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A decentralized randomized coordinate descent method is proposed to solve a large-scale linearly constrained, separable resource
optimization problem with selfish agent. )is method has a cheap computational cost and can guarantee an improvement of
selected objective function without jeopardizing the others in each iteration.)e convergence rate is obtained using an alternative
gap benchmark of objective value. Numerical simulations suggest that the algorithm will converge to a random point on the
Pareto front.

1. Introduction and Motivation

Distributed and parallel optimization techniques have be-
come a powerful tool in solving large-scale resource opti-
mization problems [1–4]. Different from the consensus-
based distributed optimization model ([2, 5]), where all
agents collectively share the same decision variables, the
resource optimization problem usually has a separable
structure, i.e., each agent has its own decision variable and
own objective function, but all the agents are weakly coupled
by equality or inequality constraints [6]. )e overall target is
to minimize the summation of the agents’ objective func-
tions. One typical example of this kind of model is the
optimal coordination problem of the distributed energy
resources [4, 5], in which each generator decides the power
generation by minimizing the cost function and meeting the
overall demand. Recently, Li et al. [6] extended such method
to the model of a global inequality constraint.

)is work is motivated by the observation that resource
allocation problems in the digital age are often subject to
some new limitations unseen in traditional resource allo-
cation problems. For example, in the area of content

distribution or video streaming, many researchers have
explored a scheme called parallel access [7] or multiple
content distribution servers [8, 9] in a bid to optimize
servers’ work load and enhance users’ quality of experience
(QoE). Similar problems can also arise in the so-called
multihoming problem when users start to compete for re-
sources [10, 11]. )is scheme first divides the original
content/video into fragments, the replicas of these fragments
are stored in a number of servers (often geographically
diverse), and then the users are allowed to access/download
fragments from multiple servers concurrently. )is scheme
is characterized by the following features:

(i) Large scale: the number of users could easily hit
hundreds of thousands or even millions.

(ii) Bandwidth limit: each server has a total bandwidth
limit, so that each user is only given a quota of the
total bandwidth.

However, there are some practical concerns about this
scheme. Specifically, user utilization of bandwidth quota of
different servers may vary due to the physical distance or the
access quality of different Internet service providers. In this
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sense, there is a need to reallocate bandwidth quotas of the
servers among users to improve user QoE. Unfortunately,
there are three major difficulties underlying this optimiza-
tion problem:

(1) )e information necessary (gradients of objective
functions, etc.) for the quota optimization is scat-
tered among users and may be only partially avail-
able at a given time (e.g., users are inactive or
unresponsive).

(2) Even if all the information is readily available,
considering the large scale of the problem, an overall
one-shot optimization could be computationally
prohibitive and may lack timeliness, which is espe-
cially crucial for the enhancement of video viewing
experience.

(3) Considering (2), a distributed algorithm that adap-
tively and progressively optimizes quota allocation
among users should be preferred; however, here the
crux is that the users in no way can accept a dete-
riorating QoE during the optimizing process, i.e., the
users (agents) are selfish: one would not be too happy
when he knows his own QoE is compromised for the
QoE of someone else or for the “greater good” of the
overall system.

)e goal of this paper is to develop an efficient distributed
method for solving resource allocation problem with selfish
agents. Since the complete information of first and second
order information necessary for a one-shot optimization is
usually not available in many real world large-scale appli-
cations, we develop a randomized coordinate descent (RCD)
algorithm that partially updates a pair of objective functions
in each iteration (the RCD algorithm coincides with the
distributed network optimization model, where only a subset
of nodes can communicate with each other and can be op-
timized in one iteration). Our algorithm can be vaguely
viewed as a multiobjective (MO) extension of the single-
objective randomized coordinate descent algorithm [12].
Different from the single-objective optimization problem, the
MO problem aims to optimize multiple objectives simulta-
neously in the sense of Pareto optimality (see [13, 14]).

Our RCD method has the following prominent features:
first, it optimizes the selected objective functions in each
iteration without affecting other objective functions, and the
optimization at each iteration is required to be such that
none of the selected objective functions should deteriorate.
As a result, the value of each objective function should be
non-deteriorating over the whole optimizing process, and
the solution of each iteration can be applied in real time to
progressively improve the objective function of each agent.
Second, compared to the centralized MO methods such as
[15, 16], our algorithm takes full advantage of the separa-
bility of the problem structure, and the update has a very
cheap cost per iterate and can be easily implemented in a
parallel setting. Perhaps more significantly, this work also
focuses on the convergence analysis of the multiobjective
RCD algorithm. Although the convergence results of single-
objective algorithms are well established ([17, 18]), similar

discussions for its MO counterparts are unexpectedly scarce.
It was not until very recently that a few works have suc-
ceeded in obtaining the convergence rates for certain un-
constrained MO algorithms ([19–21]). In fact, as will be
evident in our analysis, the limiting point generated by our
RCD algorithm will converge to a random point on the
Pareto front; as a result, all the tools used in single-objective
algorithm analysis are generally rendered useless. To con-
quer this difficulty and complete the missing piece, we
develop a framework of convergence analysis for the RCD
method, which generalizes the existing analysis for scalar
optimization problem [12]. Under a mild condition, we
show that the RCD algorithm has a sublinear convergence
rate. If agents’ cost functions are all strongly convex, then the
RCD algorithm has a linear convergence rate.

)e paper is organized as follows. In Section 2, we
present the constrained MO optimization problem. In
Section 3, we present the RCD algorithm. An analysis of the
convergence rate of this RCD algorithm for different cases is
given in Section 4. Some numerical examples are given in
Section 5. We conclude the paper and discuss the future
research in Section 6. )roughout this paper, the following
notations are used. )e vector is denoted by the bold letter.
We use the following notation to denote the order of the
vectors. Given u � [u1 . . . un]T and v � [v1 . . . vn]T, u≺v
means that ui ≤ vi, for all i � 1, . . . , n and u≺v means that
ui < vi, for i � 1, . . . , n.

2. Problem Formulation

Consider the following standard multiobjective (MO) op-
timization problem with linear equality constraints:

Pmo: minF(X) ≡ f1 x1(  . . . fM xM(  
T

(s.t)X ∈ C ≔ X ∈ RkM
| 

M

m�1
xm � 0

⎧⎨

⎩

⎫⎬

⎭

, (1)

whereX �

x1
⋮
xM

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ ∈ RkM with xm ∈ Rk and fm: Rk⟶ R is

a continuous function satisfying certain conditions for
j ∈ M ≔ 1, 2, . . . , M{ } (notation 0 denotes the vector with all
elements being zero). Clearly, function F(·): RkM: ⟶ RM

is separable, i.e., xm only affects fm(xm). However, these
decision variables are weakly coupled by the global equality
constraint. Note that although the right-hand side of the
equality constraint is 0, there is no difficulty to generalize the
results to the non-zero case using some affine transforma-
tion. In the context of the above bandwidth allocation
problem, here xm can be viewed as the bandwidth quotas of k

servers allocated to agent m; fm is a function that represents
the negative of the utility (QoE) brought by quotas xm; and
the equality constraint represents the total bandwidth
limitation of each server 1, . . . , k. Model (Pmo) arises in
various network optimization problems (see, e.g., [22–27]).

Problem (Pmo) aims to optimize the multiple objectives
simultaneously in the sense of Pareto optimality (see
[13, 14]). Indeed, a feasible point X∗ ∈ C is a Pareto optimal
solution of problem (Pmo) if there exists no other feasible
solution such that F(X′)≺F(X∗) and F(X′)≠F(X∗). )e
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traditional way to solve (Pmo) is to aggregate objective
functions fm into a weighted summation social welfare, say,
mωmfm(xm) with ωm > 0,∀m � 1, . . . , M; then, solve the
following single-objective optimization problem using
classical methods (e.g., gradient descent method, Newton
method, etc.):

min
m

ωmfm xm( 

(s.t)X ∈ C ≔ X ∈ RkM
| 

M

m�1
xm � 0

⎧⎨

⎩

⎫⎬

⎭.

(2)

But this scheme suffers two major drawbacks for the
reasons we stated previously: first, the large scale of the
underlying problem (a very large M) may prevent this
scheme from responding in a timely manner; second, this
scheme does not guarantee a progressively non-deterio-
rating allocation evolution during the optimizing process, so
that it is possible that the individual welfares of some agents
get sacrificed for the “greater good,” i.e., the maximization of
social welfare mωmfm(xm), and hence they could become
discontent and discard the service for good. )erefore, to
address these issues, we present the following randomized
block coordinate descent method.

3. Randomized Block Coordinate
Descent Method

3.1.  e RCD Algorithm. )roughout this paper, we assume
that the following condition holds true.

Assumption 1. Each fm(·) has Lipschitz continuous gra-
dient with constant L> 0, i.e., for all xm, ym ∈ Rk, m ∈ M, it
has

∇fm xm(  − ∇fm ym( 
����

����≤L xm − ym

����
����, (3)

where ‖ · ‖ is the Euclidean norm (note that here the Lip-
schitz coefficient can be agent-specific, e.g., L1, . . . , LM; in
this case, we can let L � max L1, . . . , LM ; on the other hand,
one can also modify our algorithm scheme accordingly with
respect to these agent-specific Lipschitz coefficients and
obtain an improved convergence rate).

Note that the Lipschitz property implies the following
inequality:

fm xm + d( ≤fm xm(  + ∇fm xm( 
Td +

L

2
‖d‖

2
, (4)

for any d ∈ Rk and m ∈ M. Given the current solution X, the
classical gradient-based method needs to compute the whole
Jacobian to generate a feasible step that simultaneously
decreases all objectives. Obviously, this step is expensive
when the problem size is large. To conquer this difficulty, we
propose the following RCD method. In each iteration, we
randomly select two objectives pair i, j  with probability pi,j

to update their objective values for i, j ∈ M. To ensure
convergence of the algorithm, we need the following con-
dition on the sampling probability, pi,j 

M

i,j�1.

Assumption 2. For any pi,j, there exists i1, i2, . . . , ik ∈ M
such that sampling probabilities pi,i1

, pi1 ,i2
, . . . , pik,j are all

strictly positive.
Graphically, one can think of a strictly positive pi,j > 0 as

an “edge” between node i and j, and if pi,j � 0, it means that
there is no edge between node i and j. Assumption 2 means
that the communication network among the nodes is
connected, i.e., any two nodes in the network are either
directly connected by an edge or indirectly connected by at
least one path formed by several intermediate edges. If the
network is complete, i.e., each node is directly connected to
every other node, pi,j > 0 for all edges, the above condition is
automatically satisfied. Some other options are available, for
example, the cyclic network (see Figure 1). In a cyclic
network, each node is connected in a circular fashion:
Node 1 ⟶ Node 2 ⟶ Node 3⟶ Node 4⟶ Node
1 . . .. Another one is the so-called central coordinator
network, in which one node is chosen as a central coordi-
nator (see Figure 2), and the rest of the nodes are connected
to this central coordinator while do not share direct con-
nections among themselves. )e implication of a connected
network is that any local change can eventually ripple
through the whole network instead of being contained.

Once a pair i, j  is chosen, the following problem for the
convex optimization problem is solved:

Pi,j(X): min
di,j ,ti,j

ti,j

s.t.∇fi xi( 
Tdi,j +

L

2
di,j

�����

�����
2
≤ ti,j

, (5)

− ∇fj xj 
T
di,j +

L

2
di,j

�����

�����
2
≤ ti,j. (6)

It is not hard to see that due to inequality (4), the solution
of problemPi,j(X) provides a descent direction to improve
the objective values for both i and j. )e key difference
between Pi,j and its single-objective RCD counterpart is
that a single-objective RCD algorithm will aggregate (5) and
(6) and attempt to minimize such aggregate cost. Unlike our
multiobjective method, this single-objective scheme does
not necessarily generate non-deteriorating solution for both
agents.We use d∗i,j to denote the optimal solution of problem
Pi,j(X) and use x+

i and x+
j to denote the updated solution

points for the i-th and j-th objective functions, respectively.

Let X+ �

x+
1
⋮
x+

M

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦ be the updated solution vector. )e RCD

algorithm updates the solution points as follows:
x+

i � xi + d∗i,j, x+
j � xj − d∗i,j, and keeps all the others un-

changed x+
m � xm, for m≠ i, j and m ∈ M. One prominent

feature of themethod is that problemPi,j(X) admits explicit
solution.

Lemma 1. Given X and pair (i, j), the optimal solution of
Pi,j(X) is
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d∗i,j � −
1
L

λ∗i,j∇fi xi(  − 1 − λ∗i,j ∇fj xj  , (7)

where

λ∗i,j � max 0, min 1,
∇fj xj 

T
∇fi xi(  + ∇fj xj  

∇fi xi(  + ∇fj xj 
�����

�����
2

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(8)

Furthermore, X∗ is Pareto optimal only if the optimal
solution of Pi,j(X∗) is d∗i,j � 0 for all pairs i, j , and the
reverse direction holds true if all fm are convex.

Proof. Checking the Karush–Kuhn–Tucker (KKT) condi-
tion of problem Pi,j(x) yields

d∗i,j � −
1
L

λi,j∇fi xi(  − 1 − λi,j ∇fj xj  , (9)

where λi,j ∈ [0, 1] is the Lagrange multiplier. Substituting d∗i,j
back into the constraints gives t∗i,j as

t
∗
i,j � min

λi,j∈[0,1]

1
L
max gi λi,j;∇fi xi( ,∇fj xj  , gj λi,j;∇fi xi( ,∇fj xj    , (10)

where

gi k; a1, a2(  �
1
2
k
2 a1 + a2
����

����
2

− k a1 + a2
����

����
2

+ aT
1 a2 +

1
2
a2

����
����
2

gj k; a1, a2(  �
1
2
k
2 a1 + a2
����

����
2

−
1
2
a2

����
����
2

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(11)
It can be easily verified that gi(k; a1, a2) is strictly de-

creasing for k ∈ [0, 1] and gj(k; a1, a2) is strictly increasing
for k ∈ [0, 1]; after checking the boundary values, we obtain
λ∗i,j as in (10). Clearly, when each fm is convex and d∗i,j � 0, it
implies the Pareto optimality, i.e., λ∗i,j∇fi(xi) �

(1 − λ∗i,j)∇fj(xj), λ
∗
i,j ∈ [0, 1] for any pair (i, j), which

satisfies the KKT condition of Pmo. )e other direction is
straightforward.

)e algorithm is summarized in the following pseudo-
code.

A distributed algorithm for large-scale linearly-coupled
resource allocation problems with selfish agents.
Algorithm 1

Since Pmo is assumed to be a large-scale problem, the
computational cost of methods [15, 16] could become in-
timidating because an overall optimization that involves all
objectives is required to compute an update direction. Also,
the methods of [15, 16] would require all the objective
function information to be transmitted to a central coor-
dinating agent, where the optimization is conducted. But

Figure 1: A cyclic network where each node is connected in a circular fashion.

Figure 2: A central coordinator network where nodes do not have direct connections but are connected indirectly by a central node.
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this could create excessive communication overheads in the
central coordinating agent. In contrast, our method is able to
take advantage of the separability of the problem structure,
and the update has an analytical form and can be parallelized
by optimizing multiple pairs concurrently; moreover, the
pairwise optimization can be easily implemented in a peer-
to-peer manner.)e cost per iteration isO(cf + c), where cf

is the maximum cost of computing the gradient of each fi,
and c is the cost of updating xi. When compared with the
single-objective randomized coordinate descent method, the
main difference is that the optimization procedure guar-
antees that ti,j ≤ 0 for any pair; as a result, the update is
always non-deteriorating for each of the agents and hence
can be applied in real time. □

Remark 1. When all information is available, one may also
consider to follow the idea of [15], that is, to simultaneously
optimize all agents, the update directions are given by
solving the following problem:

Pall(X): min
d1 ,...,dM,t

t

s.t.∇f1 x1( 
Td1 +

L

2
d1

����
����
2 ≤ t,

⋮

∇fM xM( 
TdM +

L

2
dM

����
����
2 ≤ t,



M

i�0
di � 0

. (12)

However, the cost per iteration of this problem will be
O(Mcf + Mc). Also note that Pall generally does not have an
analytical solution form; therefore, an additional algorithm
for quadratic programming is needed to find its solution.

4. Convergence Rate Analysis

4.1. Convergence Rate Analysis: Non-convex Case. We in-
vestigate the convergence rate of the RCD algorithm in this
section. We first introduce the potential function
h: RkM⟶ R as h(X) � 

M
m�1 fm(xm). For the optimal

updating vector d∗i,j and the associated Lagrange multiplier
λ∗i,j, the Lipschitz continuity of fm implies

fi xi + d∗i,j  + fj xj − d∗i,j 

≤fi xi(  + fj xj  + ∇fi xi( 
Td∗i,j +

L

2
d∗i,j

�����

�����
2

− ∇fj xj 
T
d∗i,j +

L

2
d∗i,j

�����

�����
2

≤fi xi(  + fj xj  + λast
i,j ∇fi xi( 

Td∗i,j +
L

2
d∗i,j

�����

�����
2

  + 1 − λast
i,j  − ∇fj xj 

T
d∗i,j +

L

2
d∗i,j

�����

�����
2

 

≤fi xi(  + fj xj  −
1
2L

λ∗i,j∇fi xi(  − 1 − λ∗i,j ∇fj xj 
�����

�����
2
,

(13)

Initialization: set X � X0;
while True do
Randomly select a matching pair i, j  according to some network structure
Solve dast

i,j from problem:
Pi,j(X): min

di,j ,ti,j

ti,j

s.t. ∇fi(xi)
Tdi,j + L/2‖di,j‖

2 ≤ ti,j

− ∇fj(xj)
Tdi,j + L/2‖di,j‖

2 ≤ ti,j

Update:
xi � xi + d∗i,j,
xj � xj − d∗i,j.

ALGORITHM 1: Multiobjective adaptation.
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where the second inequality follows from the observation
that t∗i,j ≤ 0.)erefore, under the preceding updating rule, we
can estimate the expected decrease of potential function as

h(X) − E h X+
( |X 

� 

i,j{ }

pi,j fi xi(  + fj xj   − fi xi + d∗i,j  + fj xj − d∗i,j   

≥
1
2L



i,j{ }

pi,j λ∗i,j∇fi xi(  − 1 − λ∗i,j ∇fj xj 
�����

�����
2
.

(14)

Now, we introduce the following criteria as a metric,
D(·): RkM⟶ R, as

D(a) ≔
1
2L


(i,j)

pi,j λi,j(a)ai − 1 − λi,j(a) aj

�����

�����
2

⎛⎝ ⎞⎠

1/2

,

(15)

with λi,j(a)max 0, min 1, aT
j (ai + aj)/‖ai + aj‖

2   for some
a � [aT

1 . . . aT
M]T ∈ RkM, am ∈ Rk,∀m. Using D(·), the

preceding inequality (10) becomes

h(X) − E h X+
( |X ≥D(∇h(X))

2
. (16)

One can view D(·) as an improvement potential indi-
cator. Specifically, we have the following lemma.

Lemma 2. D(∇h(X∗)) � 0 only if X∗ is a Pareto optimal
solution of Pmo, and the reverse direction holds true if each
fm is convex.

Proof. We first prove one direction that D(∇h(X∗)) � 0
implies X∗ is a Pareto optimal solution by contraposition.
Assume that X with 

M
i�m xm � 0 is not Pareto optimal; then,

there exist i and j≠ i such that ∇fi(xi)≠ t · ∇fj(xj),
∀t ∈ R+, which implies D(∇h(X)) > 0. )e other direction
in this lemma is straightforward. We omit the detail.

We now turn to investigate the convergence rate of the
RCD algorithm. Convergence rate of methods for single-
objective problem such as minx∈Cf(x) is usually measured
with respect to the gap from its optimal value f∗. However,
different from the single objective-based optimization
problem, the generated sequence of the MO algorithm may
converge to different points in the Pareto optimal frontier,
and there is no a priori way to determine which point the
sequence converges to; this property will be further sub-
stantiated by the numerical simulations. )erefore, one
needs to construct an alternative benchmark that measures
the convergence rate (the construction of such alternative
gap function for multiobjective optimization problems is

also discussed by Dutta et al. and Tanabe et al. [28–30]
recently). We define the following two measures (functions):

h
†
(X) � min

F(Y)≼F(X),Y∈C
h(Y),

v
†
(X) � max

F(Y)≼F(X),Y∈C
h(X) − h(Y){ } � h(X) − h

†
(X),

(17)

where h†(X) provides a lower bound of the potential
function h(X) and v†(X) measures the gap between the
current value of potential function and such a lower bound.
)ese two measures have the following properties. □

Lemma 3. For any X1,X2 ∈ C, if F(X2)≺F(X1), it has
h†(X2)≥ h†(X1) and v†(X2)≤ v†(X1). Furthermore, the so-
lutionX∗ is a Pareto optimal point only if v†(X∗) � 0, and the
reverse direction holds true if each fm is convex.

Proof. )e first half follows directly from the observation
that F(X2)≺F(X1) implies Y ∈ C: F(Y)≺ F(X2) ⊆
Y ∈ C: F(Y)≺ F(X1) . )e rest of the proof is straight-
forward, and we omit the details.

Although h†, v† are only tangential to the following
convergence result for non-convex objective functions, they
are pivotal to obtain convergence rate for convex and
strongly convex objective functions. )en, we have the
following preliminary convergence rate result for generally
non-convex objective functions given as follows. □

Theorem 1. If level set L ≔ X ∈ C: F(X)≺F(X0)  is
bounded, then the following holds:

min
k�1,...,n

E D ∇h Xk
  |X0

 ≤

�������������

h X0
  − h

† X0
 

n



. (18)

Proof. Taking expectation of both sides of (17) with respect
to X0 and summing up to n, we arrive at the following:
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n · min
k�1,...,n

E D ∇h Xk
  |X0

  

2

≤ 
k

E
2
D ∇h Xk

  |X0
 

≤ 
k

E D
2 ∇h Xk

  |X0
 

≤ h X0
  − E h X1

 |X0
 

+ E h X1
 |X0

  − E h X2
 |X0

  + · · ·

+ E h Xn− 1
 |X0

  − E h X1
 |X0

 

� h X0
  − E h X1

 |X0
 

≤ h X0
  − h

† X0
 ,

(19)

where the second inequality follows from Jensen’s In-
equality. SinceL is bounded, we know that h(X0) − h†(X0)

is also bounded, and hence (18) follows.
Note that in the non-convex case, the stationary point

could only be a local minimum. □

4.2. Convergence Rate: Convex Case. When each fm is
convex, an accelerated convergence rate can be obtained. But
first we need some preliminary results. In the same spirit of
the dual norm, for a non-empty compact set B ⊂ RkM, we
define the dual function of D(·) on B as

D
∗
B(d) � max

Y∈AB(d)
YTd, (20)

where AB(d) � Y � [yT
1 . . . yT

M]T ∈B: 0≤D(Y)≤ 1,

yT
mdm ≥ 0,∀m ∈ M}. )en, the following lemma gives the
counterpart of Cauchy–Schwarz inequality with respect to
the feasible set C of problem pmo.

Lemma 4. Given d ∈ C and a non-empty compact set
B ⊂ RkM, for all Y ∈B∩ Y � [yT

1 . . . yT
M]T ∈

RkM|yT
mdm ≥ 0,∀m ∈ M}, the following inequality holds true:

YTd≤D(Y) · D
∗
B(d). (21)

Furthermore, there exists a number ΓB ≤ 0 such that
D∗B(d)≤ΓB‖d‖ for all d ∈ C.

Proof. Since AB(d) is a compact set, then D∗B(·) is well
defined. Depending on the value ofD(Y), we have two cases
as follows:

(1) If D(Y) � 0, from (17), we know Y must be in form

of Y �

t1g
⋮

tMg

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ for some g ∈ Rk and t1, . . . , tM ∈ R+.

Suppose there exists a d ∈ C such that YTd> 0,
which implies gTdm > 0 for some m. However, this
leads to 

M
m�1 g

Tdm � gT(
M
m�1 dm)> 0, which is a

contradiction to the fact that d ∈ C. )erefore,

D(Y) � 0 implies YTd � 0 for all d ∈ C such that
yT

mdm ≥ 0, ∀m ∈ M.
(2) If D(Y)> 0, let AB(d) � Y ∈B|0<D(Y)≤{

1, yT
mdm ≥ 0,∀m ∈ M}. Clearly, it has

AB(d)⊆AB(d). )en, inequality (21) follows from

YTd � YTd ·
D(Y)

D(Y)

≤D(Y) · sup
Y∈AB(d)

YTd⎛⎜⎜⎝ ⎞⎟⎟⎠

≤D(Y) · max
Y∈AB(d)

YTd 

� D(Y) · D
∗
B(d),

(22)

where the second equality follows from the fact that λi,j(kY) �

λi,j(Y), ∀k ∈ R, and hence it has D(kY) � |k|D(Y).
As for the last part of the lemma, we can compute the

lower bound value ΓB as

ΓB � sup‖d‖>0
D
∗
B(d)

‖d‖

≤maxd:‖d‖≤1D
∗
B(d)

� maxd:‖d‖≤1 max
a∈AB(d)

aTd ,

(23)

where AB � (Y, d)|Y ∈ AB(d), d ∈ C, ‖d‖≤ 1  is a com-
pact set. □

Theorem 2. Given an initial solution X0, if the level set
L ≔ X ∈ C|F(X)≺ F(X0)  is bounded, then the solutionXn

generated by the n-th iteration of RCD algorithm satisfies

E v
† Xn
( |X0

 ≤
Γ2BR X0

 
2

n
, (24)
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where R(X0) ≔ maxY∈L‖X0 − Y‖ and ΓB is defined with
respect to D∗B in Lemma 4 with B ≔ ∇h(X): X ∈L{ }.
Furthermore, ΓB is bounded by

ΓB ≤ ∇h X0
 

�����

����� + L · max
Z∈L



M

m�1
x0m − zm

����
����

≤ ∇h X0
 

�����

����� + L
��
M

√
· R X0

 

. (25)

Proof. As the level set L is bounded, problem pmo always
admits solution. On the other hand, the Lipschitz property in
Assumption 1 implies

‖∇h(X) − ∇h(Z)‖

≤ 
M

m�1
∇fm xm(  − ∇fm zm( 

����
����

≤L 
M

m�1
xm − zm

����
����,

(26)

which further implies the boundedness of the set B.
)erefore, ΓB satisfies the following inequality:

ΓB � max(Y,d)∈AB
YTd≤max(Y,d)∈AB

‖Y‖ · ‖d‖≤ max
Y∈B

‖Y‖≤ ∇h X0
 

�����

����� + max
Z∈L
∇h X0

  − ∇h(Z)
�����

�����. (27)

)en, it has

0≤ v
† Xn
( 

� maxF(Y)≼F Xn( ),Y∈C h Xn
(  − h(Y) 

≤ max
F(Y)≼F Xn( ),Y∈C

∇h Xn
( 

T Xn
− Y(  

≤ max
F(Y)≼F Xn( ),Y∈C

D ∇h Xn
( (  · D

ast
B Xn

− Y( 

� D ∇h Xn
( (  · max

F(Y)≼F Xn( ),Y∈C
D

ast
B Xn

− Y( 

≤D ∇h Xn
( (  · ΓB · R X0

 ,

, (28)

where the second inequality is from the convexity of h(·),
and the third inequality is from (24). Inequality (28) together
with (17) gives

h Xn
(  − E h Xn+1

 |Xn ≥
v
† Xn
(  

2

Γ2BR X0
 

2

⟹E h Xn+1
  − h

† Xn
( |Xn ≤ v

† Xn
(  −

v
† Xn
(  

2

Γ2BR X0
 

2.

(29)

Since it has F(Xn+1)≺ F(Xn), applying Lemma 3 to the
preceding inequality gives

E v
† Xn+1
 |Xn ≤E h Xn+1

  − h
† Xn
( |Xn 

≤ v
† Xn
(  −

v
† Xn
(  

2

Γ2BR X0
 

2

. (30)

Taking expectation of both sides of the above inequality
and applying Jensen’s inequality, E[(v†(Xn))2|X0]

ge(E[v†(Xn)|X0])
2, it has

Δn+1 ≤Δn −
Δ2n
Γ2BR X0

 
2, (31)

where Deltan � E[v†(Xn)|X0]. Since Δn+1 ≤Δn, it has
1
Δn

≤
1
Δn+1

−
Δn

Δn+1
·

1

Γ2BR X0
 

2

⟹
1

Γ2BR x0 
2 ≤

1
Δn+1

−
1
Δn

⟹Δn ≤
Γ2BR X0

 
2

n
.

(32)

□

4.3. Convergence Rate: Strongly Convex Case. In this section,
we investigate the convergence rate when function fm(·) is
σ-strongly convex for all m ∈ M.
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Assumption 3. )ere exists a σ > 0 such that
fm ym( ≥fm xm(  + ∇fm xm( 

T ym − xm(  +
σ
2
ym − xm

����
����
2
,

(33)
for all xm, ym ∈ Rk.

Summing up fm leads to the strong convexity of the
Lyapunov function, i.e.,
h(Y)≥ h(X) + ∇h(X)

T
(Y − X) +

σ
2

‖Y − X‖
2
,∀Y,X ∈ RkM

.

(34)

Theorem 3. Given an initial feasible solution X0, if level set
L ≔ X ∈ C: F(X)≺ F(X0)  is bounded, then the RCD al-
gorithm satisfies

E v
† Xn
( |X0

 ≤ 1 −
2σ
ΓB

 

n

· v
† X0
 , (35)

where ΓB is defined in Lemma 4 with respect to the set
B � ∇h(X): X ∈L{ }.

Proof. Applying Lemma 4 to (34), it has
h(Y)≥ h(Y) + ∇h(Y)

T
(Y − X) +

σ
2

‖Y − X‖
2

⇒h(Y)≥ h(X) + ∇h(X)
T
(Y − X) +

σ
2ΓB

D
∗
B(Y − X)( 

2

⇒∇h(X)
T
(X − Y) −

σ
2ΓB

D
∗
B(X − Y)( 

2 ≥ h(X) − h(Y).

(36)
Let
CL(X) � Y ∈ C|∇fm xm( 

T xm − ym( ≥ 0,∀m ∈ M ,

CR(X) � Y ∈ C|F(Y)≺ F(X){ }.

⎧⎨

⎩

(37)
)en, one can easily verify thatCR(X)⊆CL(X) by using

the convexity of fm. Maximizing the left-hand side of (36)
with respect to CL(X) and the right-hand side with respect
to CR(X) yields

ΓB
2σ

D(∇h(X))
2

� maxt∈R D(∇f(X))t −
σ

2ΓB
t
2

 

≥ max
Y∈CL(X)

D(∇f(x)) · D
∗
B(X − Y)

σ
2ΓB

D
∗
B(X − Y)( 

2
 

≥ max
Y∈CL(X)

∇h(X)
T
(X − Y) −

σ
2ΓB

D
∗
B(X − Y)( 

2
 

≥ max
Y∈CR(X)

∇h(X)
T
(X − Y) −

σ
2ΓB

D
∗
B(X − Y)( 

2
 

≥ max
Y∈CR(X)

h(X) − h(Y){ } � v
†
(X),

(38)

where the second inequality follows from Lemma 4. Letting
X � Xn, combining D(∇f(Xn))2 ≥ 2σ/ΓBv†(Xn) with (17)
yields

h Xn
(  − E h Xn+1

 |Xn ≥
2σ
ΓB

v
† Xn
( 

⇒E v
† Xn+1
 |Xn

 ≤ 1 −
2σ
ΓB

 v
† Xn
( .

(39)

Taking expectation of both sides and applying the
resulting inequality iteratively leads to (35). □

4.4. Convergence Rate in Probability. Again with the aid of
gap benchmark v†, in this section, we are able to establish the

convergence rate in probability for the RCD algorithm. First
we introduce the following lemma [31].

Lemma 5 (see [31]). Let xi0 > 0 be a constant, consider a
0< ϵ< xi0, and let xin{ }n be a non-negative, non-increasing

Scientific Programming 9



sequence of random variables with one of the following
properties:

(1) E[ξn+1
|ξn

]≤ ξn
− (ξn

)2/c for all n> 0 and r> ϵ.
(2) E[ξn+1

|ξn
]≤ (1 − 1/c)ξn for all n such that ξn ≥ ϵ and

c> 1 is a constant.

)en, given confidence level ρ ∈ (0, 1), if property (1)
holds, we can choose ϵ< c and

N≥
c

ϵ
1 + log

1
ρ

   + 2 −
c

ξ0
. (40)

If property (2) holds, we choose

N≥ c log
ξ0

ερ
 . (41)

)en, we have

P ξN ≤ ε ≥ 1 − ρ. (42)

Proof (see [31], )eorem 1). )is proof is done by applying
Markov inequality.

)en, we have the following theorem that quantifies the
confidence of reducing the improvement of potential
function to no more than ϵ. □

Theorem 4. If L � X ∈ C: F(X)≺ F(X0)  is bounded and
each fm is convex, let B � ∇h(X): X ∈L{ }; then, we can
choose

N≥
Γ2BR

2 X0
 

ε
1 + log

1
ρ

  −
Γ2BR

2 X0
 

v
† X0
 

⎛⎝ ⎞⎠ + 2, (43)

where ΓB is the corresponding bounding coefficient with
respect to B; if each fm is σ-strongly convex, then we may
choose

N≥
ΓB
2σ

log
v
† X0
 

ερ
⎛⎝ ⎞⎠. (44)

Under either way, it has

P v
† XN
 ≤ ε ≥ 1 − ρ. (45)

Proof. )is result follows directly from the observation that
the gap sequence generated by RCD: v†(Xn) , satisfies the
properties mentioned in Lemma 5, according to (32) and
(39). □

5. Numerical Simulation

In this section, we use simulation method to demonstrate
our theoretical results. Consider the following example with
10 quadratic objective functions, each objective function
taking the form of (46), for m � 1, . . . , 10

0 50 100 150 200 250
1.74

1.75

1.76

1.77

1.78

1.79

1.8

1.81

Iterate n

f (
xn

)

Figure 3: )e potential function values for the three runs all
stabilize eventually, but they converge to different limiting levels.

0.47

0.475

0.48

0.485

0.49

0.495

0.5

0 50 100 150 200 250
Iterate n

f 10
 (x

n )

Figure 4: In a complete network, the limiting potential function
value varies dramatically from each other.

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0 50 100 150 200 250 300 350
Iterate n

f 10
 (x

n )

Figure 5: In a central coordinator network, the limiting potential
function value is much more stable, and notably the central co-
ordinator is able to achieve a significantly lower limiting value than
in a complete network.
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fm xm(  �
1
2
πm1x

2
m1 +

1
2
πm2x

2
m2 +

1
2
πm3x

2
m3, (46)

for m � 1, . . . , 10. )e coefficients [πm1, πm2, πm3] are ran-
domly generated in each trial of test. )e 10-th objective
(agent) is selected as a central coordinator, i.e., at each it-
eration, one of the first 9 objectives is randomly picked with
equal probability to communicate with the 10-th objective.
For a given initial pointX0, we run the algorithm 3 times and
record their corresponding potential function value trajec-
tories. )e results are summarized in Figure 3.

As is clearly seen, although each of the three runs is
convergent, their limiting levels of potential function value
differ, indicating that they converge to different points on
the Pareto front.

To further highlight this point, we run two extra sets of
simulations. With the same setting as the preceding simu-
lation (10 quadratic objectives, randomly generated πm),
again we fix an initial point at X0. For the first set of
simulation, the communication network is designed to be
complete, i.e., at each iterate, any pair i, j  can be chosen
with equal probability. For the second test, the communi-
cation network is the same as the preceding simulation, i.e.,
the 10-th objective being a central coordinator and one of
the rest of the objectives is randomly selected with equal
probability to communicate with 10-th objective at each
iterate. For each test, we run the RCD algorithm for 10 times,
and the resulting value trajectories for the 10-th objective
function are recorded in the following figures.

As is clearly indicated in Figure 4, the limiting levels of
the 10 runs differ dramatically from each other. As for the
central coordinator network (see Figure 5), the limiting level
of the coordinator is relatively more stable at around 0.38.
What is interesting is that when compared to the complete
network with random pairing, the central coordinator
somehow manages to achieve a significantly better level of
objective value. Indeed, the lowest level of the 10-th objective
in the complete network barely touches 0.47. )is is
probably because the central coordinator is involved in every
single iterate; as a result, its corresponding objective is more
heavily optimized.

6. Discussion and Concluding Remarks

We propose a randomized coordinate descent algorithm to
solve the large-scale, linearly coupled resource allocation
problem with selfish agents. )is method has a low com-
putational cost in each iteration and can guarantee con-
vergence to the Pareto optimal solution under mild
conditions, and then we derive the convergence rate of such
an algorithm. As the sampling probability is fixed exoge-
nously in the current framework, one potential extension is
to identify these sampling probabilities with respect to the
problem’s parameter, which may further enhance the effi-
ciency of the algorithm. Specifically, it is known in the
literature that the selfish/greedy behavior of the individual
agents generally leads to efficiency loss from a systemic
perspective [27, 32], and hence the design of a sampling

probability that will narrow this efficiency gap would be an
interesting direction of future research.
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