Hindawi

Scientific Programming

Volume 2021, Article ID 9971669, 11 pages
https://doi.org/10.1155/2021/9971669

Research Article

Hindawi

SuperPruner: Automatic Neural Network Pruning via

Super Network

Yu Liu®,’ Yong Wang)2 Haojin Qi ,2 and Xiaoming Ju

1

East China Normal University, Software Engineering Institute, Shanghai, China
2State Grid Ningbo Electric Power Company, Information and Communication Branch, NingBo, China

Correspondence should be addressed to Xiaoming Ju; xmju@sei.ecnu.edu.cn

Received 22 March 2021; Revised 11 July 2021; Accepted 16 August 2021; Published 14 September 2021

Academic Editor: Pengwei Wang

Copyright © 2021 Yu Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Most network pruning methods rely on rule-of-thumb for human experts to prune the unimportant channels. This is time-
consuming and can lead to suboptimal pruning. In this paper, we propose an effective SuperPruner algorithm, which aims to find
optimal pruned structure instead of pruning unimportant channels. We first train a VerifyNet, a kind of super network, which is
able to roughly evaluate the performance of any given network structure. The particle swarm optimization algorithm is then used
to search for optimal network structure. Lastly, the weights in the VerifyNet are used as the initial weights of the optimal pruned
structure to make fine-tuning. VerifyNet is a network performance evaluation; our algorithm can quickly prune the network
under any hardware constraints. Our algorithm can be applied in multiple fields such as object recognition and semantic
segmentation. Extensive experiment results demonstrate the effectiveness of SuperPruner. For example, on CIFAR-10, the pruned
VGG16 achieves 93.18% Top-1 accuracy and reduces 74.19% of FLOPs and 89.25% of parameters. Compared with state-of-the-art

methods, our algorithm can achieve higher pruned ratio with less accuracy cost.

1. Introduction

In recent years, deep neural networks have achieved re-
markable results in various fields (including object recog-
nition [1-4], object detection [5-7], semantic segmentation
[8, 9], and autonomous driving [10]). However, the trained
neural network needs to save a large number of parameters,
and at the same time, one forward propagation requires a
large number of matrix calculations, which prevents the
application of the neural network on edge devices with
limited resources. In order to alleviate this problem, the
researchers proposed several CNN compression techniques,
including low-rank decomposition [11, 12], parameter
quantification [13-15], network pruning [16-21], and
knowledge distillation [22, 23]. Among them, network
pruning is widely concerned as a simple and efficient
method. The traditional network pruning method
[16, 17, 24] consists of three steps: (1) pretraining, (2) filter
pruning, and (3) fine-tuning. In the filter pruning process,
human experts design rules to evaluate the importance of

filter and delete unimportant filters. At the same time, the
pruning rate of each layer (pruning rate affects the network
structure) requires a lot of experiments to determine. In
traditional network pruning, the pruning results are highly
dependent on human experts, which often lead to subop-
timal pruning.

In order to reduce the impact of human experts on
pruning results, the automatic pruning method
[18, 19, 25, 26] came into being. The automatic pruning
method uses the ideas of reinforcement learning [18] or
intelligent search algorithm [19] and automatically prunes
the network model through continuous iteration. These
methods free human experts from rule design and choose of
pruning rate, not only saving a lot of time but also improving
the performance of the pruned network model. In addition,
Liu et al. [27] and Wang et al. [28] believed that the essence
of network pruning is pruning the network structure, rather
than pruning unimportant filters. Therefore, we propose the
SuperPruner algorithm, which automatically prunes the
model by finding the optimal network structure.

mailto:xmju@sei.ecnu.edu.cn
https://orcid.org/0000-0001-5067-145X
https://orcid.org/0000-0002-6458-7256
https://orcid.org/0000-0002-6474-8275
https://orcid.org/0000-0002-6353-9041
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/9971669

Assuming that a deep neural network has [layers and
each layer has fixed n channels, the total search space is I".
However, the search space will increase exponentially with
increased channels. It is obviously unacceptable to search all
network structures in the search space. We limit the number
of channels that can be reserved for each layer to an,
a € {10%,20%, . .., 100%}, which means the convolutional
layer of the pruned network has only |«| possible values. We
reduce the search space from the original I to 1 from which
we propose SuperPruner based on the above search space
reduction. The algorithm is inspired by NAS [29-32], es-
pecially the one-shot model [32, 33]. As shown in Figure 1,
we first train a VerifyNet which can quickly predict the
performance of any network structure in the search space
and then find the optimal network structure through the
search algorithm. And finally, we fine-tune the optimal
network structure to obtain the pruned network model.
When our algorithm predicts the performance of the net-
work structure, it only needs one inference to obtain the
accuracy on the validation set, without any fine-tuning, and
the whole algorithm is simple and efficient. The SuperPruner
algorithm we propose alleviates the slow and expensive
problem of performance evaluation in the optimal network
structure search process. Compared with the SOTA method,
our algorithm can achieve higher pruned ratio with less
accuracy cost.

Our contribution mainly includes the following three
aspects:

(1) We propose an automatic pruning algorithm,
SuperPruner. The core of this algorithm is to train a
VerifyNet, which can directly predict the perfor-
mance of all pruning structures. Because network
search and performance predictions are decoupled
by VerifyNet, we can prune the network structure
under arbitrary resource constraints.

(2) Our algorithm can prune common network struc-
tures such as VGG [2], GoogLeNet [3], ResNet [4],
and UNet [9]. We applied the model compression
algorithm to the semantic segmentation task for the
first time and achieved competitive results.

(3) Compared with traditional network pruning algo-
rithms, our algorithm obtains an improved pruning
with little participation of human experts. Compared
with the automatic pruning method, SuperPruner
can directly get the performance of the network
structure without any fine-tuning.

2. Related Work

Since the method proposed in this paper belongs to network
pruning, we have summarized the recent work of network
pruning in the following.

2.1. Traditional Network Pruning. Traditional network
pruning is divided into two categories, unstructured pruning
and structured pruning. Unstructured pruning [16, 34, 35] is
fine-grained, and its purpose is to cut off the unimportant

Scientific Programming

weight connections in the pretrained neural network. This
will result in sparse CNNs with irregularities, which usually
require special software and hardware accelerators to speed
up the inference speed.

In contrast, structured pruning [17, 24, 36, 37] is coarse-
grained and can completely remove unimportant filters. It is
easy to achieve the purpose of computing acceleration. Li
et al. [38] used the [1-norm, and Liu et al. [39] used the
learnable scaling factor of the BN to remove unimportant
filters. Luo et al. [36] proposed reconstruction errors to
prune filters. Lin et al. [20] proposed a new global and
dynamic pruning scheme, which can prune redundant filters
to achieve CNN acceleration. However, the abovementioned
methods require a lot of experiments to determine hyper-
parameter (the pruning rate of each layer). Furthermore, the
pruning results are affected by human subjectivity, which
likely cause suboptimal pruning. Different from the tradi-
tional network pruning method, we propose an automatic
pruning algorithm. The whole pruning process hardly re-
quires the participation of human experts, and the results
obtained are better.

2.2. AutoML. Recent years have seen that the emergence of
AutoML frees human experts from tedious rule-of-thumb
and hyperparameter design. He et al. proposed the AMC
[18] method that automatically generates the pruning rate
of each layer through the DDPG [40] in reinforcement
learning. Lin et al. [41] trained a GAN and let the generator
directly generate the pruned network model. Dong et al.
[21] proposed to train an unpruned network and search for
the most suitable depth and width of a network minimizing
the computation cost. The parameters of the searched/
pruned networks are then learned by knowledge transfer
from unpruned network. Liu et al. [25] proposed to train a
PruningNet which can predict the weight of the network
structure after pruning and then search the optimal net-
work structure through PruningNet. However, Meta-
pruning evaluates the performance of the searched network
structure, and it needs to perform another calculation
based on the weights generated by PruningNet to predict
the performance of the network structure. Luo et al. [26]
used search methods instead of reinforcement learning to
compress the network model which the ADMM [35] as the
core optimization algorithm. Lin et al. proposed the
ABCpruner [19] that used the ABC algorithm to search the
network structure. However, ABCpruner introduced the
process of retraining when evaluating the performance of a
searched network structure, which takes a lot of time and
computing resources. Even if the weights in the pretraining
model are used as the initial weights of the searched model
and a few steps of fine-tuning are performed on this basis,
the cost of ABCpruner on performance evaluation is
unacceptable.

Different from the above method, our algorithm needs to
train a super network which is requires only one forward
propagation to predict the performance of the searched
network. It does not require any fine-tuning during network
performance evaluation, saving resource consumption.

Scientific Programming

, - VerifyNet Training - - - - - - - - - - ——— - - -~
update weight

Encoding Vector

[1056]

update every
iteration

. Searching

Encoding Vector

1056
681

257

Prediction Accuracy

45%
38%

52%

I
I
1
1
I
i
Loss '
1
I
I
I
I
1
/

Update Vector
69 - 1(53%)
Improved| 2 7 .- 5 (77%)

PSO
33 6(36%)

Best

Encoding

,---Fine-tuning------------------——-————

Best Encoding Vector

1

1

i Weight
1

L2]

i

1

1

1

1

inheritance

1
I
I
I
I
1
1
I
I
I
Vector !
1
I
I
I
|
:
7

Optimal |Retraining Best
Network Prune
Structure Network

FIGURE 1: Our SuperPruner has three steps. (1) Train a VerifyNet, the input is the coding vector of the network structure, and the output is
the accuracy of the prediction on the given data set. Update the encoding vector once per iteration. (2) Search for the best network structure.
We use the improved PSO algorithm to find the optimal network structure on VerifyNet. In the search process, only one inference is needed
to predict the accuracy of the network structure on given data set without any retraining. (3) Fine-Tuning. The searched optimal network
structure inherits the weight on VerifyNet and fine-tunes it to obtain the best pruned network.

2.3. NAS. Our algorithm is inspired by one-shot architec-
ture search in NAS. The core idea of one-shot architecture
search is to reuse the trained network as much as possible by
weight sharing weight generation [25, 31] or [30, 32] so that
when evaluating the performance of the searched network
structure, there is no need to retrain from scratch and reduce
a lot of calculations. For example, Brock et al. [31] and Liu
et al. [25] trained hypernetworks to generate the weights of
the searched network structure. Pham et al. [30] proposed
directed acrylic graph (DAG) representing the search space,
all the subnetworks in the DAG mandatory sharing pa-
rameters. Guo et al. [32] and Li et al. [33] proposed to train a
super network that includes all substructures. The common
edges of different substructures share the weights in the
super network. Only trained once, all substructures can get
their weights directly from the super network.

In NAS, the input and output of each layer are fixed.
However, during the channel pruning process, the input of
the current layer will change with the output of the previous
convolutional layer. It is not feasible to directly apply the
one-shot architecture search in the NAS to the channel
pruning task. Therefore, we design a pruning module to
replace the convolutional layer in the one-shot model, which
perfectly solves the problem of unfixed input of the con-
volutional layer in the network pruning task.

3. Materials and Methods

In this chapter, we will introduce the SuperPruner, which
can efficiently prune convolutional neural networks. A
represents the entire search space, and the pruned network
structure a is subset of A. We define M (a, w) as a network
model with structure a, and the accuracy of a on the test set
is used to measure the network performance. As equation (1)
shows, the purpose of network pruning is to find a com-
pressed network structure with the optimal accuracy on the
test set.

a" = argmax ACC, (M (a, w,)).
acA

(1)

However, in real application scenarios, typically the
parameter of the model, FLOPs, inference speed, and
energy consumption have certain requirements. A com-
mon practice is to limit the parameters, such as the fol-
lowing equation:

(2)

Therefore, we need to optimize equation (1) under the
conditions of equation (2) to obtain the optimal network
structure, such as the pruned network with the highest
accuracy.

Para(a)® <Para, .

However, solving the real accuracy requires retraining
the searched network from scratch, which will cost a lot of
computing resources. As shown in Figure 1, to solve this
problem, we propose to train an auxiliary network (Ver-
iftyNet), which can quickly predict the accuracy of all
subnetworks on the test set without retraining. Then, the
PSO algorithm is used to search the optimal network
structure in VeriftyNet. Because structure search and per-
formance evaluation are separated, our algorithm can obtain
the optimal network structure under arbitrary hardware
constraints.

3.1. VerifyNet Structure. The input of VerifyNet is the
encoding vector of the network structure, and the output is
the prediction of the accuracy on the given data set. When
the test set is given, we can use the following equation to
calculate accuracy to predict the true performance of the
network structure.

acc(a) = Verify Net(a; T.y,). (3)
acA

We limit the number of channels that can be reserved for
each layer to an, a € {10%,20%, . . ., 100%}. This means that
no matter which layer of the neural network is concerned,
there are only 10 cases where the number of channels is
reserved. When constructing VerifyNet, we allocate a
channel block for each possible situation and use 10 channel
blocks corresponding to 10 feasible solutions of this layer.
The same channel block is shared between different paths. In
this way, through the sharing of channel blocks, only 10L
channel blocks are needed for an L-layer convolutional
neural network to represent all possible situations in the
search space of L,,. Figure 2 shows the structure of Ver-
ifyNet with three convolutional layers. Given the encoding
vector, we can predict the Top-1 accuracy of the network
structure corresponding to the encoding vector.

In the network pruning task, the input of the current
convolutional layer is determined by the output of the
previous convolutional layer. Using the same channel block
for different types of network models can be difficult to
handle. As shown in Figure 3, in order to make our algo-
rithm effective for various common network models, we
design three different blocks. Block (a) is composed of Conv,
BN, and ReLu, suitable for LeNet, VGG, MobileNet, and
other types of networks without shortcut. For block (a), the
output and maximum input of the channel block are fixed,
and the real input can change according to the output of the
previous convolutional layer. We can easily implement this
function by slicing the convolution kernel. Block (b) is
suitable for shortcut networks such as ResNet and UNet. We
fix the input and output of block (b) unchanged so that the
convolution kernel at the short connection will not be
changed and only the middle layer of the block (b) will be
pruned. The block (c) is suitable for GoogLenet and other
similar network structures. For block (c), only 1x1 con-
volutional layer on both sides of the branch is not pruned.

We use the appropriate block to construct a VerifyNet
according to the type of network to be pruned. VerifyNet is

Scientific Programming

5.5x the size of the original network. After training, any
network structure can be evaluated with only one inference.
Compared with the computational power consumption of
retraining the subnetwork, it is acceptable to have 5.5x more
memory consumption in the training.

3.2. VerifyNet Training. The purpose of VerifyNet is to train
VerifyNet only once to predict the performance of all
subnetworks through channel sharing. We hope that the
subnetwork weight inherited from VerifyNet and the sub-
network weight trained from scratch are as close as possible.
This requires equal training of all paths in VerifyNet. To
solve this problem, we propose a random sampling path
strategy to train VerifyNet.

In forward propagation, the encoding vector (repre-
senting the structure of the neural network) is randomly
generated as the input of VerifyNet. The path corresponding
to the coding vector is activated, while the remaining paths
are in an inactive state. The coding vector is updated every
time a batch size is trained. In backpropagation, unlike
traditional training, we do not update all weights. Only the
activated path will perform gradient calculation and update
the weight of the channel block on the path.

In our VerifyNet, overlapping parts in different paths
share the same block. For the path that is not sampled, the
blocks on this path will be trained in other paths. When all
blocks have been trained, it also means that this path without
sampling has also been trained. All paths in the solution
space will be trained equally due to the special shared
structure of VerifyNet. Because only one path is selected
each time, our VerifyNet is not significantly different from
the normal network during training, and it can quickly reach
convergence.

We cannot guarantee that the order of network per-
formance predicted by VerifyNet is the same as the real
order, but we can guarantee that it will not differ too much.
Because each path in VerifyNet is trained by random
sampling, it is as close as possible to the weight of the real
training. When we choose another path for training, it will
affect the originally trained channel block in this path, but
every channel block in VerifyNet will be affected in this way,
so the entire VerifyNet will maintain a dynamic balance. The
network performance predicted by VerifyNet is often lower
than the real result, but it is almost the same as the real
performance ranking.

3.3. Network Structure Search. After completing the training,
the VerifyNet at this time is no longer a network in the
traditional sense but a network estimator. If the encoding
vector and the validation set are input, only one inference
gets accuracy to the subnetwork corresponding to the
encoding vector, without any fine-tuning. Because of the
large search space, random search is not advisable. In order
to find the optimal network structure, SuperPruner uses PSO
to search the network structure on VerifyNet.

We first randomly initialize m one-dimensional particles
{C.}T, with position of the particle representing the network
structure (the encoding vector input by VerifyNet) and

Scientific Programming

1 1
I
! Conv 1 Conv 2 Conv 3 |
Input i |
. I
Encoding Vector | 10% Block 10% Block 10% Block) !
! | Output
! i Top-1 Prediction
2 | 20% Block 20% Block 20% Block ! Accuracy
I
| I
2 b 77.69%
|
9
90% Block 90% Block 90% Block

100% Block

FIGURE 2: The structure of VerifyNet with three convolutional layers.

100%

Block

100% Block

Each layer of VerifyNet consists of 10 blocks. The number of channels

in a% block is a% of the original number of channels in the convolution kernel. Only the block corresponding to the encoding vector is
activated. Given a data set and input the encoding vector, we can predict the Top-1 accuracy of the network structure corresponding to the

encoding vector on the data set.

Input channels (a -

Cin

Cin)

la'cin

Conv
(@ 6B €003 3)
BN (ﬁ . C()ut)
ReLu

Output Conv (cip,at - €,,3,3)
I Channels
(ﬁ . CU\,() BN (a - ¢;)+ReLu

1B

=

Max input channels (c;,)

Conv (a - ¢1,Coup3,3)

BN (Cou)+ReLu

Cout

(b)

| !

l !

Conv (cinc1,1,1)

Conv (cjp,at - €,1,1)

Conv (¢ip,a - €4,1,1)

MaxPooling

BN (c,)+ReLu

BN (a - c,)+ReLu

BN (a - ¢;)+ReLu

Conv (¢ipc5,1,1)

Conv (a - €,¢3,3,3)

Conv (a - cp0 - €5,3,3)

BN (c;)+ReLu

BN (c3)+ReLu

BN (a - ¢c5)+ReLu

Conv (a - ¢5,¢63,3)

BN (cs)+ReLu

(+)

C+C3tcetcs

?

(©

F1GURE 3: Three blocks of the VerifyNet. The red font represents that part which needs to be pruned. We use block (a) to prune VGG16,
block (b) to prune ResNet, and block (c) to prune Googlenet. For ResNet and Googlenet, we only prune the middle layer and do not change

the channel number of input and output of the block.

velocity V; representing the update direction of the particle.
Then, we calculate the fitness function value of each particle
according to equation (4) and update the local optimal
particle P; (the optimal particle found by the i-th particle
during the algorithm operation) and the global optimal
particle G (the optimal particle found during the algorithm
operation).

(4)

where y € (0%, 100%) is a preset constant. It represents the
proportion of the network performance when calculating the
fitness function. Finally, the velocity and position of each
particle are updated according to equation (5), and the al-
gorithm is executed iteratively.

fit(a) = p-acc(a) + (1 — y) - Para(a),

’ (5)
C,=C,+V,

1

{V-:w‘Vi+a1‘r- (h,-=C)+ay-r- (G-C),

where r € (0,1) is a random number.

The standard PSO algorithm fixes the size of w, and the
particles cannot obtain a balance between the global search
and the local search. This will reduce the diversity of the
model, and the particles cannot search for new regions and
eventually fall into a local optimal solution. According to
equation (6), in order to solve this problem, we dynamically
change the size of w when updating the model speed to help
the particles expand the search space and jump out of the
local optimal solution.

v
w=0.1- cos<— . n) +0.2, (6)
N

where N is the maximum number of iterations of the PSO
and # is the current number of iterations of the PSO.

In addition, we have introduced the concept of detection
particles. When a particle has not been updated for a long
time, we think that the particle has fallen into a local op-
timum. In this case, a detective particle will be generated to
replace the particle that has fallen into the local optimum. By
introducing detection particles, the search space can be well
expanded, which helps the particles to jump out of the local
optimal solution and avoid the premature phenomenon.

After the algorithm is executed, the optimal network
structure we searched for is the neural network represented
by the global optimal particles. SuperPruner evaluates the
searched network structure performance through VerifgNet
which has been trained before searching. Therefore, after
performance evaluation and structure search are completely
decoupled, we can easily search for the optimal network
structure under arbitrary hardware constraints by modifying
the fitness function in PSO.

The weight of the searched optimal network structure is
inherited from VerifyNet. We only need to fine-tune a few
steps on the training set to get the pruned network model.
More details of the improved PSO algorithm are shown in
Algorithm 1.

4. Results and Discussion

We conducted experiments on object recognition and image
segmentation tasks to verify the effectiveness of the
SuperPruner. The pruned network model includes VGG,
GoogLeNet, ResNet, and UNet. All experiments run on one
NVIDIA Tesla P40 GPU, implemented with Pytorch.

4.1. Experimental Settings

Datasets. On object recognition task, we evaluated our
method on CIFAR-10 and CIFAR-100. The CIFAR-10 has
10 classes, and each class has 6K images. There are 50K
training images and 10K test images. CIFAR-100 is similar to
CIFAR-10 but is divided into 100 classes, each with 600
images. We randomly divide the original training set into
two parts: 10% of images are used as the validation set and

Scientific Programming

the remaining as the training set. The divided validation set
is used for predicting performance, which network structure
searches for VerifyNet, ensuring the generalization of the
network.

Training Strategy. VerifyNet plays a very important role in
quickly predicting network structure performance. For
CIFAR dataset, we use the stochastic gradient descent (SGD)
algorithm with a momentum of 0.9 and a weight decay of
0.0001. We train each VerifyNet by 2K epochs with the initial
learning rate of 0.1, which is scaled by 0.25 over 500 epochs.
The batch size is set to 256. When training the optimal
network structure, we reduce the epochs from 2K to 150 and
the learning rate is divided by 10 every 50 epochs.

PSO Parameter. In order to find the optimal network
structure, we experimentally set M = 20, N = 100, and T =
10 in Algorithm 1. The value of m changes according to the
network structure such as m is set to 16 for VGG16 and set to
27 for ResNet56. The value of u belongs to
{10%,20%, . . ., 100%}, and we can freely choose the value of
the p according to actual application. The influence of y on
the optimal network structure will be discussed in chapter D.

4.2. Results on Object Recognition Task

4.2.1. VGGI6. VGG16 has 13-conv and 3-fc without
shortcut, and the baseline can achieve 93.45% accuracy on
CIFAR-10. Using SuperPruner to prune VGG16, we can
remove 74.19% FLOPs and 89.25% parameters, but the
accuracy can still be kept at 93.18%. As seen from Table 1,
compared with other methods, such as GAL [41] and
ABCpruner [19], our method is superior in FLOPs and
parameters pruning ratio, with almost no reduction in ac-
curacy. For example, our method can reach the higher
pruning rate of FLOPs (74.19% vs. 45.26% by GAL and
73.68% by ABCpruner) and parameter (89.25% vs. 82.22%
by GAL and 88.68% by ABCpruner) by the less accuracy loss
(=0.3% vs. —0.54% by GAL and -0.37% by ABCpruner).
Based on further analysis, Figure 4 shows that SuperPruner
retains more channels and parameters for the first few layers
of VGGI16, and the parameter pruning rate is significantly
improved starting from Convé. This is because each layer of
the network has different sensitivities to pruning, resulting
in different pruning rates. The first few layers of VGG16 are
mainly used for feature extraction, and retaining more
channels and parameters helps the compressed model
maintain high accuracy. Therefore, SuperPruner can auto-
matically learn network structure information through
particle swarms in the search to obtain the optimal pruner
model.

4.2.2. GoogLeNet. For GoogLenet, our experimental results
can be obtained from Table 2. We can remove 55.27% pa-
rameters, and the accuracy is only 1.37% lower than baseline.
At the same time, SuperPruner can achieve 55.29% FLOPs
pruning rate. The comparison results of SuperPruner and
other algorithms are shown in Table 2. With the same FLOPs

Scientific Programming

Hyperparameter: number of particles: M, dimension of Particles: m, the maximum number of iterations: N, impact factor: y, max
time: T, input: VerifyNet: Verify Net, validation set: val, and output: the optimal pruned network structure: a*
(1) Initialize the particle position {C;}}", particle velocity {V;}}", historical best position {P;}}", global best position G, and no updated
time ¢,
(2) fori=0: N do
(3) for j=0: M do
(4) Calculate fit(C j) based on equation (4)
(5) Update V; and C; based on equation (5)
(6) if fit(C;) > fit(P;), then
(7) P;=Cjt;=0
(8) else fi=t;+1
(9) end if
(10) if fit(C;) > fit(G), then
11) G=¢;
(12) end if
13) if £ > T, then
(14) randomly initialize m one-dimensional particles C;
15)t;=0
(16) end if
(17) end for
(18) Calculate w based on equation (6)
(19) end for
(20) return G

ALGORITHM 1: The improved PSO algorithm.

TaBLE 1: Accuracy and pruning ratio of VGG16 on CIFAR-10.

Method Prune Acc (%) Acc drop (%) FLOPs/PR (%) Parameters/PR (%)
L1[16] 93.40 0.56 206.00 M/34.30 5.40 M/64.00
GAL-0.1 [41] 93.42 0.54 171.89 M/45.20 2.67 M/82.20
ABCpruner-80% [19] 93.08 -0.06 82.81 M/73.68 1.67 M/88.68
SuperPruner-50% 93.18 0.27 81.19 M/74.19 1.64 M/89.25
Acc: accuracy; PR: pruning rate.
100 - I
80 - - 41
g - —
g 60+ T 1
3
e,
)
& 40
=
o
20 A
0 ”ﬂ T T T T T T T T T T T T
TS TEELTETS DS
2 2 2 2 2 g 2 8 2 % % % %
S3833833338¢8¢E¢
O 0 0 0
Convolution Layer
[_] Channels

] Parameters

] FLOPs

FIGURE 4: The pruned ratio of each layer for VGG16 on CIFAR-10.

8 Scientific Programming
TABLE 2: Accuracy and pruning ratio of GoogLeNet on CIFAR-10.

Method Prune Acc (%) Acc drop (%) FLOPs/PR (%) Parameters/PR (%)
L1 [16] 94.54 0.51 1.04 GM/31.93 3.51 M/43.11
GAL-0.5 [41] 94.56 0.49 0.94 GM/38.20 3.12 M/49.30
ABCpruner-30% [19] 94.84 0.21 0.51 GM/66.56 2.46 M/60.14
SuperPruner-50% 93.78 1.27 0.68 GM/55.29 2.76 M/55.27
pruning ratio and parameters pruning ratio, SuperPruner is) 2°1XNnY|

better than L1 [16] in pruning rate (55.29% vs. 31.39% for dice = X[+ Y] (7)

FLOPs and 55.27% vs. 43.11% for parameters) and below L1
in accuracy (93.78% vs. 94.54%). Comparing with ABC-
pruner [19] and GAL [41], our algorithm has a slightly lower
accuracy than ABCpruner but the pruning rate exceeds that
of GAL.

4.2.3. ResNet. VGG16 is a simple network that focuses on
building convolutional layers, and there is no Short-Block.
In order to verify the effect of SuperPruner on the Short-
Block model, we prune ResNet56 on CIFAR-10 and CIFAR-
100. We construct VerifyNet on ResNets as shown in
Figure 3(b), which does not change the input and output of
the block and only trims the middle part. We summarize the
pruning results of ResNet56 in Table 3. On CIFAR-10, we set
u to 80%, our algorithm can reach 80.74% FLOPs pruning
rate, but the accuracy declines by 1.10%. On CIFAR-100,
SuperPruner can achieve 57.30% FLOPs pruning rate, and
the accuracy is 2.23% lower than the unpruned network. This
is because ResNet56 has lots of redundant connections
during the design, and SuperPruner can automatically find
these redundant connections and prune them. Removing
these connections can effectively prevent over-fitting and
will not affect network performance. Compared with other
methods, our model can achieve competitive results.
Compared with GAL, SuperPruner can achieve better re-
sults. The accuracy is increased from 91.58% to 92.17%, and
the FLOPs pruning rate is increased from 60.20% to 80.74%.
Even compared with the state-of-the-art algorithm TAS [21],
SuperPruner still reaches the higher pruning rate of FLOPs
(80.74% vs. 52.70%), with a slightly accuracy loss (92.17% vs.
92.81%). For CIFAR-100, the performance of most algo-
rithms has declined, but our algorithm can still achieve the
highest FLOPs pruning rate (57.30%) with a small loss of
accuracy (68.97%).

4.3. Results on Semantic Segmentation Task. This paper
presents results of pruning of UNet trained for semantic
segmentation on the Carvana data based on Kaggle’s Car-
vana Image Masking Challenge from high definition images.
After the challenge, we can only get all the images and
corresponding masks of the training set. In order to obtain
the pruned model with the best effect and generalization
ability, we redivide the original training set into training set,
validation set, and test set according to the ratio of 6:2:2.
Consistent with the competition, we evaluated the pruned
network on the mean dice coefficient. The dice is defined in
our experiment as follows:

where X is the predicted segmentation set of pixels and Y is
the ground truth. The dice coefficient is defined to be 1 when
both X and Y are exactly the same.

We use the block (b) to construct VerifyNet according to
the structure of UNet. The VerifyNet was trained from
scratch with 4096 images (no data augmentation) and
trained 20 rounds in total. We set the initial learning rate to
0.0001, batch size to 1, and the remaining parameters are the
same as above. The mean of the dice coeflicients for each
image in the validation set is used as the network perfor-
mance evaluation index. After the training, the PSO algo-
rithm is used to iteratively search for the optimal network
structure. Finally, the optimal network structure on the
origin training set is retrained to obtain the pruned UNet
model. We compared the performance indicators of the
pruned UNet and the original UNet, and the results are
shown in Table 4. When y is set to 30%, we can remove
78.34% FLOPs and 75.1% parameters still keep the dice score
at 0.9945, even 0.002 higher than the original model. Figure 5
shows the segmentation results of 30%SuperPruner-UNet
on the test image.

Apart from this, we tested the speed of the model. The
input picture resolution is 959 x 640, the original UNet
divides 249 pictures per second, but 30%SuperPruner-UNet
can split 311 pictures. The pruned network is about 20%
faster than the original network. Through the above analysis,
the pruned network has achieved better results on the test set
than baseline. Our proposed algorithm is also effective in
semantic segmentation tasks.

5. Ablation Studies

To further illustrate the efficiency of SuperPruner in
searching for the optimal network structure, we choose
VGG16 for an ablation experiments.

5.1. Effect of the VerifyNet. We designed two sets of ex-
periments. A set of experiments does not train VerifyNet
and directly uses the PSO to search for the optimal network
structure. We retrained the searched network structure for
four epochs to obtain network performance. We define this
experiment as PSOPruner. Another set of experiments trains
VerifyNet and uses the PSO to search for the optimal
network structure. VerifyNet is used to predict network
performance of the searched network structure. We define
this experiment as SuperPruner. To ensure the fairness of
comparison, all the parameters of PSO are the same. We

Scientific Programming

TABLE 3: Accuracy and pruning ratio of ResNet56 on CIFAR.

Method CIFAR-10 CIFAR-100
etho

Prune Acc (%) Acc drop (%) FLOPs/PR (%) Prune Acc (%) Acc drop FLOPs/PR
FPGM [42] 93.49 0.42 59.40M/52.60 69.66 1.75 59.40M/52.60
GAL-0.8 [41] 91.58 1.68 49.99M/60.20 — — —
TAS [21] 92.81 1.54 59.50M/52.70 72.25 0.93 61.20M/51.30
ABCpruner-70% [19] 93.23 0.03 58.54M/54.13 — — —
SuperPruner-80% 92.17 1.10 24.17M/80.74 68.97 2.35 50.00M/57.30

TaBLE 4: Dice score, pruning ratio, and inference time of UNet on the Carvana data. Dice score is the mean of the dice coeflicients for each

image in the test set.

Model Dice score FLOPs/PR Parameters/PR Time (s)
UNet 0.9928 374.47G/- 17.27M/- 0.24
30%SuperPruner-UNet 0.9944 81.11G/78.34% 4.3M/75.1% 0.19
50%SuperPruner-UNet 0.9896 162.23G/56.68% 5.88M/65.95% 0.21
70%SuperPruner-UNet 0.9926 237.26G/36.64% 12.74M/26.23% 0.22

CARMANA

—

CARMANA

FIGure 5: Example semantic segmentation result using 30%SuperPruner-UNet.

assume M = 10 and N = 100, and the results are shown in
Table 5. Compared with PSOPruner, SuperPruner saves twice
the time spent. The time saved will increase with the increase
in M and N or retraining time. This is because SuperPruner
only needs to train VerifyNet once (2000 rounds), and only
one forward propagation is needed to get network perfor-
mance. And PSOPruner needs four rounds of retraining to get
network performance for every fitness calculation of a path
(M-N- 4 rounds in total). For SuperPruner, network evalu-
ation and structure search are decoupled. If the hardware
requirements change, it only needs eighteen minutes to get
the optimal network structure under the new constraints.
However, the PSOPruner algorithm needs to start training
from zero to get the final result, and it takes about 20 h.

5.2. Effect of y. We compare the pruned network with dif-
ferent y. The experimental results are shown in Figure 6. It
can be easily found from the figure that as y increases, the
prune rate of FLOPs and parameters will decrease, but the
accuracy will increase. We conjecture this because as y rises,
more and more convolution kernel channel will be saved,
and the prune model obtained by the SuperPruner is suf-
ficient for image feature extraction. Hence, we can change y
or customize the fitness function to get pruned model that
satisfies constraints.

5.3. Comparison with Other Methods on Time Consumption.
We also analyzed ABCpruner [19] and Metapruner [25] on
time consumption. The experimental results are shown in
Table 5. ABCpruner directly uses the ABC algorithm to
search for the optimal network structure. Retraining is also
used when calculating fitness. If the ABCpruner and PSO-
Pruner parameter settings are the same, the time overhead of
the two algorithms is basically the same. Metapruner trains
an auxiliary network PrunerNet, which is used to accelerate
the calculation of the fitness of the searched network. In the
training time of the auxiliary network, PrunerNet training
2000 rounds requires 25h, while VerifyNet only requires
10 h. This is because the output of PrunerNet is the weight of
the network structure. The output of VerifyNet is the ac-
curacy of the network structure on a given dataset. In
contrast, VerifyNet has a simpler structure and fewer pa-
rameters. It takes less time during training. In the calculation
of fitness, Metapruner needs 3.01 s for one calculation and
SuperPruner needs 2.20s. This is because Metapruner re-
quires PrunerNet to perform a forward propagation to
predict the weight of the network structure. Through the
predicted weights, the forward propagation is performed
again to get the accuracy on the given dataset. However,
VerifyNet only needs to perform forward propagation once
to obtain the accuracy of the network structure on a given
dataset. Through the above analysis, it can be concluded that

10

Scientific Programming

TaBLE 5: Comparison results of SuperPruner and automatic pruning algorithm in time.

Experiments Train time (h) Count one fitness time (s) Search time (h) Total running time (h)
PSOPruner 0 74.2 20.6 20.6
SuperPruner 10 2.2 0.6 10.6
ABCpruner [19] 0 74.2 20.6 20.6
Metapruner [25] 25 3.01 0.8 25.8
e Acknowledgments
e S This work was supported by the State Grid Zhejiang Electric
Q o— . .
921 / L 80 Power Co., Ltd Innovation Project (No. 5211NB1900VN).
g .\l—lil\.\ /. g
g 2 r60 o References
2 90 A &
= /-/ - L i 8 [1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
2, - DE:’ classification with deep convolutional neural networks,”
= _/ ? Advances in Neural Information Processing Systems, vol. 25,
a8 - F 20 pp- 1097-1105, 2012.
v L [2] K. Simonyan and A. Zisserman, “Very deep convolutional
0 networks for large-scale image recognition,” 2014, https://
10 20 30 40 50 60 70 80 90 10 arx1v.0rg/abs/140?.1556. . o '
%) [3] C. Szegedy, W. Liu, Y. Jia et al., “Going deeper with con-
ur

—=— Accuracy
—s— FLOPs PR
—o— Parameters PR

F1GURE 6: The effect of y for VGG16 on CIFAR-10. There is no fine-
tuning for Top-1 accuracy.

SuperPruner is significantly better than Metapruner and
ABCpruner in running time.

6. Conclusions

In this paper, we introduce an efficient automatic pruning
algorithm, named SuperPruner. SuperPruner introduces
VerifyNet to predict the performance of the network
structure, speeding up the search for the optimal network
structure. On multiple datasets, SuperPruner is able to
achieve higher pruning rate than other state-of-the-art
method with little loss of accuracy. Compared with the
automatic pruning algorithm, our proposed algorithm has a
significant improvement in the pruning speed. Even if the
hardware limitation changes, the pruning model can be
obtained quickly. More importantly, SuperPruner can be
efficiently applied in multiple fields, such as object recog-
nition and semantic segmentation.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

volutions,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1-9, Boston, MA, USA,
June 2015.

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in InProceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
pp. 770-778, Las Vegas, NV, USA, June 2016.

[5] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: towards
real-time object detection with region proposal networks,”
Advances in Neural Information Processing Systems, vol. 28,
pp. 91-99, 2015.

[6] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You
only look once: unified, real-time object detection,” in
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 779-788, Las Vegas, NV, USA, June
2016.

[7] A. Wong, M. Famuori, M. J. Shafiee, F. Li, B. Chwyl, and
J. Chung, “Yolo nano: a highly compact you only look once
convolutional neural network for object Detection,” 2019,
https://arxiv.org/abs/1910.01271.

[8] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional
networks for semantic segmentation,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
pp. 3431-3440, Boston, MA, USA, June 2015.

[9] O. Ronneberger, P. Fischer, and T. Brox, “U-net: convolu-
tional networks for biomedical image segmentation,” in
Proceedigs of the International Conference on Medical Image
Computing and Computer-Assisted Intervention, pp. 234-241,
Springer, Munich, Germany, October 2015.

[10] P. Li, H. Zhao, P. Liu, and F. Cao, “Rtm3d: real-time mon-
ocular 3d detection from object keypoints for autonomous
driving,” 2020, https://arxiv.org/abs/2001.03343.

[11] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding up
convolutional neural networks with low rank Expansions,”
2014, https://arxiv.org/abs/1405.3866.

[12] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin,
“Compression of deep convolutional neural networks for fast
and low power mobile applications,” 2015, https://arxiv.org/
abs/1511.06530.

https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1910.01271
https://arxiv.org/abs/2001.03343
https://arxiv.org/abs/1405.3866
https://arxiv.org/abs/1511.06530
https://arxiv.org/abs/1511.06530

Scientific Programming

[13] M. Courbariaux and Y. Bengio, “Binarynet: training deep
neural networks with weights and activations Constrained
To+ 1 or- 1,” 2016, https://arxiv.org/abs/1602.02830.

[14] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect:
training deep neural networks with binary weights during
propagations,” in Proceeedings of the Advances in Neural
Information Processing Systems, pp. 3123-3131, Montreal,
Canada, December 2015.

[15] M. Rastegari, V. Ordonez,]. Redmon, and A. Farhadi, “Xnor-
net: imagenet classification using binary convolutional neural
networks,” in Proceedings of the European Conference on
Computer Vision, pp. 525-542, Springer, Amsterdam,
Netherlands, October 2016.

[16] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both
weights and connections for efficient neural networks,” 2015,
https://arxiv.org/abs/1506.02626.

[17] H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang, “Network
trimming: a data-driven neuron pruning approach towards
efficient deep architectures,” 2016, https://arxiv.org/abs/1607.
03250.

[18] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, “Amc:
automl for model compression and acceleration on mobile
devices,” in Proceedings of the European Conference on
Computer Vision (ECCV), pp. 784-800, Munich, Germany,
September 2018.

[19] M. Lin, R. Ji, Y. Zhang, B. Zhang, Y. Wu, and Y. Tian,
“Channel pruning via automatic structure search,” 2020,
https://arxiv.org/abs/2001.08565.

[20] S. Lin, R. Ji, Y. Li, Y. Wu, F. Huang, and B. Zhang, “Accel-
erating convolutional networks via global & dynamic filter
pruning,” In IJCAIL vol. 2, no. 7, p. 8, 2018.

[21] X. Dong and Y. Yang, “Network pruning via transformable
architecture search,” in Proceedings of the Neural Information
Processing Systems (NeurIPS), pp. 760-771, Vancouver,
Canada, December 2019.

[22] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge
in a neural network,” 2015, https://arxiv.org/abs/1503.02531.

[23] S. Lin, R. Ji, C. Chen, D. Tao, and J. Luo, “Holistic cnn
compression via low-rank decomposition with knowledge
transfer,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 41, no. 12, pp. 2889-2905, 2018.

[24] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf,
“Pruning Filters for Efficient Convnets,” 2016, https://arxiv.
org/abs/1608.08710.

[25] Z. Liu, H. Mu, X. Zhang et al., “Metapruning: meta learning
for automatic neural network channel pruning,” in Pro-
ceedings of the IEEE/CVF International Conference on Com-
puter Vision, pp. 3296-3305, Seoul, South Korea, April 2019.

[26] J.-H. Luo and J. Wu, “AutoPruner: an end-to-end trainable
filter pruning method for efficient deep model inference,”
Pattern Recognition, vol. 107, Article ID 107461, 2020.

[27] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Re-
thinking the value of network pruning,” 2018, https://arxiv.
org/abs/1810.05270.

[28] Y. Wang, X. Zhang, L. Xie et al., “Pruning from scratch,”
Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, no. 7, pp. 12273-12280, 2020.

[29] B. Zoph and Q. V. Le, “Neural architecture search with re-
inforcement learning,” 2016, https://arxiv.org/abs/1611.
01578.

[30] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, “Efficient
neural architecture search via parameters sharing,” in Pro-
ceedings of the International Conference on Machine Learning.
PMLR, pp. 4095-4104, Stockholm, Sweden, July 2018.

11

[31] A. Brock, T. Lim, J. M. Ritchie, and N. Weston, “Smash: one-
shot model architecture search through hypernetworks,”
2017, https://arxiv.org/abs/1708.05344.

[32] Z. Guo, X. Zhang, H. Mu et al.,, “Single path one-shot neural
architecture search with uniform sampling,” in Proceedings of
the European Conference on Computer Vision, pp. 544-560,
Springer, Glasgow, UK, August 2020.

[33] L. Li and A. Talwalkar, “Random search and reproducibility
for neural architecture search,” pp. 367-377, Uncertainty in
Artificial Intelligence. PMLR, 2020.

[34] S. Han, H. Mao, and W. J. Dally, “Deep compression:
compressing deep neural networks with pruning, trained
quantization and huffman coding,” 2015, https://arxiv.org/
abs/1510.00149.

[35] T. Zhang, S. Ye, K. Zhang et al., “A systematic dnn weight
pruning framework using alternating direction method of
multipliers,” in Proceedings of the European Conference on
Computer Vision (ECCV), pp. 184-199, Munich, Germany,
September 2018.

[36] J.-H. Luo, J. Wu, and W. Lin, “Thinet: a filter level pruning
method for deep neural network compression,” in Proceedings
of the IEEE International Conference on Computer Vision,
pp- 5058-5066, Venice, Italy, October 2017.

[37] Y. He, X. Zhang, and J. Sun, “Channel pruning for acceler-
ating very deep neural networks,” in Proceedings of the IEEE
International Conference on Computer Vision, pp. 1389-1397,
Venice, Italy, October 2017.

[38] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning
structured sparsity in deep neural networks,” 2016, https://
arxiv.org/abs/1608.03665.

[39] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang,

“Learning efficient convolutional networks through network

slimming,” in Proceedings of the IEEE International Confer-

ence on Computer Vision, pp. 2736-2744, Venice, Italy, Oc-

tober 2017.

T. P. Lillicrap, J. J. Hunt, A. Pritzel et al., “Continuous control

with deep reinforcement learning,” 2015, https://arxiv.org/

abs/1509.02971.

[41] S. Lin, R. Ji, C. Yan et al., “Towards optimal structured cnn
pruning via generative adversarial learning,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 2790-2799, Long Beach, CA, USA, June 2019.

[42] Y.He, P. Liu, Z. Wang, Z. Hu, and Y. Yang, “Filter pruning via
geometric median for deep convolutional neural networks
acceleration,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 4340-4349,
Long Beach, CA, June 2019.

[40

https://arxiv.org/abs/1602.02830
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1607.03250
https://arxiv.org/abs/1607.03250
https://arxiv.org/abs/2001.08565
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1608.08710
https://arxiv.org/abs/1608.08710
https://arxiv.org/abs/1810.05270
https://arxiv.org/abs/1810.05270
https://arxiv.org/abs/1611.01578
https://arxiv.org/abs/1611.01578
https://arxiv.org/abs/1708.05344
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1608.03665
https://arxiv.org/abs/1608.03665
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1509.02971

