
Research Article
ER-Store: A Hybrid Storage Mechanism with Erasure Coding and
Replication in Distributed Database Systems

Zijian Li and Chuqiao Xiao

School of Software Engineering, East China Normal University, Shanghai 200062, China

Correspondence should be addressed to Zijian Li; 51194501053@stu.ecnu.edu.cn

Received 22 March 2021; Revised 12 July 2021; Accepted 26 July 2021; Published 10 September 2021

Academic Editor: Jiangbo Qian

Copyright © 2021 Zijian Li and Chuqiao Xiao.-is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

In distributed database systems, as cluster scales grow, efficiency and availability become critical considerations. In a cluster, a
common approach to high availability is using replication, but this is inefficient due to its low storage utilization. Erasure coding
can provide data reliability while ensuring high storage utilization. However, due to the large number of coding and decoding
operations required by the CPU, it is not suitable for some frequently updated data. In order to optimize the storage efficiency of
the data in the distributed system without affecting the availability of the data, this paper proposes a data temperature recognition
algorithm that can distinguish data tablets and divides data tablets into three types, cold, warm, and hot, according to the
frequency of access. Combining three replicas and erasure coding technology, ER-store is proposed, a hybrid storage mechanism
for different data types. At the same time, we combined the read-write separation architecture of the distributed database system to
design the data temperature conversion cycle, which reduces the computational overhead caused by frequent updates of erasure
coding technology. We have implemented this design on the CBase database system based on the read-write separation ar-
chitecture, and the experimental results show that it can save 14.6%–18.3% of the storage space while meeting the efficient access
performance of the system.

1. Introduction

With the rapid development of technologies such as big data,
cloud computing, and the Internet of -ings, as well as the
diversification of data collection technologies, the amount of
data has grown dramatically, which has made data storage
methods biased towards distributed storage [1]. However,
hardware failures and software upgrades of cheap storage
devices often lead to storage node failures, which bring about
data storage reliability problems [2, 3].

In order to ensure the reliability of the data, the common
redundancy mechanism of distributed storage systems is the
multiple replica strategy [4–6]. For example, Google’s GFS [7]
creates three replicas of each data chunk and ensures that all
replicas of each chunk are not distributed on the same rack.
Although this strategy of replication fully guarantees high
availability of the data, it requiresM+1 times storage space to
tolerate M failures. -is brings enormous storage overhead.

In recent years, with the improvement of CPU com-
puting power and the slow development of storage, erasure
coding has attracted people’s interest as a new storage so-
lution [8–11]. By dividing the original data object into blocks
and encoding them to generate parity blocks, erasure coding
can produce lower storage overhead while providing the
same storage reliability. For example, in Facebook’s warm
storage system F4 [12], the system uses RS (K� 10 andM� 4)
erasure coding technology to encode and store data.
Compared with the traditional replication solution, this
technology increases the fault tolerance of the system from 2
to 4 and reduces the storage overhead of the system by about
1.6X. However, the complex erasure coding technology itself
has many problems, such as a large amount of CPU com-
puting overhead brought to the system when encoding and
decoding data and the need to re-encode and calculate all the
fragment contents when updating data. -ese problems not
only increase the latency of data access requests but also
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cause excessive network resource consumption and hard
disk I/O overhead. -erefore, erasure coding technology is
mainly applied in distributed storage systems for storing
videos, music, and archived data [13].

Additionally, with the continuous growth of cluster data,
there are huge differences in the access frequency between
data [14]. For example, in the field of social media, the access
frequency of recently written data is much higher than that
of the data produced long ago.-ese data are considered hot
data. -rough analysis, we can find that, as time goes by, the
access frequency of data that are considered hot data will
gradually decrease. When accessed only a few times a week,
the data become warm. In the following months, if the
frequency of data access continues to decrease, these data are
called cold data [15].

Understanding the hot and cold laws of data and
choosing appropriate storage strategies are the focus of
research in the field of distributed storage. Zhang et al. [16]
distinguished between hot and cold data by file size, using
erasure coding for big-byte data and using three copies for
small-byte data. Mao et al. [17] used the citations of data
blocks to judge the popularity of data access. -eir research
showed that the higher the citations, the higher the popu-
larity of data access.

Inspired by previous studies, we realize that, for data at
different temperatures, we can combine the characteristics
of replication and erasure coding to adopt corresponding
redundant storage solutions for different data. For hot
data, which are frequently accessed, replication strategy
can be applied to ensure read-write performance; for
warm data, a hybrid strategy of replication and erasure
coding is used to balance storage efficiency and perfor-
mance [18, 19]; for cold data that are rarely accessed, an
erasure coding mechanism is used to improve storage
utilization [20].

-is article proposes a novel hybrid storage scheme on
the CBase database [21]. -e scheme divides data objects
into tablets, using a data temperature differentiation algo-
rithm based on Newton’s cooling law [22]. By collecting the
access frequency of the tablets, the system divides the
temperature of the tablets. In order to ensure the storage
efficiency of the system, different storage strategies are
adopted for data at different temperatures. In addition,
combined with the characteristics of CBase’s read-write
separation architecture, we propose two different data up-
date algorithms.

In summary, the key contributions of this paper include
the following:

(i) A data temperature differentiation algorithm based
on Newton’s cooling law, which can effectively
distinguish the temperature of the tablets and
perform dynamic data temperature conversion, is
introduced

(ii) A hybrid storage mechanism is proposed to choose
corresponding storage strategies for data at different
temperatures, which improves the storage utiliza-
tion of the system while ensuring the read-write
performance of the system

(iii) A thorough evaluation is completed to confirm ER-
store efficiency and availability

-e rest of this article is organized as follows. In Section
2, we, respectively, introduce the characteristics and appli-
cable scenarios of replication and erasure coding and in-
troduce the infrastructure of the CBase database system.
Section 3 describes the design of ER-store. In the design, we
introduce how to select different storage strategies based on
data temperature. In Section 4, we propose two different data
update algorithms. In Section 5, we conduct experiments to
compare the difference between ER-store and the three-
replica mechanism in transaction processing performance
and storage efficiency. Section 6 concludes the paper.

2. Background

2.1. Replication. Replication is a commonly used solution to
provide high availability [23, 24]. By duplicating multiple
copies of the stored data in a system, in the event of data loss,
other copies can be used to provide services, and the sur-
viving copies can be used to repair the data. -e replication
mechanism ensures high availability of the data in a dis-
tributed system.

-e replication solution is simple to implement. By
evenly distributing the copies on each node, we can not only
improve the parallel read performance of the system but also
achieve load balancing of the system. However, this is at the
cost of high data redundancy, requiring M+ 1 copies to
tolerate the data loss ofM. For example, by introducing three
copies to tolerate the loss of two data blocks, the storage
utilization rate of the system is only 33.3%.

2.2. Erasure Coding. As a redundant storage solution that
can effectively improve storage utilization, erasure coding
divides the original file into blocks and encodes the data
blocks to generate parity blocks [25, 26]. After the data are
lost, the parity blocks and the remaining data blocks are used
to repair the data [27–29]. A common erasure coding is
Reed–Solomon code (RS-code) [30]. RS-code is based on
polynomial calculation performed on Galois field GF (2w).
We usually use two tuples (K and M) to represent the se-
lection of RS-code parameters, where K refers to the number
of data blocks in a stripe andM refers to the number of parity
blocks in a stripe. -e fault tolerance of the stripe is M. As
shown in (1), RS-code uses the Vandermonde matrix and
data blocks to perform matrix operations to obtain parity
blocks.
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In the RS-code, the node where the data update occurs
broadcasts the incremental data to the node where the parity
block is located. As shown in (2), Pi

′ and Di
′ are obtained after

updating Pi and Di, respectively. Δ D is the delta data
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obtained by the XOR operation of Di
′ and Di. A is the

Vandermonde matrix in (1).
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2.3. CBase Database System. CBase database is a distributed
relational database developed by Bank of Communications.
As shown in Figure 1, CBase can be divided into four
modules, RootServer (RS), UpdateServer (UPS), Chunk-
Server (CS), and MergeServer (MS). In CBase, the data are
divided into baseline data and incremental data according to
the timeline. -e baseline data are read-only. All modifi-
cations are updated to the incremental data, and the in-
cremental data and baseline data are merged in the system
through regular merging. -e following briefly introduces
the basic functions of the four modules:

RS: it manages all servers in the cluster, stores meta-
information about the distribution of tablets, and
manages copies. RS is generally divided into a primary
node and a backup node, and strong data consistency
[31] is ensured between the primary and standby nodes.
UPS: it is the only module in the cluster that can
perform write operations, and it stores incremental
data. UPS accepts update operations, writes them into
memory, and periodically merges with baseline data.
UPS is also divided into a primary node and a backup
node. During deployment, the UPS process and the RS
process often share a physical server.
CS: it stores baseline data. In CBase, the baseline data
are sorted according to the primary key and are divided
into data objects with roughly the same amount of data,
called tablets. -e baseline data are generally stored in
the form of three replicas.
MS: it accepts and parses the sql queries and forwards
the parsed sql query to CS and UPS.

3. The Hybrid Storage Mechanism

3.1. ER-Store Design. Combining the characteristics of
multiple replicas and erasure coding technologies that we
analyzed in Section 2, we designed an ER-store hybrid
storage solution. Based on the CBase system architecture,
this paper changes the original three-replica storage strategy
and uses data temperature to distinguish each tablet. In

ER-store, the hot tablets use the traditional three-replica
strategy, and the cold tablets adopt the RS-code (K� 4 and
M� 2) technology to improve the storage utilization of the
system. For the warm tablet, we adopt a compromise scheme
of two replicas and RS-code (K� 4 and M� 1) and find a
tradeoff between the system’s read-write performance and
storage utilization. At the same time, taking the combination
of baseline data and incremental data in the CBase system as
a cycle, the data temperature differentiation algorithm is
used to calculate the temperature of the tablets, and tablets’
temperature is dynamically converted.

As shown in Figure 2, the design of ER-store does not
change the overall architecture of CBase, but increases the
tasks of each module and changes the data structure
maintained.

-e RS node is responsible for monitoring the status of
each cluster and storing the metainformation of the tablets.
As shown in Table 1, in order to add the data temperature
recognition function, we modified the data structure of the
original RootTable. -e TS and t fields, respectively,
identify the temperature status and value of the tablet; the
SS identifies the redundant storage scheme of the tablet in
the CS, and the RI records the location of the tablet and the
data distribution of the code stripe where the tablet is
located. RS determines the data temperature of each tablet
through the access frequency of each tablet in the current
period and the data temperature of each tablet in the
previous period.

-e CS node stores the baseline data and divides the
baseline data into tablets of equal size through the primary
key. When the system goes online, CS starts to count the
access frequency of each tablet. Before the data undergo
temperature conversion, the access frequency information of
the tablets is sent to RS. -en, RS uses the access frequency
information of each tablet, combined with the temperature
differentiation algorithm, to recalculate the temperature of
each tablet. Subsequently, by comparing the original tem-
perature with the tablets, RS generates a temperature con-
version table. -en, RS notifies CS to copy and encode the
tablets to be converted and stores each tablet on different
nodes according to the new load balancing strategy. We
attempt to adopt a regenerative code coding strategy for the
cold tablets, which can effectively reduce the huge network
IO that exists during data recovery due to the use of erasure
coding technology systems. For the warm tablets, it is an
intermediate state that allows the hot tablets and the cold
tablets to perform smooth and dynamic conversion. It uses
two copies and a parity block to provide the same fault
tolerance while ensuring the concurrent read performance
of the system.

-e UPS node is still used to store and manage incre-
mental data. All data update operations do not immediately
change the baseline data, but are written to the memory
table, which is called memtable in UPS. -e UPS realizes the
separation of baseline data and incremental data and updates
the parity blocks when the baseline data and incremental
data are merged, which can eliminate the write request and
update delay caused by erasure coding technology and save
the system CPU computing resources.
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-e MS node is mainly responsible for the parsing and
forwarding of sql queries. Because the cold tablets and the
warm tablets are stored using erasure coding technology, the
number of copies for processing data access requests is
reduced, which reduces the transaction processing perfor-
mance of the system.We have effectively solved this problem
through reasonable data temperature distinction.

3.2.DataTemperatureRecognitionAlgorithm. Asmentioned
previously, ER-store uses corresponding redundant storage
strategies for data tablets of different temperatures. -ere-
fore, the accurate determination of the tablet temperature
and the dynamic conversion of the tablet temperature di-
rectly affect storage efficiency and system performance. In
this section, we introduce the data temperature recognition
algorithm.

At the beginning of the period T, each CS node counts
the access frequency of the stored tablets. Before the start of
the new period T+ 1, each CS node sends the access fre-
quency information of each tablet in the period T to the RS.
-en, RS updates the temperature of each tablet and resets
the field t in the RootTable. After obtaining the new tem-
perature of all the tablets, RS sorts all the tablets’ temper-
atures and uses the temperature ratio threshold set by the
system to redetermine the temperature type of each tablet.
RS can obtain the data temperature conversion table (TCT)
by comparing the new temperature type of each tablet with
the original RootTable field TS. Subsequently, RS resets the
field TS and modifies the redundant storage information of
the corresponding tablet in the new period. In the storage
information of each type of the tablet, (CSi,CSj,CSk)

represents the location information of CS nodes where each
copy of the hot tablets exists. (Tid,CSm,CSn, K) represents
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Figure 1: CBase architecture. As shown in the upper left figure, original data are divided into tablets according to the primary key, and the
three-replica strategy is used to store tablets. -e middle part describes the query process and update process in CBase. -e dotted line
represents the common operation of query update. -e solid line represents the data update operation, and the dashed solid line represents
the data query operation.
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the IDs of other tablets, the position information of the CS
nodes of the copy, and the sequence number in the coding
stripe where the warm tablet exists. (Tid,CSd, N) represents
the position information of other tablets in the coding stripe
where the cold tablet is located and the sequence number in
the stripe. Algorithm 1 describes the details for recognizing
the temperature of the data tablet.

Based on Newton’s cooling law in the physics world, we
designed the tablet temperature formula related to the
creation time and access frequency in ER-store. Newton’s
cooling law is used to describe the change in temperature of
an object over time in a physical environment. -at is, the
decreasing speed of the object’s temperature is proportional
to the difference between the ambient temperature and the
object’s temperature, as shown in the following:

dT(t)

dt
� −k(T(t) − E). (3)

-e left side represents the decreasing speed of the
object’s temperature, the right side T (t) represents the
object’s temperature, E represents the environmental tem-
perature, and k represents the proportional coefficient of the
object’s temperature change speed and the object’s envi-
ronment temperature difference. Solving the differential
equation, derivation (4) of Newton’s cooling law can be
obtained, and the object’s temperature can be obtained by
the following formula:

T(t) � T0 − E( e
− kt

+ E. (4)

-e application scenario of Newton’s cooling law is
aimed at the physical environment. In the design of ER-
store, we modified it to distinguish the temperature of the
data tablet. In the system, the temperature changes between
the data tablets are independent and are determined by the
creation time and access frequency of the data tablets. When
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Figure 2: -e hybrid scheme of ER-store in CBase. As shown in the upper left figure, the data are divided into tablets according to the
primary key.-e three-replica strategy is used for the hot tablets; the two replicas + RS-code are used for the warm tablets, and the RS-code is
used for the cold tablets. -e upper right corner describes the new RootTable in RS after the introduction of ER-store. -e middle part
describes the calculation process of the tablet’s temperatures and the conversion process of the storage scheme when the data are regularly
merged in the ER-store.
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the data tablets exist longer and the corresponding access
frequency is lower, the temperature of the data tablet is
lower. -erefore, when calculating the change of the tablet
temperature with time, the ambient temperature E is ig-
nored, and the proportional coefficient Theat, which repre-
sents the incremental temperature of the tablet and the
access frequency, is introduced. -e temperature calculation
formula of the data tablet is shown in (5); T(tn) represents
the data temperature of the data tablet in the period n; α
represents the cooling coefficient; and Fn−1 represents the
access frequency of the tablet in the n− 1 period.

T tn(  � T tn−1( e
− α tn− tn−1( ) + Theat ∗Fn−1. (5)

3.3. Data Temperature Conversion Algorithm. -e temper-
ature conversion of the data tablet occurs when the
baseline data and incremental data are merged in the
CBase system. As shown in Figure 2, after the RS obtains
the data temperature conversion table in period T, the RS
traverses the temperature conversion table. -e table
temperature is classified to generate a set of hot, warm,
and cold tablets, and corresponding redundant storage
information is generated according to the load balancing
strategy. -en, RS sends the generated redundant storage
information to each CS node. Each CS node copies and
encodes the tablet according to the redundant storage
information. After all node operations have been com-
pleted, the RS node is notified to update the RI field in the
RootTable and complete the data temperature conversion
of the tablet. -e details of tablet temperature conversion
are shown in Algorithm 2.

4. Regularly Updated

As previously mentioned, ER-store uses an erasure coding
strategy to encode the warm data tablet and the cold data
tablet and stores the encoded parity tablet and data tablet on
the CS node. When the CBase system merges incremental
data and baseline data, the data tablet is updated, and the
parity block in the code stripe must be updated synchro-
nously to meet data availability. In order to adapt to different
update scenarios, we have designed two algorithms for
updating the check block: re-encoding algorithm and in-
cremental encoding algorithm.

P’j � 
k−1

i�1
GjiDi + GjkDk

′

� 
k−1

i�1
GjiDi + Gjk − Gjk + GjkDk

′

� 
k

i�1
GjiDi + GjkΔDk

� Pj + Gjk Di
′ − Di( , j ∈ [1, m].

(6)

4.1. Re-Encoding Algorithm. -e encoding rules are used to
read out the data tablets of the entire stripe and re-encode
them to generate the latest parity tablets. -is method is
suitable for scenarios where most data tablets in the stripe
are updated.

As shown in Figure 3, in the stripe coded with RS (k,m),
the data tablet D1 merges with the incremental update data
from UPS to become D1′ (1), and then the system reads out
other data tablets D2, D3, . . .,Dk in the stripe from the
corresponding node (2). -en, these tablets and D1′ are used
to regeneratem new parity tablets P1′, P2′, . . .,Pn

′ according to
the encoding rules (3). Finally, D1′ and m new parity tablets
are stored on the corresponding node (4). In this process, a
total of k+m times of network I/O are consumed. -ese are
k− 1 times of hard disk reads and m+ 1 times of hard disk
writes.

4.2. Incremental Encoding Algorithm. -e second method to
update the parity tablets is incremental update, which is
suitable for scenarios where a small number of data tablets in
a stripe are updated. It can be seen from (1) that
Pj � 

k
i�1 GjiDi; when the UPS updates data tablets Dk to

Dk
′, the formula can be derived to obtain the second update

parity tablets (6). It can be seen from (6) that the value of the
new parity tablet Pj

′ is only related to the old parity tablet Pj

and the data tablet increment ΔDk. -erefore, an incre-
mental update method can be derived, which updates the
parity fragments by calculating the incremental information
of the data fragments.

Figure 4 shows the process of ER-store using the in-
cremental update method to update a data tablet in a stripe.
After the CS node where the data tablet Di is located obtains
the incremental update data of tablet Di from the UPS, the

Table 1: New RootTable fields.

Name Definitions
TableID Table ID
PK Primary key range
Tid Tablet ID
SS (0 is 3 replicas, 1 is 2 replicas + EC, 2 is EC) Storage scheme
t Temperature
TS Temperature status
RI Redundant information
Tidsum Tablet size
v Baseline data version
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system reads the original data tablet Di from the node and
performs the XOR calculation with the update data Di

′ to
obtain the update increment ΔDi. -en, the CS node sends
ΔDi to the nodes where all the parity tablets are located. -e
parity nodes read the original parity tablets, calculate the
new parity tablets according to (6), and store the new parity
tablets. Finally, the CS node stores Di

′ and completes the
parity tablet update process.

5. Evaluation and Comparisons

In this section, we conducted a series of performance tests
on the CBase system that was applied to the ER-store
storage mechanism to evaluate the relationship between
storage utilization and transaction processing perfor-
mance. In our experiment, all the tests were performed on a
CBase cluster built by 10 PC servers. -e node configu-
ration in the cluster was composed of an 8-core 2.4 GHz
(Intel(R) Xeon(R)) E5-2620 processor, 64 GB memory, a
2 TB disk, and a 10 Gbps network card. Each node ran
Linux release 7.5.1804.

In the cluster, the CS module was deployed on each
server, two servers were deployed with UPS and RSmodules,
and four were used to deploy MS. In addition, the hot tablets
used the three-replica strategy storage, the warm tablets used

the RE (4, 4, 1) hybrid storage scheme, and the cold tablets
used the RS (4, 2) erasure coding scheme. As a modular
multithreaded benchmarking tool, sysBench was used for
testing in this experiment. In addition, according to the well-
known 80/20 rule [32], in most data access scenarios, 80% of
the data access of the system is concentrated on 20% of the
data, we set the threshold of hot data to 20%, and for cold
data, three sets of thresholds (20%, 40%, and 60%) were set
to simulate complex data access scenarios.

5.1. Storage Efficiency. Our first experiment evaluated the
disk consumption of the CBase system using the ER-store
storage mechanism.We used three replicas and the ER-store
mechanism to store the same data in the cluster. Figure 5(a)
shows the disk consumption of different storage mecha-
nisms under different numbers of records. It can be seen
from the figure that when the original three-replica mech-
anism was used, the storage efficiency of the system was only
33.3%, and the ER-store mechanism could significantly
improve the system’s storage utilization. As the proportion
of cold data increased to 60%, the storage efficiency of ER-
store reached 51.3%, an increase of 18%. -is means that
compared with the traditional three-copy storage mecha-
nism, the system saved 1.05 PB of disk space for every 1 PB of

Require:
T(tn−1), F(tn−1) of each tablet, Theat � 1, α;
-resholds of each temperature-type tablet set by the system, Tdhot, Tdwarm, Tdcold;

Ensure:
-e data temperature conversion table in n period, TCT;

(1) : Initialize Tidsum is the sum of tablets;
(2) : Initialize Tid is the ID of the tablet;
(3) : Initialize tn−1 is the current period and tn is the new period;
(4) : for Tid� 1 to Tidsum do
(5) : T(tn)Tid � T(tn−1)Tid∗ e− α(tn− tn−1) + Theat ∗F(tn−1)Tid
(6) : end for
(7) : Use any sorting algorithm to rank the tablet temperature in the descending order;
(8) : sTid is the sorted position of this tablet;
(9) : Tsize is the size of TCT;
(10) : for sTid � 1 to Tsize do
(11) : if sTid ≤Tdhot ∗Tidsum then
(12) : TStid � 0;
(13) : if TSTid ≠ SSTid then
(14) : TCT.insert(Tid, TSTid);
(15) : end if;
(16) : else if Tdhot ∗Tidsum< sTid ≤Tdwarm ∗Tidsum then
(17) : TSTid � 1;
(18) : if TSTid ≠ SSTid then
(19) : TCT.insert(Tid, TSTid);
(20) : end if;
(21) : else
(22) : TSTid � 2
(23) : if TSTid ≠ SSTid then
(24) : TCT.insert(Tid, TSTid);
(25) : end if;
(26) : end for
(27) : return TCT;

ALGORITHM 1: Data temperature recognition algorithm.
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data stored. -erefore, the ER-store storage solution sig-
nificantly improved the storage efficiency of the system.

In addition, as previously mentioned, ER-store uses the
erasure code mechanism to store warm and cold data, while
the erasure code uses encoding to achieve fault tolerances,
which means that, as the system has higher requirements for
fault tolerance, ER-store can improve the storage capacity
more significantly. We verified this by setting different fault
tolerances, as shown in Figure 5(b). When the fault tolerance
was increased to 4, the three-replica mechanism consumed
4 PB of extra space for every 1 PB of data stored, while the
ER-store consumed only 1.54 PB of extra space.

5.2. Performance. -e second experiment tested the per-
formance difference of the ER-store hybrid storage pattern
for different data access scenarios with different numbers of
concurrent threads. We set a fixed number of access op-
erations and simulated two different data access scenarios:
uniform distribution and Pareto distribution. In the uniform
distribution scenario, all access operations were allowed to
access each data tablet uniformly. According to the 80/20
rule, in a real application scenario, it is impossible for the
data access operations to access each tablet evenly. -us, we
simulated the Pareto distribution scenario: let most access
operations focus on a small number of hot data. We used

Require:
-e data temperature conversion table, TCT;
-e set of hot tablets to be converted, hotTablets;
-e set of warm tablets to be converted, warmTablets;
-e set of cold tablets to be converted, coldTablets;

(1) ID is the sequence number of the tuple in the TCT;
(2) Tid is the tablet ID to be converted in the TCT;
(3) Tsize is the size of TCT;
(4) for Id� 1 to Tsize do
(5) if TStid � � 0 then
(6) hotTablets.insert(Tid);
(7) else if TStid � � 1 then
(8) warmTablets.insert(Tid);
(9) else
(10) coldTablets.insert(Tid);
(11) end for
(12) while Tid ∈ hotTablets do
(13) Use three replicas to back up the tablet;
(14) CS notifies RS to update column RI and SS� 0 of the RootTable;
(15) ∗ use two replicas and Reed–Solomon to store redundant tablets; ∗ /
(16) : while each 4 tablets ∈ warmTablets do
(17) : re init n n k(rs,4,4,1,tablets);
(18) : CS notifies RS to update column RI and SS� 1 of the RootTable;
(19) :/∗ use Reed–Solomon to encode redundant tablets; ∗ /
(20) : while each 6 tablets ∈ coldTablets do
(21) : rs init n k(rs,6,2,tablets);
(22) : CS notifies RS to update column RI and SS� 2 of the RootTable;

ALGORITHM 2: Data temperature conversion algorithm.

UPS

(1)

CSs

(3)

(4) (2)
···

(4)
···

··· ···

···

D'1 P'1 P'2 P'mD2 Dk

Figure 3: Re-encoding algorithm.
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transactions per second (TPS) and average access latency as
metrics to measure system performance. We conducted a
total of six experiments and took the average value as the
final result.

-e experimental results are shown in Figure 6. In the
uniform distribution scenario, the performance of ER-store
is significantly reduced compared to the three-replica
mechanism by the two metrics of throughput rate and access
latency. -is may be because the system operations access
each tablet uniformly, and ER-store used the RS erasure code
mechanism to handle both warm and cold data. Each warm
tablet replica number is reduced by 1, and the number of
replicas of each cold tablet is reduced by 2. -e number of
replica in the system that can respond to access operations
decreases by 33%–47%, which results in performance deg-
radation. In a real data access scenario that conforms to the
80/20 rule, the system performance is not significantly

affected because ER-store uses a data temperature algorithm
to perform temperature partitioning of the tablets so that
most of the access operations fall on the hot data with three
copies and the warm data with two copies. Experiments have
proven that ER-store can significantly save storage space
under real data access scenarios conforming to the 80/20 rule
while guaranteeing essential system performance.

Although we can determine the storage method of the
data in the new cycle according to the data temperature of
the previous cycle, there is still a possibility that a small part
of the cold data will be accessed frequently. -erefore, we
also designed related experiments to explore the impact of
this sudden change in data temperature on system perfor-
mance. In the experiment, the data temperature threshold is
set to 2 : 2:6, the number of oltp threads is set to 60, and a
fixed number of access requests is set. We let the access
request to access the corresponding data in a Pareto

UPS Data
Tablet

Parity
Tablet1

Parity
Tablet2

ACK

ACK
ACK

Send ΔDi

Read P2

Write P'2

Read P1

Write P'1

Write D'i

Read Di

Send D'i

Send ΔDi

Figure 4: Incremental encoding algorithm.
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distribution manner. In the unstable experiment, we transfer
10% of the requests to access some cold tablets at time t′,
causing the temperature of these tablets to rise. -e result is
shown in Figure 7; when the access request of the cold tablet
increases, the throughput of the system decreases because
there is only one data copy that accepts data access.

In order to optimize the overall performance of the
system and verify the influence of the ratio of the three
temperature thresholds of hot, warm, and cold on the system
performance, we also perform related experiments. By
setting a fixed number of access requests, the temperature
threshold of the hot data is set to 20% according to the 80/20
rule, and the change of system performance is observed by
changing the threshold of warm data. We evaluate the
overall performance of the system from two indicators of
storage efficiency and access performance. As shown in

Figure 8, the data access performance and the warm data
threshold are positively correlated, and the data storage
efficiency and the warm data threshold are negatively cor-
related. -erefore, in real application scenarios, we can
adjust the temperature threshold ratio of the system
according to our business needs to find a balance between
storage efficiency and access performance.

5.3. Update Efficiency. -e third experiment evaluated the
performance of two data update algorithms in the ER-store
storage model in the Pareto distribution scenario. In the
experiment, we set the size of the data tablet to 16KB and
wrote 500,000 update transactions to the UPS node in ad-
vance. After the update transactions were written, we
manually triggered the periodic merge mechanism of the
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Figure 6: Comparison of the concurrent transaction processing performance between three replicas and ER-store. (a) Uniform distribution.
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CBase database and let each CS node pull its own update
data increment from the UPS. After all CS nodes completed
the update operation, we evaluated the performance of the
two update algorithms by counting the time consumed to
complete the update. In addition, in the experiment, we also
tested the performance of the two algorithms under different
update scenarios by varying the number of coded stripe
update tablets. As Figure 9 shows, in the RS encoding stripe
with the data block of 4, the incremental encoding algorithm
performed better than the recoding algorithm when the
number of update tablets was less than 3. As the number of
update tablets increased, the incremental encoding algo-
rithm was inferior to the recoding algorithm.

5.4. Recovery Efficiency. -e fourth experiment evaluated
the performance of the system to recover data in case of
node failure in the ER-store storage mode. In the

experiment, we prepared 10 sysBench data tables con-
taining 100,000 records and distributed the data evenly on
each node according to the load balancing mechanism,
with an average data size of 8.2 GB per node. We evaluate
the recovery efficiency of ER-store under different node
failure scenarios by killing different numbers of CS pro-
cesses at the same time.

As shown in Figure 10, the ER-store was inferior to the
three-replica mechanism in data recovery performance.
-is is likely because the erasure code mechanism involves
a large number of encode operations and a large number of
network IO in data recovery. At the same time, we found
that the ER-store had higher data recovery efficiency when
the warm data threshold was larger. -is is likely because
the warm data were stored in a hybrid storage mode of
replication and erasure codes, and the data recovery per-
formance was better than cold data that are based on
erasure codes.
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6. Conclusions

Efficiency and reliability are two key features in distributed
storage. -is article has discussed the efficiency and reli-
ability of the multireplicas and erasure code storage
methods. We also understand the difference in access fre-
quency between data and propose using data temperature to
distinguish data. -rough the division of data temperature,
we have proposed an ER-store hybrid storage strategy, which
combines the characteristics of replication and erasure
coding to balance performance and storage utilization. We
implemented this design on the CBase distributed database
and conducted a series of experimental comparisons with
the original three-replica mechanism of the system. Ex-
perimental results show that the ER-store mechanism can
increase the system storage rate by 14.6%–18.3% while
ensuring the performance of concurrent transaction
processing.
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