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Agents face challenges to achieve adaptability and stability when interacting with dynamic counterparts in a complex multiagent
system (MAS). To strike a balance between these two goals, this paper proposes a learning algorithm for heterogeneous agents with
bounded rationality. It integrates reinforcement learning as well as fictitious play to evaluate the historical information and adopt
mechanisms in evolutionary game to adapt to uncertainty, which is referred to as experience weighted learning (EWL) in this
paper. We have conducted multiagent simulations to test the performance of EWL in various games. -e results demonstrate that
the average payoff of EWL exceeds that of the baseline in all 4 games. In addition, we find that most of the EWL agents converge to
pure strategy and become stable finally. Furthermore, we test the impact of 2 import parameters, respectively. -e results show
that the performance of EWL is quite stable and there is a potential to improve its performance by parameter optimization.

1. Introduction

As a trial and error mechanism, reinforcement learning (RL)
has been used to optimize actions in the presence of un-
certainty. Early literature has examined the performance of a
single agent in static environments, but recent progress has
been witnessed in multiagent reinforcement learning
(MARL). Since the dynamic nature and complex correlation
in distributed systems closely match the feature of MARL, it
has been introduced to applications in disaster response [1]
and wireless network [2]. Different types of goals have been
proposed in the literature of reinforcement learning, and we
briefly classify them into three categories: stability of the
learning dynamics [3], adaptation ability to uncertainty, and
both of them [4–6]. Since the action and reward of an agent
depend much on the behavior of its counterparts that is also
learning, it is more challenging to pursue the stability of the
learning algorithm and ensure adaptability at the same time.

A great deal of work of RL assumes learning as a Markov
decision process. But the Markov property no longer holds
in a lot of MAS models, where dynamics are created by
random and distributed interactions. Evolutionary game

theory, particularly replicator dynamics, is evaluated as a
theoretical model for the study of agent dynamics in a
multiagent system. A line of recent studies begins to discuss
how to optimize policies by integrating MARL with evo-
lutionary game theory [7, 8]. For instance, Hou et al. [7]
studied the evolutionary knowledge transfer process with
MARL. Zhou et al. [9] used a similar framework to explore
the problems in negotiation. But both of them built models
based on the Markov decision process. Tuyls et al. [10]
applied the replicator dynamics (RD) on population level
which can only be used for homogeneous players on this
level. But the heterogeneous agents in a repeated game face
higher uncertainty compared with homogeneous ones be-
cause their counterparts are random through periods and
have different learning rates. Unfortunately, RD can only be
applied on individual level when agents are heterogeneous.
-us, we aim to investigate the individual learning of het-
erogeneous agents in MAS, where the Markov property no
longer holds and challenges arise for improving the per-
formance of an algorithm.

Several factors have been discussed in previous literature
about the efficiency of MARL such as the population
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structure, information, and type of tasks [11, 12]. Among
them, evaluating information is fundamental to agent pol-
icies. -ere are two classic approaches to treat historical
information, one is reinforcement learning (RL) and the
other is fictitious play (FP). RL focuses on its own experience
while FP records the strategy history of its opponent and
forms some belief about his future action [13, 14]. -ey are
complementary in information observation perspective to
some extent. Camerer and Hua [15] attempted to integrate
reinforcement learning and fictitious play to predict agent
behavior. -e learning dynamics have demonstrated to be
successful in repeated games but have not been applied in
multiagent systems with heterogeneous agents. Since Tuyls
et al. [10] have identified the relation between a general RL
model and RD in MAS, we intend to explore further to
integrate RL and FP in such context to achieve better
performance. To this end, we propose experience weighted
learning (EWL) in this paper. It evaluates experience with
integration of FP and RL for adaptability and adopts evo-
lutionary dynamics for stability.

-e research questions are as follows. First, can EW
learning help players to improve their profit compared with
the baseline in a population of heterogeneous agents? Sec-
ond, does the proposed learning algorithm perform stably
under nonstationary circumstances? -ird, do the agents
converge to equilibria finally? -is paper is organized as
follows to address these research questions. In Section 2, we
review the related work of our study. In Section 3, we
propose a novel learning algorithm and build different game
models to apply it. We conduct experiments to simulate the
learning process in games and analyze the results in Section 4
and present discussion and conclusion in Section 5.

2. Related Work

Multiagent reinforcement learning (MARL) has originated
from single-agent reinforcement learning and has become
popular in recent years [8, 16]. It finds a variety of applications
in fields including sensor networks [17], traffic signal control
[18], and robotics [19]. MARL has been proved to be ad-
vantageous in at least three aspects: parallel computation,
distributed layout, and communication between agents. Al-
though agents in MAS have higher capability to adapt to a
complex environment, several challenges arise in the real world
[20]. For example, QMIX [21] and VDN [22] that incorporate
deep reinforcement learning are designed for team tasks with
networks. Similar research such as Qatten [23] was proposed
recently to respond to challenges when facing limited com-
munication ability, andQTRAN [24] covers amuchwider class
of MARL tasks. -ere are two classic kinds of targets that the
MARL agents aim to achieve: adaptation and stability. One
stream of research aims to achieve desirable adaptation, while
the other stream tries to propose algorithms for stability.

Rationality is defined as the one standard for adaptability
when one agent converges to a best response and other
agents remain stationary [4]. Early literature started to in-
vestigate single-agent RL applied in static or repeated games
[19, 25]. Claus and Boutilier [26] investigated the perfor-
mance of two kinds of agents in repeated games in early

research, the independent learner and the joint action
learner based on Q-learning [27]. Recently, Zhang et al. [28]
used learning automata to optimize performance in coop-
erative tasks. WRFMR [29] adopts a weight parameter and
the action probability to balance exploration and exploita-
tion and accelerate convergence to the optimal joint action.
Nonstationarity arises in MARL because all the agents in the
system are learning simultaneously. -e reward of an agent
depends on changing counterparts through the periods.
Each agent is therefore faced with a moving-target learning
problem: the best policy changes as other agents’ are
adapting [30]. Hence, traditional algorithms based on fixed
repeated games find difficulty in capturing dynamic features
under such contexts. -ere is a growing body of literature
that focuses on achieving higher adaptability in nonsta-
tionary environments, which can arise from matching
mechanism, population structure, and so on. Hao et al. [31]
proposed algorithms with random matching mechanism
and evaluated them in both deterministic and stochastic
games. Tang et al. [32] investigated the dynamic network for
interaction and studied the reinforcement social learning
under a rewiring mechanism. Camerer and Hua [15]
attempted to integrate reinforcement learning and fictitious
play to predict agent behavior.-is line of research paves the
way to achieve adaptability in dynamic environments, but
most of them adopt aMarkov decision process.We intend to
discuss the adaptation in nonstationary environment where
the Markov property is violated.

Stability is another object that many algorithms pursue
to obtain. Convergence to equilibria is regarded as a basic
stability standard in a line of literature [3, 33]. -ough
convergence to a Nash equilibrium is not explicitly required,
it arises naturally if all the agents in the system are rational
and convergent. An opponent-independent agent that ig-
nores the behavior of others and finally converges to a
strategy is considered as an equilibrium solution [34]. It is
much easier to maintain stability in static or repeated games,
while the complexity arises when parallel interaction exists
in MAS. Parallel computation in MAS can reduce the load
for solving complicated problems but increase instability
because all the agents learn simultaneously and update their
strategies constantly. Each agent is facing moving partners
whose policies are mutually affected. Hou et al. [7] found
that the intrinsic nature of parallelism of evolution in a
population is ideal for MAS and thus presented an algorithm
by integrating the evolution theory with reinforcement
learning to analyze the knowledge transfer which happens
simultaneously in a MAS system. Tuyls and Nowe [35] also
investigated the relationship between MARL and evolu-
tionary game theory, focusing on static tasks [36]. Prediction
is another standard for convergence, Camerer and Hua [15]
attempted to use experimental data to estimate the pa-
rameters and validate the model by predicting the behavior
with the integration of reinforcement learning and fictitious
play. -ey demonstrated that the integration improves the
fitness of predicting the behavior of players. -is line of
research has enlightened us to pursue stability through
incorporating evolutionary game theory, but most of them
focus on the Markov decision process or homogeneous
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repeated games. We aim to achieve convergence to equi-
librium when agents interact randomly in each period.
Additionally, our rules for agent interaction induce more
complex policy dynamics by assuming heterogeneity and
parallel learning inMAS. It is valuable to explore the stability
as well as adaptability of MARL further in the context of
dynamic environment.

3. The Model

3.1. Problem Description. We adopt 4 games described in
Table 1 as the testbeds for our multiagent learning algorithm,
including the hawk dove, stag hunt, battle of sexes, and
prison dilemma. Each game contains two strategies: a and b.
When an agent chooses one of them, we call it action. -ese
game models represent different types of competition and
common interests. -e players interact randomly to play a
single stage game that repeats several rounds in a multiagent
system. After each round, the players receive their payoffs
and corresponding rewards. -ey adjust their policies for
actions, which are distributions of probabilities.

3.2. 3e Learning Framework. -ere are two populations of
players who interact pairwise to play a game and learn
through adjusting their policies. A policy is a combination of
probabilities mapping a set of actions. A game is repeated
several periods where players meet different counterparts who
are randomlymatched by the system. In a traditional repeated
game, a player has the same counterpart. However, in
practice, his partner may change frequently and randomly,
resulting in a more complex learning pattern than with fixed
pairs. In our model, the system randomly chooses a pair in
each interaction. -e agents are assumed to know their own
payoffs and actions in the game and adjust the policies after
each period. -e agents evaluate their experience and update
the policies based on EW learning. We use the following
notation in Table 2 to denote the variables used in the model.

3.3. 3e Baseline. To test the performance of the EWL, we
use independent Q-learning as a baseline for comparison
[27]. Q-learning has been demonstrated by numerous works
to be an efficient classic model of reinforcement learning. In
an algorithm, we call it a greedy action if you always select
the action with the highest value. When you select one of
these actions, we say that you are exploiting your current
knowledge of the values of the actions. Instead, if you select
one of the nongreedy actions, then we say you are exploring.
We choose ε-greedy, which is one of the most common
algorithms setting a small probability ε for nonoptimal
actions, to balance exploitation and exploration. -e Q-
learning algorithm is illustrated in Algorithm 1.

3.4. Experience Weighted Learning. We integrate rein-
forcement learning with fictitious play to evaluate the in-
teraction experience and adopt replicator dynamics to
update the policy during period iterations. We assume that
the agents have bounded rationality and heterogeneous

initial policies. Each agent chooses an action and randomly
matches its opponent to play a game. -e game repeats until
the time reaches a predefined maximum value. -e agents
calculate their rewards at the end of each period and update
their policies for the next period. An agent can use a policy
that is a probability combination of different actions. -e
experience weighted learning algorithm is illustrated in
Algorithm 2. We describe the basic procedure and calcu-
lation formulas of experience, utility, and learning dynamics
as follows. We assume that the agents have a natural decay
experience, and their beliefs are updated by depreciating the
previous counts by ρ (≤1) and adding one for the action
chosen by the players:

Ni(t) � ρ × Ni(t − 1) + 1, (1)

where Ni(t) � Ni(t − 1) is its observed count of interactions
in time t (t− 1) of action i. Similar to the weighted fictitious
play model, an agent form its belief to take action i by
probability p(ai(n)) expressed in (2) where the numerator is
the product of Ni(n) and total reward of action i and the
denominator is the sum of product values of all the actions.

p ai(n)(  �
Ni(n) 

n
t�1 r ai(t)( 


m
i�1 

n
t�1 Ni(t)r ai(t)( 

. (2)

We evaluate the experience with reinforcement learning
in (3), but we replace the policy with replicator dynamics
because of the bounded rationality assumption. We skip the
deduction of the utility of integrating RL and FP in this
paper, which is illustrated in the work of Camerer and Hua
[15]. We calculate the expected utility of an agent for each
period according to

q ai(t)(  � 1 −Φ × p ai(t)(   × q ai(t − 1)( 

+Φ × p ai(t)(  × r ai(t)( ,
(3)

where q(ai) denotes return of taking action ai at time t. -e
expected utility of an agent is determined by the reward in

Table 1: -e matrixes of game payoff.

(1) Hawk dove (2) Battle of the sexes
a b a b

a 3, 3 1, 4 a 2, 1 0, 0
b 4, 1 0, 0 b 0, 0 1, 2

(3) Prison dilemma (4) Stag hunt
a b a b

a 3, 3 0, 5 a 1, 1 0, 0.5
b 5, 0 1, 1 b 0.5, 0 0.5, 0.5

Table 2: Notations.

Variables Explanation
N (t) -e observed count of interactions in time t
at -e action of an agent in time t
π(a) -e policy mapping action a to probability
ρ -e discount rate for experience
Φ -e decay of utility with respect to time
r(a) -e reward of action a
q(a) -e utility of taking action a
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time t and the previous return in the last period, which is
discounted by Φ, similar to the weight in reinforcement
learning. r(ai) is the reward of action ai at time t. Before the
next period, the agent learns and modifies the probabilities
of the policy. -e dynamic equation of policy update is

dπ ai(t)( 

dt
�

q ai(t)( 

q(t)
, (4)

where π(ai(t)) is the policy mapping action a to probability
and q(t) is the expected return of all the actions of this agent.

4. Simulation

To test the performance of the proposed algorithm, we
conduct numerical simulations by matching a pair of agents
randomly to play a game. -e initial parameter setting is
ρ � 0.8 and Φ � 0.9. We use 4 classic game models de-
scribed in Table 1 to test the algorithm performance in
different situations. -e first one in Table 1 is the hawk dove
game which involves tough (strategy b) and mild (strategy a)
strategies between the players.-e second one is the battle of
the sexes that represents different preferences of players,
where the row player prefers strategy a while the column

player prefers strategy b. When both sides choose the same
strategy, they can realize the Pareto efficiency; otherwise,
they will obtain a lower payoff. -is model is desirable for
analyzing common interests with different preferences and
focuses more on cooperation than the first model does. We
use the stag hunt game to model the situation when the
cooperation between players is highly valuable. -e prison
dilemma represents the condition when the Nash equilib-
rium is not Pareto efficient.

Each experiment is repeated 10 times to evaluate the
performance EWL in different games since the game
process is not deterministic. We set Q-learning as the
baseline group. We evaluate the average payoff, strategy
convergence, and payoff evolution in the process in the
following sections.

4.1.3eAveragePayoff. We compare the average payoffs of 2
groups of agents, respectively, with column charts in Fig-
ure 1, including EWL and Q-learning. 4 games in Figure 1
are testbeds for the agents, and the results in Figure 1(a) are
from hawk dove game, those in Figure 1(b) are from battle of
the sexes, those in Figure 1(c) are from prison dilemma, and
those in Figure 1(d) are from stag hunt.

(1) repeat
(2) i� 0
(3) Initialize Q (s, a)
(4) repeat
(5) Choose an action A using policy derived from Q (e.g., ε-greedy)
(6) Choose an opponent randomly
(7) Take action A and observe R, S′
(8) Q(S, A)⟵ Q(S, A) + α[R + cmaxa Q(S′, a) − Q(S, A)]

(9) S⟵ S′
(10) until S is terminal
(11) i� i+ 1.
(12) until i� the total number of all the agents

ALGORITHM 1: Q-learning.

(1) repeat
(2) repeat
(3) i� 1, t� 1
(4) repeat
(5) Choose an opponent randomly
(6) Ni(t) � ρ × Ni(t − 1) + 1
(7) Choose an action according to strategy q(at)

(8) q(ai(t)) � [1 − ϕ × p(ai(t))] × q(ai(t − 1)) + ϕ × p(ai(t)) × r(ai(t))

(9) t� t+ 1
(10) until t equals the maximum period number
(11) Update the probability of actions according to
(12) dπ(ai(t))/dt � q(ai(t))/q(t)

(13) i� i+ 1
(14) until i� the total number of all the agents
(15) until predefined iteration number

ALGORITHM 2: Experience weighted learning.
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We calculate the average payoff of all agents of the final
period in 10 repeated experiments, and it is illustrated in
Figure 1 that the EWL outperformed Q-learning in all 4
games. Since the major difference between EWL and RL lies
in the evaluation of experience by integrating the FP and RL,
the results demonstrate that mechanism of experience
evaluation is more satisfactory.

4.2.3e Equilibrium Distribution. Since we adopt replicator
dynamics for policy update, which is equilibrium dynamics,
it is necessary to discuss if the learning process converges to a
stable status or fluctuates constantly. -erefore, we set a
random initial state of strategy (action combination) for
each agent and illustrate its final strategy distributions in
Figure 2 of the 4 games mentioned above.

Each learning process stops till the period reaches a
maximum number, and we repeat the process of each game
10 times. We calculate the final strategy distribution of EWL
and illustrate it in Figure 2, where the x axis represents the
number of agents converging to strategy a and y axis rep-
resents the number of agents converging to strategy b.

-e red squares represent the strategy of column players
in one population, and the blue triangles represent the row
players in the other population. -e points scatter along a
straight line in Figure 2(a). -is result indicates that most
agents finally converge to a pure strategy since the sum of
strategies a and b is equal or close to 20, which is the total
number of agents in each population.-e points in the other

3 games are concentrated in the corner, indicating that most
agents converge to strategy a, and few of them converge to b.
In addition, we find that there are less than 40 points on
these charts because some points overlap. Note that the
equilibria of hawk dove game are (a, b) and (b, a) while those
for the other games are (a, a) or (b, b). -erefore, the
convergence results match the equilibrium distribution of
each game and most agents converge to equilibria from the
perspective of population. We can find that very few agents
fail to converge to pure strategy for the following possible
reason. -e terminal condition for convergence has a pre-
cision level which can stop some convergence occasionally.
Second, there exist uncommon 0 denominators in the cal-
culation that disturb the convergence. Moreover, not all the
agents in a population converge to the same pure strategy
because the initial state is fully random and the learning
speeds are different for agents.

4.3. 3e Learning Processes. We find that EWL produces
different strategy convergence distributions in Figure 2.
Furthermore, we discuss the learning process when these
results are formed in this section. We illustrate the average
payoffs of 2 algorithms in 4 games evolved through periods,
respectively, in Figure 3, whereQ representsQ-learning.-e
average payoffs of EWL agents are higher than those of Q-
learning in hawk dove, battle of the sexes, and stag hunt,
where they increase smoothly at first and become flat
gradually. It is slightly better and very close to prison
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Figure 1: -e average payoff: (a) Hawk dove; (b) battle of the sexes; (c) prison dilemma; (d) stag hunt.
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dilemma, where the payoffs decrease smoothly and become
flat gradually. -e results in the final period are consistent
with the average payoffs in Figure 1. Since Q-learning is not
an equilibrium learner, it fluctuates a little throughout pe-
riods while the payoffs of EWL finally become very smooth
because most agents converge to pure strategies of equilibria.

4.4.3e Impacts of Parameters. Since the parameters ρ andΦ
affect the results of learning, it is important to evaluate and
optimize them to improve the performance of agents. But
the adaptive learning in multiagent learning is too com-
plicated to find an arithmetic analytical solution; hence, we
use simulation to test the impacts of the parameters in 4
different games in Table 1. We set 2 experiments to test the
parameters ρ andΦ , respectively.We initially set ρ � 0.8 and
Φ � 0.9 and the iteration number L� 20. We repeat each
experiment 10 times and calculate the average payoffs. In the
first group, we change the value of ρ from 0 to 1 with an
interval of 0.1, and then we observe the average profit of one
population. Likewise, we change the value ofΦ in the second
group. -e average payoffs in 4 games of 2 groups are il-
lustrated in Figures 4 and 5 with the 4 lines, where battle

represents the battle of the sexes, prison represents prison
dilemma, hawk represents hawk dove, and stag represents
stag hunt. We find that the impact of ρ is mild when V

remains at a high level. -e impacts ofΦ are different for the
4 games, in which it affects the hawk dove game more than
the others. Generally, the impact of parameters is limited
and the performance of EWL is relatively stable with varying
parameters. But there is a potential to improve its perfor-
mance by parameter optimization.

5. Summary and Discussion

We introduce a novel learning algorithm to model the
strategy adjustment of MARL agents. EW learning inte-
grates reinforcement learning as well as fictitious play to
efficiently utilize historical information for policy evalua-
tion and update. We have conducted several simulation
experiments to test the performance of EW learning in
different games. -e results demonstrate that the EWL
agents outperform Q-learning in all 4 games. It is shown
that EW learning is effective and more profitable in most
cases of our experiments. We find that most agents con-
verge to pure strategy and form equilibria from a
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Figure 2: -e equilibrium distributions: (a) hawk dove; (b) battle of the sexes; (c) prison dilemma; (d) stag hunt.
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population perspective in all the games, which demon-
strates the stability of EWL. In addition, we have observed
the learning process and found that the payoffs change
smoothly and become flat gradually through periods.
Furthermore, the impacts of 2 important parameters are
evaluated to test the efficiency of EWL and search for
optimal values. But our experiment settings still have some
limitations. For example, the agent amount of 40 is medium
size, and we did not test the performance in a sparser or
denser environment. Due to the time constraint of this
research, we only examined the impact of the single pa-
rameter instead of parameter combinations. We are going
to fill these gaps and extend our research to a wider range of
game models in the future.
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