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Real-time vehicle guidance effectively reduces traffic jams and improves the operational efficiency of urban transportation. ,e
trip time on a route is considered as a random process that changes with time, and the shortest path selection requires a random
dynamic model and the solution of a decision-making problem. ,us, the shortest trip time is the criterion to determine the
dynamic path selection by a random dynamic programming (DP) model which discretizes the trip times in the continuous
segments on the route. In this study, a numerical model of random dynamic programming is established by using a probability
tree model and an AND/OR (AO∗) algorithm to select the path of the shortest trip time. ,e results show that the branches of the
probability tree are only accumulated on the “quantity” and do not cause a “qualitative” change. ,e inefficient accumulation of
“quantity” affects the efficiency of the algorithm, so it is important to separate the accumulation of “quantity” from node
expansion.,e accumulation of “quantity” changes the trip time according to the entering time into a segment, which demands an
improved AO∗ algorithm. ,e new AO∗ algorithm balances between efficiency and the trip time and provides the optimal real-
time vehicle guidance on the road.

1. Introduction

Vehicle-to-everything (V2X) and Internet of ,ings (IoT)
collect a large amount of observation data of traffic from
multisource sensors and devices and require big data
technology [1–4]. ,e collected data may be used to provide
the optimal path for vehicles, especially unmanned vehicles.
In unmanned driving, dynamic path planning is required in
two aspects: global path planning [5] and obstacle avoidance
[6]. ,e algorithms of obstacle avoidance in path planning
[7–9] and global path planning [10–12] are attracting
considerable interest. However, the randomness of the traffic
data from the variable traffic network environment com-
plicates the algorithms, which still need more research than
before.

,e trip time in a segment of a vehicle path is regarded as
a time-dependent random variable, and its probability
distribution depends on the entering time of a vehicle to the
road segment [13]. ,us, the problem to obtain the shortest
time of the vehicle’s trip in the segment is the shortest path
problem of a stochastic time-dependence (STD) network.
Hall [14] stated that a label setting (LS) or a label correcting
(LC) algorithm was not suitable for the shortest path as
Bellman’s optimality principle does not hold randomness
[15].

,e optimal path selection is not a simple shortest path
problem, but an adaptive decision-making problem with
time. ,e adaptive decision-making problem cannot be
solved by a fixed shortest path method. ,e optimal path
selection strategy from a starting to the next target node
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considers the time to move between them.,e path selection
is not only needed from the starting node but from each
decision point (intersection) to reach the target node in the
shortest time. ,e optimal path must be selected to have the
shortest trip time to the target node or intersection, and the
subsequent selection will be no longer affected by the pre-
vious selection process. For this type of decision-making,
dynamic programming is regarded to be appropriate.,us, a
problem of stochastic and time-dependent shortest path
(STDSP) requires a model of dynamic programming.

,is study aims to suggest an AND/OR (AO∗) algorithm
to solve an STDSP problem in finding the optimal path with
the shortest trip time between nodes or intersections. ,e
complexity of the shortest path problem in an STD network
was analyzed by using a probability tree diagram and a first
in first out (FIFO) algorithm based on the nonsatisfaction
and nonuniqueness of the trip times. ,en, a model of
stochastic dynamic programming for dynamic path selec-
tion was applied to the estimation of the minimum trip
times. Based on the heuristic function and the two-point
discretization of the trip time between segments (between
nodes or intersections), an AO∗ algorithm, a heuristic search
algorithm was proposed to solve the STDSP problem by
using the STD programming model with the consideration
of the balances between the efficiency and the optimal trip.
With the results, the STDSP problem was defined with the
analysis of the complexity of the STDSP problem. ,en, the
algorithm was validated with real-time observation data.
Finally, the proposed AO∗ algorithmwas improved again for
suggesting the final algorithm.

2. Theoretical Background

Bellman’s optimality principle is used to find the shortest
path between any of the two nodes in a network and applied
to a static shortest path algorithm. When the trip time
between the nodes is constant, that is, the path is time-in-
dependent, an efficient labeling algorithm solves the shortest
path problem. Wu et al. demonstrated [16] that the Bellman
optimal principle in the static network is also applicable to
the STD and FIFO networks. In the FIFO network, the
algorithm of the shortest path in the static network can be
used for solving the shortest path in a dynamic network.
,us, LS or LC algorithms solve such shortest path prob-
lems. When a trip time is regarded as a random variable with
a known probability distribution with the objective function,
the random shortest path problem is transformed into a
deterministic one for obtaining a desired shortest path.
However, a random trip time can be obtained by an efficient
labeling algorithm by solving the expected shortest path
problem [17].,e shortest time is obtained as the solution of
an objective function of the path between nodes, which does
not consider the random characteristics of the network [18].

In the actual traffic, the minimum trip time, as well as the
minimum risk, is considered [19]. ,erefore, the minimum
expectation-mean square error [20] and α-reliable path
problem need to be considered [21]. ,e path objective
function of the minimum expectation-mean-square error
path is a linear combination of the expected value and the

mean square error. ,us, the proportional coefficient of the
linear combination needs an artificial setting that is arbitrary
and cannot uniformly explain the path selection.

Dynamic programming is appropriate for multistage
decision-making problems. Steinmetz et al. [22] modeled a
dynamic path selection as a Markov decision process (MDP)
and believed that each segment on the road corresponded to
blocking and nonblocking. When the current state of each
segment is known, an intersection to pass is selected. Hall
[14] suggested the use of dynamic programming to solve the
time-dependent path selection and proposed the algorithm
that combined a k-shortest path and a branch and bound
method. ,is algorithm had low operating efficiency and
could not satisfy the requirement in real time. When Wu et
al. [16] summarized the rules for solving STDP problems
using the LC algorithm which had randomness. ,ey be-
lieved that replacing the definite value with the expected
value of a random variable allowed similar results to the
definite situation by assuming consistency. However, the
assumption is not applicable in the actual transportation
network as the real situation has randomness.

Fu and Rilett [23] regarded a random time-dependence
problem of the pate selection by Hall [14] to be a continuous
random process. ,ey transformed the time-dependence
problem into an extreme value problem to estimate the trip
time on the path. Based on the trip time and its variance in
each segment, a series of probability-based approximation
models (PAMs) were established by using the k-shortest
path. ,en, a heuristic algorithm was used to solve the
STDSP problem. Fu [24] proposed an adaptive strategy and
used dynamic programming for the PAM. However, his
adaptive LC algorithm did not adopt the nondifferentiability
of the extreme value problem in the use of Rosenblueth’s
two-point estimation.

Global path planning is based on an algorithm of optimal
path selection which is divided into intelligent and graph
search algorithms. Graph search algorithms [10] include
Dijkstra’s algorithm and A∗ algorithm. As an A∗ algorithm
uses heuristic estimation, it reduces the amount of search,
improves efficiency, and guarantees the optimality of the
path. However, the efficiency is lower in a complex envi-
ronment of a large scale. Intelligent algorithm [11, 12]
simulates the biological evolution and biomimetic nature of
insect foraging and nesting, mainly including genetic al-
gorithm, ant colony algorithm, particle swarm optimization,
etc. ,is is appropriate for solving and optimizing complex
problems by having the characteristics of potential paral-
lelism but has slow operation speed and premature solution
and does not consider randomness and time dependence.

Previous studies proposed good solutions for the
shortest path problem with randomness but not for the
problems of time dependence. A problem of randomness
with time dependence requires a different approach to
obtain the solution. ,erefore, this study aims to find a
solution to the trip time and path selection by considering
the random processes that change with time, that is, time-
dependent. ,us, the shortest path problem is considered as
a segmented decision-making problem by using dynamic
programming.
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3. Problem Descriptions

,e real-time navigation of a vehicle requires planning an
optimal path from the current to the target position (node)
based on real-time information. By updating the trip times
in each segment, the guidance strategy shows the shortest
path with an appropriate algorithm. When the strategy does
not consider the variability of a driving route, it only pro-
poses a suboptimal path. Variability is solved with dynamic
programming that decomposes a complex problem into a
series of simple problems. ,e optimal path of a route is
obtained by decomposed into segments between the nearest
two nodes. For the shortest path problem of the nodes, the
principle of stochastic dynamic programming is considered
for dynamic path selection.

3.1. Definition of STDSP. ,e real-time navigation of a vehicle
requires planning an optimal path from the current to the
target position (node) based on real-time information. By
updating the trip times in each segment, the guidance strategy
shows the shortest path with an appropriate algorithm. When
the strategy does not consider the variability of a driving route,
it only proposes a suboptimal path. Variability is solved with
dynamic programming that decomposes a complex problem
into a series of simple problems. ,e optimal path of a route is
obtained by decomposed into segments between the nearest
two nodes. For the shortest path problem of the nodes, the
principle of stochastic dynamic programming is considered for
dynamic path selection.

,e traffic network is a spatiotemporal network. ,e
spatiotemporal network is expressed as

GT � VT, AT( 􏼁, (1)

where VT � (i, t)|i ∈ V, t ∈ T{ } and AT � (i, t), (j, t+􏼈 τij(t))

|i, j ∈ V, t, t + τij(t) ∈ T}.
Here, (i, t) refers to a point of (space, time). ,e defined

GT does not have a closed-loop and avoids a cyclic search.
When the successor node is defined as Γ(i, t), the next node
is Γ−1(i, t). Xa(t) represents the trip time in a segment at
time t, andμa(t), σa(t), respectively, represent the expec-
tation and variance at time t. fXa(t)(x) represents a prob-
ability density function.

,ere are three possible directions at the intersections:
going straight, turning left, and turning right. ,e signal
control system develops from the point control of “single
point fixed cycle” to the direction of line control and surface
control. ,e signal cycle of intersection will be adjusted
according to the traffic flow. Due to its complexity, most
intersections are still controlled by point control in reality, so
this article only studies the situation that the signal cycle
does not change.

,e problem is represented by the average of past his-
torical data as dij(t) which means the delay of intersection
with the next node j on node i at time t. ,en, the strategy of
the path selection problem is defined as

p: VT⟶ V,

p(i, t) ∈ Γ(i, t).
(2)

It is a mapping strategy from the node of a spatio-
temporal network to the node of a nontemporal network.
When nk is the k-th node to arrive, and its corresponding
arrival time is tk, then (n(k+1), t(k+1)) � p(nk, tk). ((nk, tk),
(n(k+1), t(k+1))) is random due to the randomness of the trip
time of t(k+1) to node n(k+1). It can be used as a predicted
value of the time to reach n(k+1) and from node nk.

3.2. 9e Complexity Caused by the Branch of Probability.
Since the trip times on a route are random, the time to reach
a certain node is uncertain. ,us, total trip time is
decomposed into several arrival times with the probability of
different shortest paths.

Figure 1 shows an example. If the departure time from
node 1 is 0, the probability to reach node 2 at t� 10 and t� 45
is 0.5, respectively. ,ere are five routes from node 1 to node
6 to choose from. ,e probability to reach node 6 at t� 25
and t� 60 is 0.5, respectively, and the expected trip time is
42.5 s.

Path (1, 2, 3, 6) is the same as path (1, 2, 4, 6) but has a
different probability and expected trip time of 57.5. ,e
expected trip times of path (1, 3, 6), path (1, 3, 2, 4, 6), and
path (1, 5, 6) are 95, 75, and 70, respectively. ,e paths are
not the optimal trip from node 1 to node 6. ,e trip from
node 1 at t� 0 to node 2 at t� 10, node 3 at t� 15, and node 6
at t� 20 sequentially has the probability of 0.5. For some
reason, when the trip reaches node 2 at t� 45 due to the entry
time limit on the road section (3, 6) and changes its path to
node 4 at t� 50 and then to node 6 at t� 60, the probability is
also 0.5 and the expected trip time from node 1 to node 6 is
40. ,is path has the shortest time, but it is not the same as
the path in the static state that is expressed as a path (1, 2,
3, 6|4, 6).

In this case, the search process of the shortest path from
node 1 to node 6 can be resolved by using an AND/OR tree.
,e decomposition needs to define the state representation
of the problem. ,e problem has two types of states. One is
the state when it reaches a certain node, and the other is the
selection state when starting from a certain node. ,e two
types of states alternately make a pair. ,e decomposition
process of the original problem is shown in Figure 2. ,e
numbers in gray and white ellipses represent (node, arrival
time) and (node, arrival tine, next node). ,e search process
starting from node 1 at time 0 includes the subprocesses to
nodes 2, 3, and 5, which requires “OR” node. Starting from
node 1 to node 2 at time 0, due to the randomness, there are
two arrival times to node 2. When there is the shortest path
from node 2 to node 6, it is indicated with a certain
probability, and the shortest trip time from node 1 to node 6
can be calculated. In this case, this process needs an AND
node, and the trip time is the sum of that between the
previous nodes. ,rough AND/OR tree decomposition,
every feasible path from node 1 to node 6 can be found, and
the optimal path by dynamic path selection at node 2 can
also be found by a thick line in Figure 2.

In decomposing the STD shortest path, the AND nodes
are not appearing in the static shortest path problem. If
dynamic path selection is not performed at node 2, the
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optimal route is (1,2,4,6), and the estimated trip time is 42.5
that is longer than that of the optimal path (1,2,3, 6|4, 6) with
the trip time of 40. ,is shows that the STD problem is
complicated due to time correlation although the estimated
trip time is used as the optimal evaluation criterion.

3.3. FIFO Complexity Caused by Unsatisfactory Conditions.
Kaufman and Smith [16] defined the FIFO condition when
solving the time-dependent shortest path, that is, for any (i,
j) ∈A, s+ dij(s)≤ t+ dij(t) for all s, t ∈T, when s≤ t is always
true. As long as the FIFO conditions are met, efficient la-
beling algorithms solve the shortest time-dependent path
problem.

Since the time-dependent trip time of the (2,3) section
does not meet the FIFO condition (2 + 4 is not less than
3 + 2), the shortest path trip time is 6 if the Dijkstra algo-
rithm is used (Figure 3). However, the trip from nodes 1 to 3
has the shortest trip time of 5, which means that nodes 1 to 2
are not the shortest path. ,is does not conform to the
Bellman optimality principle. When the FIFO condition is
met (Figure 3(a)), the Bellman optimality principle is also
satisfied. Miller-Hooks and Mahmassani [17] extended the
FIFO condition with the time-dependency and defined it as

∀(i, j) ∈ A,

Prob s + τij(s)≤ t + τij(t)􏽮 􏽯 � 1, ∀s≤ t,
(3)

where τij(t) is the trip time on (i, j). ,is implies that the
STD network with an independent trip time is calculated
with the assumption of consistency between the paths.

In Figure 4(b), since the trip time of (2,3) section does
not meet the extended FIFO condition, the expected
shortest path from nodes 1 to 3 at time 0 is 5, and its route is
((1,0), (2,3)&&(2,4), (3,5)); the expected shortest path from
nodes 1 to 2 at time 0 is 2.5, and its route is ((1,0), (2, 2)
&&(2,3)). ,e shortest path from nodes 1 to 2 is incon-
sistent with that from nodes 1 to 3, which means that the
expected trip time is not simply equal to the expected trip
time. ,e situation that does not meet the definition of the
extended FIFO is common in STD networks. ,us, it is
unreasonable that the non-FIFO section of the shortest
path is excluded.

4. Dynamic Programming Model and
AO∗ Algorithm

4.1. Dynamic Programming Model. An optimal strategy
p∗(i, t) ∈ Γ(i, t) of the path from a node to the target node in
the shortest trip time is described as follows:

p
∗
(i, t) ∈ argmin μa(t) + v

∗
j, t + dij(t) + Xa(t)􏼐 􏼑 + dij(t)|∀a􏽮

� (i, t), j, t + dij(t) + Xa(t)􏼐 􏼑􏼐 􏼑 and j, t + dij(t) + Xa(t)􏼐 􏼑 ∈ Γ(i, t)􏽯,
(4)

1

2

3

4

5

6

10, p. 0.5
45, p. 0.5

5, p. 1.0

5, p. 1.0
10, p. 1.0

10, p. 1.0

60, p. 1.0

50, p. 1.0

5, p. 1.0 t < 35
45, p. 1.0 other

10, p. 1.0

Figure 1: An STD net.
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where v∗(i, t) is the shortest trip time t from nodes i to d at
time t. ,en,

v
∗
(i, t) � E Yi(t)( 􏼁, (5)

Yi(t) � min
v
∗

j, t + dij(t) + Xa(t)􏼐 􏼑 + Xa(t) + dij(t)|

∀a � (i, t), j, t + dij(t) + Xa(t)􏼐 􏼑􏼐 􏼑 and j, t + dij(t) + Xa(t)􏼐 􏼑 ∈ Γ(i, t)

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (6)

1 32

0[2] 2[3]
3[4]

0[3]

(a)

1 32

0[2] 2[4]
3[2]

0[3]

(b)

Figure 3: Time-dependent dynamic network. (a) FIFO definition. (b) Non-FIFO definition.

(1, 0)

(1, 0, 2)

(2, 45)(2, 10)

(1, 0, 5) (1, 0, 3)

(3, 50)(5, 60)

(3, 15)

(6, 20)

(4, 15)

(6, 25)

(3, 50, 2) (3, 50, 6)

(6, 95)(2, 60)

(5, 60, 6)

(6, 70)

(2, 60, 4)

(2, 10, 3) (2, 10, 4) (2, 45, 3) (2, 45, 4)

(3, 15, 6)
(4, 15, 6)

(3, 50) (4, 50)

(3, 50, 6) (4, 50, 6)

(6, 60)(6, 95)(4, 65)

(4, 65, 6)

(6, 75)

P. 0.5 P. 0.5

Figure 2: STD AND/OR graph decomposition of the shortest path problem.
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with boundary conditions v∗(d, ·) � 0, the recursive process
of dynamic programming is used to solve equations (5) and
(6). However, obtaining the random variable is difficult as
the extreme function. Yi(t) has at least one random variable.
,e statistics F(y) is defined as

FYi(t)(y) � 1 − 1 − FXa1(t)(y)􏽨 􏽩 1 − FXa2(t)(y)􏽨 􏽩 · · ·

· 1 − FXa|Γ(i,t)|(t)(y)􏼔 􏼕,
(7)

where |Γ(i, t)| represents the out-degree of the spatiotem-
poral node (i, t). Although the trip time in each independent
segment follows an asymptotically normal distribution [25],
the random variables do not meet the requirements of in-
dependent and identical distribution:

E Yi(t)( 􏼁 � 􏽚
+∞

−∞
y dFYi(t)(y). (8)

By equation (8), it is very difficult to solveE(Yi(t)). Fu [24],
based on Rosenblueth’s two-point estimationmethod, calculates
the expectation and variance of random variable function from
the expectation and variance of random variable, so as to ef-
fectively avoid solving the distribution of random variable
function. However, the correctness of the equation is ques-
tionable as the extreme values were not differentiable, and
Rosenblueth used a series to expand and approximate the first
few terms for approximation. As we do not assume the de-
pendence of road trip time on time, the time of entering a
segment does not have to be considered for recursing.,is study
starts from the Rosenblueth two-point estimation method [26]
to study the discrete method of solving E(Yi(t)).

4.2. Numerical Stochastic Dynamic Programming Model.
,e density of the random variable X is defined as the
function fX(x) and the random variable Z� h(X), a func-
tion of the random variable. ,e two-point estimation
method uses the probability of two points to express fX(x),
and the probability of these two points meets the first three
moments of fX(x). E(Zk), k � 1, 2, is calculated from two
discrete values if Z � h(X1, X2, . . . , Xn) is a function of n
random variables. ,en, E(Zk), k � 1, 2, is calculated from
2n discrete values.

Figure 5 depicts the typical situation of a route selection
when the vehicle is at node (i, t). At the node, there are three
possibilities to move to the next node: going straight, turning
left, and turning right.

When Yk
i (t) is defined as the loop variable with the

minimum value of Yi(t) and the number of loops of k,
equation (6) is written as follows:

Y
1
i (t) � v

∗
j1, t + τij1

􏼐 􏼑 + Xij1
t + dij1

(t)􏼐 􏼑 + dij1
(t), (9)

Y
k
i (t) � min Y

k−1
i (t), v

∗
jk, t + τijk

􏼐 􏼑􏽮

+ Xijk
t + dijk

(t)􏼐 􏼑 + dijk
(t)􏽯, k � 2, ..., |Γ(i, t)|.

(10)

,e expected calculation corresponding to equations (9)
and (10) is then

vk
∗
(i, t) � E Y

k
i (t)􏽨 􏽩

� E min Y
k−1
i (t), v

∗
jk, t + τijk

􏼐 􏼑 + Xijk
t + dijk

(t)􏼐 􏼑 + dijk
(t)􏽮 􏽯􏽨 􏽩

� min vk−1
∗
(i, t), v

∗
jk, t + τijk

􏼐 􏼑 + E Xijk
t + dijk

(t)􏼐 􏼑􏽨 􏽩 + dijk
(t)􏽮 􏽯, k � 2, . . . , |Γ(i, t)|,

(11)

v1
∗
(i, t) � E Y

1
i (t)􏽨 􏽩 � v

∗
j1, t + τij1

􏼐 􏼑 + E Xij1
t + dij1

(t)􏼐 􏼑􏽨 􏽩 + dij1
(t). (12)

,e trip time of the shortest path from nodes i to d at
time t is calculated as

v
∗
(i, t) � E Yi(t)􏼂 􏼃 � v

∗
|Γ(i,t)|(i, t). (13)

Equations (10) and (11) describe the reverse recursive
process of dynamic programming. In the dynamic path
selection, the trip time in a segment Xa(t) is calculated in
a continuous random process. ,e time t changes

1 32

2 [3, p. 1.0]

4 [5, p. 1.0]

3 [4, p. 1.0]

0
2, p. 0.5
3, p. 0.5

0
3, p. 0.5
4, p. 0.5

(a)

1 32

2 [4, p. 1.0]
3 [2, p. 1.0]

4 [1, p. 1.0]

0
2, p. 0.5
3, p. 0.5

0
3, p. 0.5
4, p. 0.5

(b)

Figure 4: Simple random time-dependent net. (a) Meet the definition of extended FIFO. (b) Non-FIFO definition.
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continuously, and thus the unrestricted boundary con-
dition v∗(d, ·) � 0 to determine that t has the arbitrariness
of the time during the recursion. However, this reverse
recursion does not meet the requirement in this study.
,us, the sequential recursive process is adopted.

However, if the trip time in a segment is calculated by a
heuristic function instead of v∗(jk, t + τijk

), a sequential
recursive process for the path can be obtained from equation
(11). If the appropriate heuristic function is used, the optimal
path for the search can be determined. ,en, when the
boundary conditions are reached, v∗(jk, t + τijk

) is deduced
along the path, and then v∗(i, t) is deduced inversely.

Rosenblueth’s two-point estimation method discretizes
the continuous distribution of random variable Z into a
simple two-point distribution and is expressed as

p1 � P Z � μZ − σZ( 􏼁 �
1
2
,

p2 � P Z � μZ − σZ( 􏼁 �
1
2
,

(14)

where μZ is the expectation and σZ is the standard deviation.
,e trip time Xa(t) of a segment is discretized into a

simple two-point distribution using Rosenblueth’s two-
point estimation method. ,at is,

p1 � P Xa(t) � μXa
(t) + σXa

(t)􏼐 􏼑 �
1
2
,

p2 � P Xa(t) � μXa
(t) − σXa

(t)􏼐 􏼑 �
1
2
,

(15)

where h(j, t) represents the heuristic trip time in the seg-
ment of (j, t) with the probability of 0.5. See

c(i, t, j) � μXij
t + dij(t)􏼐 􏼑 + dij(t). (16)

Equation (11) is discretized as

vk
∗
(i, t) � min v

∗
(k−1)(i, t), c i, t, jk( 􏼁 +

1
2

􏽘
m�1,2

h jk, t + c i, t, jk( 􏼁 +(−1)
m

· σXijk

t + dijk
(t)􏼐 􏼑􏼒 􏼓

⎧⎨

⎩

⎫⎬

⎭, k � 2, . . . , |Γ(i, t)|.

(17)

Similarly, equation (11) is discretized as

v
∗
1(i, t) � E Y

1
i (t)􏽨 􏽩 � c i, t, j1( 􏼁 +

1
2

􏽘
m�1,2

h

j1, t + c i, t, j1( 􏼁 +(−1)
m

· σXij1
t + dij1

(t)􏼐 􏼑􏼒 􏼓.

(18)

Equations (17) and (18) with boundary condition
v∗(d, ·) � 0 constitute a numerical model of stochastic dy-
namic programming. ,e solutions of equations (10) and
(11) need the selection of heuristic trip times that are
modified when the boundary conditions are reached. Dy-
namic programming is not an algorithm [27], but a mod-
eling method. Based on the heuristic trip time, the AO∗

i, t

[v∗ (jk, t + τijk
), S (jk, t + τijk

)]

[v∗ (j|Г(i)|, t + τij|Г(i)|
), S (j|Г(i)|, t + τij|Г(i)|

)][v∗ (j1, t + τij1
), S (j1, t + τij1

)]

jk, t + τijk

j1, t + τij1

τijk
 = Xijk

 (t + dijk
 (t)) + dijk

 (t)

τij1
 = Xij1

 (t + dij1
 (t)) + dij1

 (t) τij|Г(i)|
 = Xij|Г(i)|

 (t + dij|Г(i)|
 (t)) + dij|Г(i)|

 (t)

Yi (t)

j|Г(i)|, 
t + τij|Г(i)|

Figure 5: Dynamic path choice at node (i, t).
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algorithm is effective for solving the random dynamic
programming models.

4.3. AO∗ Algorithm. With the complexity of the STD
shortest path problem, an AND/OR tree is used to de-
compose its solution process. ,e AND/OR tree inversely
calculates the trip time from a precursor node to a successor
node in a dynamic programming model that uses equations
(17) and (18). ,e AO∗ algorithm accompanies an AND/OR
graph search in artificial intelligence. Bander andWhite [28]
first applied the algorithm to a nonstatic random shortest
path problem and constructed a solution graph. ,e result
was appropriate for a dynamic selection model, as the path
was not a single one but a hyperpath. Different path options
are decided by the time of entering into a segment.

4.3.1. Graph Heuristic Search and Agreement with AND/OR
Graph. ,e heuristic search algorithm for AND/OR graphs
was formally named AO∗ by Nilsson in 1980 [28]. Whether a
node on the AND/OR graph is solved is determined by its
successor nodes. An “AND” node becomes solvable only
when all its successor nodes are solvable. An “OR” node is
solvable when one of the successor nodes is solvable. In the
growth process of the graph as the search process, nodes are
continuously added to the AND/OR graph. ,e generated
graph is denoted as GT

′ and then GT
′⊆GT. ,e demarking

process is a retrospective recursive process in which the
precursor nodes are solvable by the solvable successor nodes.
,ese are used repeatedly in the search process of the AND/
OR graph until a node is marked as a solvable or unsolvable
node.

,e result of the heuristic search of the AND/OR graph
finds the optimal solution graph with the least cost (shortest
time). For the AND/OR graph, the nodes that are expected
to be part of the optimal solution graph for expansion must
be selected. ,e AND/OR graph with the solvable successor
and their precursor nodes is called the hope graph (potential
solution graph). In the search process, as new nodes join, the
trip time is constantly changing. ,erefore, the graph is also
constantly changing with the constant graph of heuristic
search.

,e total cost (time) of the heuristic search of the AND/
OR graph is obtained by calculating the trip time in the
graph. With c(i, t, j), the trip time from a node (i, t) to a
successor node (j, tj), the trip time is calculated as follows:

(1) If the node (i, t) is the target (successor) node, its trip
time is a function f(i, t) � 0.

(2) If the node (i, t) is an AND node, its trip time is a
function as follows:

f(i, t) � 􏽘

|Γ(i,t)|

k�1
cc i, t, jk( 􏼁 + f jk, tjk

􏼐 􏼑, jk, tjk
􏼐 􏼑 ∈ Γ(i, t).

(19)

(3) If the node (i,t) is an OR node, its trip time is a
function as follows:

f(i, t) � min c i, t, jk( 􏼁 + f jk, tjk
􏼐 􏼑, jk, tjk

􏼐 􏼑 ∈ Γ(i, t)􏽮 􏽯.

(20)

(4) If (i, t) is not scalable and it is not the target node;
then, its trip time is defined as f(i, t) �∞.

,e trip time of the precursor node is deduced from that
of the successor node.,us, with the optimal solution graph,
the trip times from successor nodes to the precursor node
are obtained, which is repeated layer by layer, and finally, the
starting node can be found. ,is process solves equations
(17) and (18).

4.3.2. Algorithm. With the random variables of the trip time
in continuous segments by using the Rosenblueth two-point
estimation method, the solution of the random dynamic
programming model is regarded as the search process of the
AND/OR graph. ,e flowchart of the AO∗ algorithm is
shown in Figure 6. It includes two processes: generating the
successor nodes and the reverse correction of the trip time.

In the algorithm, q(i, t) represents the trip time from a node
(i, t). h(i, t) represents the heuristic function of the node (i, t).
We use the Euclidean distance from a node (i, t) to the target
successor node and the maximum free flow velocity in each
segment. When the flow speed is zero at the starting node (i, t),

h(i, t) �
Dist(i, d)

u0
. (21)

Meuleau et al. [29] proved that the AO∗ algorithm must
be able to terminate on the optimal solution when the
heuristic function calculates the shorter trip time than the
real trip time and there is an optimal solution. As the
heuristic function in this study satisfies this condition, the
optimal decision p∗(i, t) ∈ Γ(i, t) at the node (i, t) is found
by the AO∗ algorithm, which presents the path of the
shortest trip time from nodes s to d.

,e AO∗ algorithm does not allow loops in the search
process. Finding the following successor nodes requires
operating on the nodes that are not the precursors. Due to
the monotonicity of time, there is no possibility of loops in
the spatiotemporal traffic network GT. ,e heuristic search
does not find all nodes on GT but those in the optimal path.
,e search is processed based upon heuristic information, so
the algorithm is efficient in finding the optimal path.

4.4. Improving AO∗ Algorithm. Since the increased number
of successor nodes affects the efficiency of the algorithm, the
probability tree diagram is necessary to consider during the
search process. When the variance of the trip times in
segments is not large, the conditional probability has little
effect on the final optimal path selection. In some segments,
the past trip times are almost constant. In this case, the
conditional probability does not affect significantly. When
the variance becomes large, the conditional probability of
the branches is considered, which simplifies the process
significantly with a less number of nodes and the im-
provement of the efficiency of the algorithm. Figure 7 shows
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Figure 6: Continued.
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Figure 6: Continued.
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Extend the node to G

Creating a node set S
S. add (vertex)

S is not null

Extract a node vertexS from 
S that has no successors

vertexS calculates the modification of 
vertexS. q according to the formula, the 

set of successive nodes (and nodes) 
with the smallest intersecting record

Add the two arcs 
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the wish graph D

All subsequent nodes solved are
true, the

modifiedvertexS. solved = true
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startVertex are the same, then 
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or vertexS. q has changed

True
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(c)

Figure 6: Heuristic AND/OR graph search flowchart. (a) General flowchart. (b) Node expansion process. (c) Reverse correction process.

Scientific Programming 11



diagrams on how to judge for expanding the nodes in-
creasing the number of nodes) based on the variance of trip
times.,e branch in Figure 7(a) has themultilevel expansion
of the nodes, while that in Figure 7(b) limits the expansion.
In each node (circle), the trip times and the variance of them
are shown. Figure 7(b) shows that limiting the expansion
only needs the nodes with either the longest or the shortest
trip time with the estimated trip time unchanged when
compared to Figure 7(a) that has the expansion of the odes.
Based on this result, the flowchart in Figure 6 is modified and
shown in Figure 8.

5. Case Studies and Discussion

5.1. Application of ImprovedAO∗Algorithm. ,e traffic data
in Shenzhen was used to calculate the trip times of each
segment on a route with the improved AO∗ algorithm.
Figure 7 shows the expected trip times (in parenthesis) on
various routes and times in a day. In nonpeak times such
as 7:00, 9:30, 14:00, and 20:30, the path was chosen for a
smaller number of segments than in peak times such as 8:
30, 11:00, 12:30, and 18:00 when the road has traffic
congestion. When there are many vehicles in a segment,
another segment with fewer vehicles is chosen for a
shorter trip time.

,e calculation result at 12:30 (Figure 9(e)) suggested
two different choices at node 138. Of course, all the nodes
shown in Figure 9 have the same kind of selection as node
138, but the result of selection is the same road segment in
space, and the difference is only in time. It can be con-
sidered that the difference in time is only the difference in
“quantity,” and the accumulation of “quantity” will cause
the change in “quality,” such as the appearance of different
road segment selection results. If there is no choice for a

segment, then this means that the change in “quantity” is
not enough to cause that in “quality.” If there are two paths
on which it takes 45 (going straight) and 50 seconds
(turning right) to reach node 138 from node 28, the optimal
path will be the path for a shorter total trip time. Of course,
the path choice at node 138 depends on the road condition
of the segment (nodes 28-138) and the estimated arrival
time at node 138.

5.2. Performance of Improved AO∗ Algorithm.
Randomness changes the trip time even in the same seg-
ment at the same period. ,en, many solution graph nodes
need to be considered in the search of the algorithm. Ta-
ble 1 shows the statistics of the AO∗ algorithm search
process. When the number of nodes is increased, the
number of solution graph nodes and the time for search
increased. ,at is, the efficiency of the search decreased.
,e expansion of solution graph nodes affects the efficiency
of the algorithm based on the probability of each branch
(the branch).

Table 2 shows the result from the search process by using
the improved algorithm. ,e increase of the number of
nodes does not affect significantly the numbers of the so-
lution graph nodes, the generated nodes, the iteration, and
the time for search. ,is indicates the advantages of the
heuristic search and the function used.

,e data relationship in the two tables is shown in
Figure 10. It can be clearly seen that the efficiency of the
unrestricted algorithm decreases rapidly as the number of
road network nodes increases. ,e efficiency of the im-
proved algorithm does not change much with the increase in
the number of road network nodes, which is also the
characteristic of heuristic search.
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3, 163, 8

4, 304, 264, 16
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3, 10

2, 4
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6
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Figure 7: Judging the node expansion diagram based on the variance and trip time. (a) Multilevel expansion of the nodes. (b) Limiting the
expansion.
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Figure 8: ,e flowchart for the limited expansion search process.
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Figure 9: Path selection result: (a) at 07:00 (292 s), (b) 08:30 (352 s), (c) 09:30 (320 s), (d) 11:00 (340 s), (e) 12:30 (339 s), (f ) 14:00 (318 s),
(g) 18:00 (343 s), and (h) 20:30 (300 s).
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Table 1: ,e result of the AO∗ algorithm search.

Number of nodes in an
optimal path

Number of solution
graph nodes

Number of generated
graph nodes

Number of iterations from the
starting node

Time for search
(s)

6 33 69 17 0.7
7 45 91 26 1.1
8 63 155 29 2
9 97 235 59 4.2
10 100 259 51 4.3
11 96 187 49 4.7
12 78 221 51 8.1
13 145 419 47 17.1
14 226 591 78 34.1
15 220 537 81 49.5
16 253 624 89 51

Table 2: ,e result from the improved AO∗ algorithm search.

Number of nodes in an
optimal path

Number of solution
graph nodes

Number of generated
graph nodes

Number of iterations from the
starting node

Time for search
(s)

6 7 11 5 0.2
7 8 14 7 0.3
8 8 15 7 0.3
9 9 13 8 0.3
10 10 18 9 0.4
11 11 18 10 0.4
12 12 19 11 0.4
13 15 19 12 0.4
14 14 20 12 0.4
15 17 24 14 0.5
16 16 25 15 0.5
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Figure 10:,e comparison of the efficiency of the original and improved AO∗ algorithm. (a) Comparison of the generated graph nodes.
(b) Comparison of iteration from the starting node. (c) Comparison of running time. (d) Comparison of solution graph nodes.
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6. Conclusion

,e trip times in the segments on a route by a vehicle are
estimated in a random process with randomness. Each
node has a different probability of arriving at the target
node in the shortest time according to the entry time. To
calculate the trip time, a new algorithm of the optimal path
selection was proposed and the following were
investigated.

(1) ,e complexity of a random dynamic shortest path
problem is necessary to consider. ,e variability of the
trip time between nodes is caused by the insufficiency
of FIFO to explain the complexity.,e dynamic model
of the shortest path selection considers the fact that the
shortest trip time on a route is not equal to the sum of
the trip times in the segments.

(2) ,e random shortest path selection is rather a
decision-making problem. ,at is, at each seg-
ment, the choice of going straight, turning left,
and turning right needs to be made according to
the estimated shortest trip time. Stochastic dy-
namic programming is required to model for the
solution of such a stochastic decision-making
problem.

(3) ,e trip times between nodes on a route are not
discrete, and that in the shortest path is the extreme
value function with random variables. As the cal-
culation of the probability density of the trip times is
complicated, this study adopted Rosenblueth’s two-
point estimation method. ,e trip time as a random
variable is discretized so that the expectation of the
shortest trip time is unchanged.

(4) ,e probability density affects the “quantity” of the
estimation of the trip times, not the “quality.” ,e
“quantity” influences the efficiency of an algorithm.
,e “quantity” does not mean the increasing
number of nodes but possible successor nodes. ,e
increase in the number of selections affects the
efficiency of the estimation of the trip time sig-
nificantly. ,erefore, we proposed the improved
AO∗ algorithm for enhancing the efficiency for
finding the optimal trip time to apply the algorithm
to the real data process. ,e result proves the su-
periority of the improved AO∗ algorithm and the
basis for applying this to the real-time navigation
system of a vehicle.
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