital and De-
velopment, vol. 16, pp. 67–78, 2007.

[7] P. R. Rosenbaum, Sensitivity to Hidden Bias, Springer, New
York, NY, USA, 2002.

[8] P. R. Rosenbaum, “Design sensitivity and efficiency in ob-
servational studies,” Journal of the American Statistical As-
sociation, vol. 105, no. 490, pp. 692–702, 2010.

[9] P. R. Rosenbaum and D. B. Rubin, “Assessing sensitivity to an
unobserved binary covariate in an observational study with
binary outcome,” Journal of the Royal Statistical Society: Series
B, vol. 45, no. 2, pp. 212–218, 1983.

[10] G. W. Imbens, “Sensitivity to exogeneity assumptions in
program evaluation,”/e American Economic Review, vol. 93,
no. 2, pp. 126–132, 2003.

[11] J. J. Schlesselman, “Assessing effects of confounding vari-
ables,” American Journal of Epidemiology, vol. 108, no. 1,
pp. 3–8, 1978.

[12] D. Y. Lin, B. M. Psaty, and R. A. Kronmal, “Assessing the
sensitivity of regression results to unmeasured confounders in
observational studies,” Biometrics, vol. 54, pp. 948–963, 1998.

[13] T. J. Vanderweele and P. Ding, “Sensitivity analysis in ob-
servational research: introducing the E-value,” Annals of
Internal Medicine, vol. 167, no. 4, pp. 268–274, 2017.

[14] P. Ding and T. J. VanderWeele, “Sensitivity analysis without
assumptions,” Epidemiology, vol. 27, no. 3, pp. 368–377, 2016.

[15] USFDA, Framework for FDA’s Real-World Evidence Program,
Food and Drug Administration, Silver Spring, MA, USA,
2018.

[16] D. C. Klonoff, “0e new FDA real-world evidence program to
support development of drugs and biologics,” Journal of
Diabetes Science and Technology, vol. 14, no. 2, pp. 345–349,
2020.

[17] M. A. Hernán and J. M. Robins, Causal Inference, CRC, Boca
Raton, FL, USA, 2010.

[18] L. Trinquart, A. L. Erlinger, J. M. Petersen, M. Fox, and
S. Galea, “Applying the E value to assess the robustness of

Scientific Programming 9



epidemiologic fields of inquiry to unmeasured confounding,”
American Journal of Epidemiology, vol. 188, no. 6, pp. 1174–
1180, 2019.

[19] A. R. Localio, C. B. Stack, and M. E. Griswold, “Sensitivity
analysis for unmeasured confounding: E-values for obser-
vational studies,” Annals of Internal Medicine, vol. 167, no. 4,
pp. 285-286, 2017.

[20] S. Haneuse, T. J. VanderWeele, and D. Arterburn, “Using the
E-value to assess the potential effect of unmeasured con-
founding in observational studies,” Jama, vol. 321, no. 6,
pp. 602-603, 2019.

[21] J. P. A. Ioannidis, Y. J. Tan, and M. R. Blum, “Limitations and
misinterpretations of E-values for sensitivity analyses of ob-
servational studies,” Annals of Internal Medicine, vol. 170,
no. 2, p. 108, 2019.

[22] Y. Wang and D. M. Blei, “0e blessings of multiple causes,”
Journal of the American Statistical Association, vol. 114,
no. 528, pp. 1574–1596, 2019.

[23] M. Lipsitch, E. Tchetgen Tchetgen, and T. Cohen, “Negative
controls,” Epidemiology, vol. 21, no. 3, pp. 383–388, 2010.

[24] M. R. Blum, Y. J. Tan, and J. P. A. Ioannidis, “Use of E-values
for addressing confounding in observational studies-an em-
pirical assessment of the literature,” International Journal of
Epidemiology, vol. 49, no. 5, pp. 1482–1494, 2020.

10 Scientific Programming


