
Research Article
Porcellio scaber Algorithm with t-Distributed Elite Mutation for
Global Optimization

Chao Zhang 1 and Yi Yang 2,3

1Department of Computer Information, Suzhou Vocational and Technical College, Suzhou, Anhui 234000, China
2College of Computer Science and Technology, Huaibei Normal University, Huaibei, Anhui 235000, China
3Anhui Engineering Research Center for Intelligent Computing and Application on Cognitive Behavior (ICACB), Huaibei,
Anhui 235000, China

Correspondence should be addressed to Yi Yang; yiyang2009@chnu.edu.cn

Received 7 February 2022; Revised 12 April 2022; Accepted 1 June 2022; Published 28 June 2022

Academic Editor: Qianchuan Zhao

Copyright © 2022 Chao Zhang and Yi Yang. �is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

As the convergence accuracy of the Porcellio scaber algorithm (PSA) is low, this study proposes an improved algorithm based on
the t-distribution elite mutation mechanism. First, the improved algorithm applies a t-distribution mutation to each dimension of
the optimal solution of each generation. Using the dominant information of the optimal solution and t-distribution charac-
teristics, the result of the mutation is then employed as the updated location of the selected porcellio; thus, the algorithm enhances
the ability to jump out of local extreme values and improves the convergence speed. Second, the updated iterative rule of PSAmay
lead to the loss of information of the elite porcellio in the last generation. To solve this problem, the judgment mechanisms of the
current and previous optimal solutions are included in the algorithm process. Finally, dynamic self-adaptive improvement is
applied to the weight allocation parameters of PSA. Simulation results on 24 benchmark functions show that the improved
algorithm has signi�cant advantages in convergence accuracy, convergence speed, and stability when compared with basic PSA,
PSO, GSA, and FPA. �is indicates that the improved algorithm has certain advantages in terms of optimization. An optimal
solution with good practicability is obtained by solving three practical engineering problems: three-bar truss, welded beam, and
tension/compression-spring design.

1. Introduction

Many real-world applications involve complex optimization
problems [1]. Swarm intelligence optimization algorithms
can solve problems by simulating the intelligent charac-
teristics and behavior modes of biological populations,
which have high self-organization, self-adaptability, gener-
alization, and abstraction capabilities [2, 3].�ey can quickly
and approximately solve certain NP-hard problems in the
real world and have become an important method to ef-
fectively solve complex science and engineering optimiza-
tion problems [4, 5]. Since the inception of swarm
intelligence optimization algorithms, several classical algo-
rithms, such as the genetic algorithm (GA) [6], particle

swarm optimization (PSO) [7], and ant colony optimization
(ACO) [8], have emerged.

�e general framework of swarm intelligence optimi-
zation algorithms starts with a set of stochastic solutions and
utilizes a series of metaheuristics to explore and exploit the
search space to �nd the best approximate solution to the
optimization problem. Maintaining population diversity
and �nding e¡ective exploration and exploitation methods
and a balance between them are the main issues in the
research on swarm intelligence optimization algorithms
[1, 9]. �e non-free lunch theorem [10] indicates that no
swarm intelligence optimization algorithm can solve all
practical optimization problems, which motivates the de-
velopment of a swarm intelligence optimization algorithm
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research field. In recent years, the research directions of
swarm intelligence algorithms can be divided into three
categories [1, 11]: (1) discovering the behavioral charac-
teristics of biological communities in nature to design new
algorithms. To this end, certain swarm intelligence opti-
mization algorithms, such as the black widow optimization
algorithm (BWO) [12], flower pollination algorithm (FPA)
[13], whale optimization algorithm (WOA) [14], sparrow
search algorithm (SSA) [15], Coronavirus herd immunity
optimizer (CHIO) [16], chameleon swarm algorithm (CSA)
[17], and white shark optimizer (WSO) [1] have emerged. (2)
Integrating the advantages of different swarm intelligence
algorithms to form hybrid algorithms. For example, some
studies [4, 18–21] combine two or more algorithms to
improve the efficiency of solving optimization problems. (3)
Improving the existing algorithms; the commonly used ones
include chaotic maps [22, 23], cellular [9, 24], and mutation
operators [25, 26].

'e objective functions of many real-world science and
engineering problems are mostly nonlinear, non-
differentiable, multimodal, and high dimensional. Tradi-
tional gradient-based local optimization methods are not
very effective [2]. Global optimization methods based on
swarm intelligence do not require gradient information,
only knowledge of the input and output parameters of the
problem, and have shown good performance in solving
complex optimization problems [5]. 'e areas that involve
these problems include vehicle routing [20], coordinating
the charging schedule of electric vehicles [27], feature se-
lection [28], flow-shop scheduling [29, 30], wireless sensor
network deployment [31], and single batch-processing
machines [32].

Porcellio scaber algorithm (PSA) [33] is a new swarm
intelligence optimization algorithm, biologically designed by
the two main survival principles of Porcellio scaber. Cur-
rently, PSA has been successfully applied in engineering
fields, such as microgrid optimization [34, 35] and pressure
vessel design [36]; however, as an emerging algorithm, its
relevant research and applications are in their infancy.

PSA has two main shortcomings. First, the iterative
updating rules of the algorithm should make full use of the
information of the previous generation of optimal Porcellio
scaber; however, the algorithm lacks the judgment operation
of the contemporary (k+ 1 generation) and the previous
generation (k generation) optimal solutions. 'e contem-
porary (k+ 1 generation) optimal solution may not be as
good as the previous generation (k generation) optimal
solution; if the contemporary (k+ 1 generation) optimal
solution is directly brought into the next generation (k+ 2
generation) operation, the information of the previous
generation (k generation) optimal solution is lost, which
affects the convergence speed of the algorithm. Second, the
algorithm easily falls into the local extreme value, especially
when dealing with high-dimensional optimization prob-
lems, which can easily lead to a premature algorithm and
convergence stagnation.

To solve these problems, this study proposes an im-
proved PSA with t-distribution elitist mutation (TPSA). 'e
main contributions of this study are summarized as follows:

(1) 'e TPSA algorithmmainly implements dimension-
by-dimension t-distribution perturbation on the
position vector of each generation of elite Porcellio
scaber and takes the variation result as the updated
position of the selected Porcellio scaber with a certain
probability. It fully uses the advantageous infor-
mation contained in the elite Porcellio scaber and
controls and leads the Porcellio scaber population to
quickly approach the optimal solution with the help
of the t-distribution characteristics to improve its
convergence accuracy and speed.

(2) 'e judgment operation of the contemporary opti-
mal solution and the optimal solution of the previous
generation in the PSA algorithm process is added
and the dynamic adaptive improvement of weight
distribution parameters is carried out. 'is improves
the balance between exploration and exploitation
and improves performance.

(3) 'e performance of TPSA is verified in 24 well-
known benchmark functions and compared with the
comparison algorithms.'e practicability of TPSA is
verified by three real-world engineering problems,
and the best solution obtained is compared with the
algorithms reported in recent years.

'e rest of the paper is organized as follows: Section 2
introduces the principle of the PSA algorithm, Section 3
describes the TPSA algorithm improvement strategy and
algorithm implementation process in detail, Section 4
demonstrates the experimental results and analysis of
convergence and stability, Section 5 introduces the appli-
cation of TPSA in three real-world engineering problems,
and finally, Section 6 concludes the paper.

2. Porcellio scaber Algorithm

Porcellio scaber is a worldwide animal species, as shown in
Figure 1 [33]. Porcellio scaber prefers to live in damp, dark,
and humus-rich places and in groups. Several studies
[37, 38] have shown that P. scaber has two behaviors
regarded as their survival laws: (1) group behav-
ior—aggregation and (2) individual behavior—propensity to
explore novel environments. When the living environment
is unfavorable, they explore a new environment separately;
conversely when environmental conditions are favorable,
they stay together.

PSA uses the fitness function as a scale to evaluate the
advantages and disadvantages of the porcellio scabers’ living
environment, and the mathematical modeling of the two
survival rules of the Porcellio scaber is used as the rules of the
algorithm update iteration. Its mathematical description is
as follows.

In the d-dimensional search space, the population
consisting of N porcellio scabers is X� (X1,X2, . . .,Xn), and
the vector Xi

k � (xi1k, xi2k, . . ., xijk. . ., xidk)T represents the
position of the ith Porcellio scaber of the kth generation. 'e
movement of the aggregation behavior of the Porcellio scaber
is modeled according to

2 Scientific Programming



xk+1
i � xk

i − xk
i − argmin

xk
j

f x
k
j  ⎛⎜⎜⎝ ⎞⎟⎟⎠. (1)

Equation (1) can also be expressed as

xk+1
i � argmin

xk
j

f x
k
j  .

(2)

From equation (1), all porcellio scabers eventually stay in
the place with the best environmental conditions in the
initial position; however, if the initial conditions are the
worst environment, only the porcellio scabers with the
aggregation behavior given in equation (1) cannot survive.
'e actual movement of the Porcellio scaber should be the
weighted result of the two behaviors of gathering and ex-
ploring the new environment. 'erefore, the final updating
rule of PSA is given in the literature [33], which is calculated
according to

xk+1
i � xk

i − (1 − λ) xk
i − argmin

xk
j

f x
k
j  ⎛⎜⎜⎝ ⎞⎟⎟⎠ + λpτ, (3)

where λ ∈ (0, 1) is the weight allocation parameter of the
two behaviors of gathering and exploring new environ-
ment tendencies, and the value of λ can be different for
different porcellio scabers. pτ represents the motor be-
havior of the Porcellio scaber exploring a new environ-
ment, where τ is a d-dimensional random vector and p is a
function of the intensity of the exploratory action,
p � f (xik+τ). Each Porcellio scaber randomly selects any
direction around its center of mass to explore the new
environment. p is the simplest way to select a function that
represents the fitness of the Porcellio scaber as the in-
tensity of the behavior of exploring the new environment.
'e literature [33] provides the following definition of p
with good performance:

p �
f x

k
i + τ  − min f x

k
i + τ  

max f x
k
i + τ   − min f x

k
i + τ  

. (4)

3. Porcellio scaber Algorithm with t-
Distributed Elite Mutation Mechanism

3.1. t-Distribution Elite Dimensional Variation Strategy.
Each generation of the optimal Porcellio scaber is the elite of
the Porcellio scaber population. 'e advantage information
contained in it plays a key role in the updating and iteration
of the algorithm, which enables its rapid convergence to the
global optimal solution and improves its accuracy. To this
end, the TPSA algorithm defines an elite mutation proba-
bility parameter Pt around an elite Porcellio scaber and
performs t-distribution mutation on the position vector of
the optimal Porcellio scaber in each generation dimension-
by-dimension. 'e mutation result is directly given to the
selected Porcellio scaber with Pt probability as the new lo-
cation of position update, making full use of the advantage
information of the optimal Porcellio scaber. 'e search space
of the Porcellio scaber is controlled by the characteristics of
the t-distribution, and the algorithm is guided to converge to
the optimal solution quickly. 'is is expressed as follows:

xk+1
i � c × t(iter) ⊗ argmin

xk
j

f x
k
j  ,

(5)

where c is the scaling coefficient of the step size and t(iter) is
the t-distribution of freedom with the number of iterations
of the algorithm iter.

'e curve shape of the t-distribution is related to the
degrees of freedom. When the degree of freedom of the t-
distribution is 1, its curve shape is similar to that of the
Cauchy distribution; as the degree of freedom increases, the
curve shape gradually approaches a Gaussian distribution, as
shown in Figure 2. In the early iterations of the TPSA al-
gorithm, the iter value is small. 'e t-distribution presents
the characteristics of the Cauchy distribution, which can
mutate and generate the next generation of porcellio scabers
far away from the optimal Porcellio scaber position.'us, the
diversity of the Porcellio scaber population can be main-
tained to search in a larger space, improve the exploration
ability, and prevent the algorithm from falling into local
extremum and convergence stagnation. As the algorithm

Figure 1: Porcellio Scaber [33].

Scientific Programming 3



runs iteratively to the middle and late stages, the iter value
increases, and the t-distribution presents the characteristics
of a Gaussian distribution, which can mutate around the
optimal Porcellio scaber to generate the next generation of
porcellio scabers with a certain probability; this improves the
exploitation ability of PSA and increases the convergence
accuracy.

3.2. Optimal Porcellio scaber Retention Strategy. From
equation (3), when PSA performs a position iterative update,
the k+1-generation Porcellio scaber position update requires
the k-generation optimal Porcellio scaber position infor-
mation. However, according to the implementation process
PSA in the literature [33], the algorithm does not fully
consider that, if the optimal solution of k + 1 generation is
inferior to that of k generation, and the information of the
optimal solution of k + 1 generation is included in the cal-
culation of the position update of k + 2 generation; it easily
causes the loss of the information of the optimal solution of k
generation. 'erefore, after updating the contemporary
position, a judgment mechanism between the contemporary
and previous generation optimal solutions is added and the
execution process is as follows:

if MinFitness (k+ 1)<MinFitness (k)
Proceed with Algorithm 1 in Section 3.4 for the

next iteration
else

Xk+1
i � Xk

i � (xi1k, xi2k,. . ., xijk. . ., xidk)
end if

Here i is the number of the kth generation optimal
Porcellio scaber, d is the dimension of the search space, and
MinFitness (k) is the optimal fitness of the kth generation
Porcellio scaber population. If the optimal fitness of the
Porcellio scaber population of generation k+1 is less than that
of the population of generation k, the next iteration con-
tinues according to the execution process of Algorithm 1.

Otherwise, the optimal Porcellio scaber information of
generation k population will be reserved for generation k+ 1
and be included in the position update calculation of gen-
eration k+ 2.

3.3. Dynamic Adaptive Strategy of Weight Allocation
Parameters. 'e proportion of exploration and exploitation
in PSA is controlled by the weight allocation parameter λ. In
PSA, λ is a constant, which has a significant influence on the
results of different optimization problems and is difficult to
determine. To this end, this study introduces the concept of
inertia weight inspired by the literature [7] and uses the
following equation to calculate λ.

λ � min +(max − min) ×
(max iter − iter)

max iter
, (6)

where [min, max] is the upper and lower boundary of λ, max
iter is the maximum number of iterations of the algorithm,
and iter is the current number of iterations. In this manner, λ
adaptively adjusts dynamically as the algorithm runs. In the
early stage of the algorithm, λ is large and mainly controls the
algorithm’s exploration, which is conducive to expanding the
search space and improving the convergence speed. In the
middle and late stages of the algorithm, λ decreases gradually,
and the algorithm mainly performs exploitation, which helps
improve the convergence accuracy.

3.4. TPSA. After adopting the t-distributed elite mutation,
optimal Porcellio scaber retention, and dynamic adaptive
strategy of weight allocation parameter, the TPSA algorithm
is as follows:

3.5. Time Complexity Analysis. Given that the objective
function of the optimization problem is f(x), the dimension
of the search space is d. According to the description of PSA
and the operation rules of time complexity, the time
complexity of PSA is T(PSA)�O(d+ f(d)).

TPSA adds the calculation of t-distribution elite varia-
tion, dynamic weight parameters, and optimal Porcellio
scaber retention strategy. According to the execution process
of Algorithm 1, the time complexity of each incremental part
can be deduced. T(t-distribution elite variation)�

O(d+ f(d)), T(dynamic weight parameters)�O(1), T(re-
tention strategy of optimal Porcellio scaber)�O(1), and
T(TPSA)�T(PSA) +T(t-distribution elite varia-
tion) +T(dynamic weight parameters) + T(retention strat-
egy of optimal Porcellio scaber). After simplification,
T(TPSA)�O(d+ f(d)). 'e time complexity of TPSA and
PSA is of the same order of magnitude, with an insignificant
increase and no negative impact on the algorithm.

4. Experimental Results and Analysis

4.1. Experiment Design and Parameter Settings. TPSA was
compared with classical and emerging intelligent algorithms
such as PSA [33], PSO [7], GSA [39], and FPA [13] on 24
benchmark functions to verify the performance of the TPSA.
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Figure 2: Curve of t-distribution.
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'e 24 benchmark functions are shown in Table 1, including
nine high-dimensional unimodal functions, nine high-di-
mensional multimodal functions, and six low-dimensional
functions. 'e following hardware and software configu-
rations were used: CPU—2.70 GHZ (COREi5),
RAM—16GB, OS—Win10 (64 bits), DISK—SSD (512GB),
and MATLAB R2020a.

Without loss of generality, the algorithm was indepen-
dently run 50 times for each function, and the worst, best,
mean, standard deviation, and success rate were calculated
as evaluation metrics for the algorithm performance.

'e optimization precision was set to 10− 10 and the
success rate of optimization was calculated as follows:

Success rate (SR) �
(optimization success number)
(total number of experiments)

. (7)

In the experiment, if |actual solution value − theoretical
optimal value |<10− 10, the search was considered as a
success.

Parameter Settings. 'e population size of the five algo-
rithms was N� 30, and the number of iterations was set to
1,000.'rough a large number of numerical experiments, we
concluded that TPSA performs better by setting the fol-
lowing parameters: Pt � 0.3, a step-size scaling coefficient on
f13, f19–f22 as 30, and the others as 1; λ linearly reduced from
0.9 to 0.2. 'e PSA weight allocation parameter λ� 0.8. 'e
PSO learning factor c1 � c2 � 2, the inertia weight linearly
reduced from 0.9 to 0.4, and the maximum speed was half of
the search space. 'e GSA gravitational constant G0 �100

and acceleration a� 20. 'e FPA probability conversion
parameter p� 0.2.

4.2. Results and Discussion. 'e experimental results and
correlation analysis are presented separately according to the
type of each benchmark function.

4.2.1. Type I: High-Dimensional Unimodal Function.
Table 2 shows the experimental results of the five algorithms
on nine high-dimensional unimodal functions. For the
success rate of the search, TPSA had a success rate of 100%
for all nine functions, and the success rate of the comparison
algorithms was mostly zero or lower, except for GSA, which
had a success rate of 100% on the f1 function. For the
convergence to the theoretical optimal value of the function,
TPSA found the theoretical optimal value 0 of eight func-
tions except f4, and the robustness of the algorithm was
strong from the mean and standard deviation indicators.
PSA, GSA, and FPA could not find the theoretical optimal
value of all functions. PSO, which sets the maximum speed
to half of the search space, observed the theoretical optimal
value of the function on f1, f4, and f6 functions; however, its
robustness was poor, and judging from the mean and
standard deviation indicators, the success rate of the search
was low. For the f4 function, although TPSA could not
converge to the theoretical optimal value 0 of the function,
the mean value of the algorithm was 1.7908E – 290, whereas
the worst value reached 5.2583E − 289, with a standard
deviation of approximately zero. 'is indicates that TPSA is
more stable and robust than PSA, PSO, GSA, and FPA on

Set the objective function f(x), x� [x1,x2, . . ., xd]T

Set the algorithm parameters: population size N, elite mutation probability parameter Pt, the upper and lower boundaries of the
weight allocation parameter λ, and step scale coefficient c.
Initialize the Porcellio scaber population x0

i (i� 1,2, . . ., N)
f(x) determines the environmental condition Ex at x
for k� 1 to maxiter
Obtain the current optimal position: x best � argmin

xk
j

f(xk
j ) 

Randomly generate an exploration environment vector τ � [τ1, τ2, . . ., τd]T

Calculate the optimal environmental conditions min{Ex} and the worst environmental conditions max{Ex} at position xik+τ
for i� 1 to n

Calculate the action intensity p according to Equation (4)
Update individual position Xi

k+1 according to Equation (3)
if pt> rand

Update the mutant Porcellio scaber position Xi
k+1 according to Equation (5)

end if
'e individual fitness after position update was calculated
end for
if MinFitness(k+ 1)>MinFitness(k)

Reserved the optimal information of the previous generation to the next generation
end if

end for

ALGORITHM 1: TPSA algorithm.
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this function. In essence, TPSA achieved a better perfor-
mance in convergence accuracy and robustness than PSA,
PSO, GSA, and FPA when searching for a high-dimensional
unimodal function.

4.2.2. Type II: High-Dimensional Multimodal Functions.
'ese functions often have numerous local minima dis-
tributed in the solution space and the global optimal solution
is not easily found; however, according to the experimental
results in Table 3, TPSA can converge to the theoretical
optimal value 0 on f10, f12, f14, f15, f16, and f17 functions.
Considering themean and standard deviation indicators, the
robustness of the algorithm was good, and the success rate of
finding the optimal value was 100% except f18; PSA, GSA,

and FPA could not find the theoretical optimal value, and
the success rate was zero. Although PSO found the theo-
retical optimal values of f10, f12, and f16 functions, judging
from the mean and standard deviation indicators, its ro-
bustness was poor and the success rate of finding the optimal
values for f10, f12, and f16 was low, at 26%, 38%, and 12%,
respectively. Evidently, it could not find the theoretical
optimal value of other functions. On the f11 function, TPSA
outperformed all other comparison algorithms except PSO,
which is comparable to TPSA in terms of optimal value. On
the f13 function, TPSA was inferior to PSO and GSA in terms
of optimal value metrics, but better than PSA and FPA;
TPSA was better than PSA, PSO, GSA, and FPA in terms of
worst value and standard deviation metrics. On the f18
function, none of the algorithms could find the theoretical

Table 1: Benchmark functions.

Category Function Dim Range fopt

I

f1(x) � 
n
i�1 x2

i 30 [− 100, 100] 0

f2(x) � 
n
i�1 |xi| + 

n
i�1 |xi| 30 [− 100, 100] 0

f3(x) � 
n
i�1 (

i
j�1 xj)

2 30 [− 100, 100] 0

f4(x) � max|xi|
1≤ i≤ n

30 [− 100, 100] 0

f5(x) � 
(n/4)
i�1 (x4i− 3 + 10x4i− 2)

2 + 5(x4i− 1 − x4i)
2 + (x4i− 2 − x4i− 1)

4. 30 [− 4, 5] 0

f6(x) � (
n
i�1 x2

i )2 30 [− 600, 600] 0

f7(x) � 
n
i�1 x2

i + (
n
i�1 0.5xi)

2 + (
n
i�1 0.5xi)

4 30 [− 5, 10] 0

f8(x) � 
n
i�1 (106)(i− 1)/(n− 1)x2

i 30 [− 100, 100] 0

f9(x) � 106x2
1 + 

n
i�1 x2

i 30 [− 100, 100] 0

II

f10(x) � 
n
i�1(x2

i − 10 cos(2πxi) + 10) 30 [− 100, 100] 0

f11(x) � − 20e − 0.2
�����������
(1/n) 

n
i�1 x2

i



 − e(1/n) 
n
i�1 cos 2 πxi + 20 + e 30 [− 32, 32] 0

f12(x) � (1/4000) 
n
i�1 x2

i − 
n
i�1 cos(xi/

�
i

√
) + 1 30 [− 600, 600] 0

f13(x) � (π/n) 10 sin(πy1) + 
n− 1
i�1 (yi − 1)2[1 + 10 sin2(πyi+1)]

+ (yn − 1)2  + 
n
i�1 u(xi, 10, 100, 4)} where

yi � 1 + (xi + 1)/4, u(xi, a, k, m) �

k(xi − a)
m

, xi > a,

0, − a<xi < a,

k(− xi − a)
m

, xi < − a,

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

30 [− 50, 50] 0

f14(x) � 
n
i�1 x6

i (2 + sin(1/xi)) 30 [− 600, 600] 0

f15(x) � 
n
i�1  

kmax
k�0 ak cos(2πbk(xi + 0.5)) − n 

kmax
k�0 ak cos(πbk) 30 [− 0.5, 0.5] 0

f16(x) � 0.1n − 0.1
n
i�1 cos(5πxi) − 

n
i�1 x2

i  30 [− 1, 1] 0

f17(x) � (1/(n − 1))
n− 1
i�1 (

��
si

√
· (sin(50.0s0.2

i ) + 1))
2
, si �

��������
x2

i + x2
i+1


30 [− 100, 100] 0

f18(x) �

(
n
i�1 x2

i )2 − (
n
i�1 xi)

1/2
 + 05

n
i�1 x2

i + 
n
i�1 xi/n + 0.5 30 [− 100, 100] 0

III

f19(x) � − 
5
i�1 [(X − ai)(X − ai)

T + ci]
− 1 4 [0, 10] − 10.1532

f20(x) � − 
7
i�1 [(X − ai)(X − ai)

T + ci]
− 1 4 [0, 10] − 10.428

f21(x) � − 
10
i�1[(X − ai)(X − ai)

T + ci]
− 1 4 [0, 10] − 10.5363

f22(x) � − 
4
i�1 ci exp(− 

6
j�1 aij(xj − pij)

2) 6 [0, 1] − 3.32

f23(x) � sin2
������

x2
1 + x2

2



− 0.5/[1 + 0.001(x2
1 + x2

2)]
2 − 0.5 2 [− 100, 100] − 1

f24(x) � − (1 + cos(12
������
x2
1 + x2

2


))/(0.5(x2

1 + x2
2) + 2) 2 [− 100, 100] − 1
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optimal value of the function, but the optimal accuracies of
TPSA and GSA convergence were significantly better than
the other algorithms. 'is indicates that the algorithm is
more stable. In conclusion, the performance of TPSA on
high-dimensional multimodal functions was significantly
better than that of the other algorithms, showing that the
improvement strategy of this study is effective.

4.2.3. Type III: Low-Dimensional Function. 'e global op-
timum of a low-dimensional function is usually surrounded
by many local extrema and the function shows strong

oscillation characteristics; the global optimum is not easily
found. 'erefore, it is often used as a test of the exploration
capability of a swarm intelligence algorithm [40]. Table 4
presents the experimental results. With respect to the f19 and
f20 functions, the success rate of TPSA was 100%, and the
worst, mean, and standard deviation were better than those
of the PSA, PSO, GSA, and FPA algorithms. TPSA was
comparable to PSO in the f21 function and to FPA in the f22
function, outperforming other comparative algorithms. For
f23 and f24 functions, TPSA and PSO achieved the best search
performance, and the theoretical optimal value − 1 was
successfully found in 50 experiments, with a search success

Table 2: Comparison of experimental results of a high-dimensional unimodal function.

Function Algorithm Worst Best Mean SD SR (%)

f1

TPSA 0 0 0 0 100
PSA 5.7995E + 03 1.2498E + 03 2.7206E + 03 1.0170E + 03 0
PSO 1.0238E + 04 0 6.3237E + 02 2.3876E + 03 30
GSA 6.6294E − 16 4.8668E − 17 1.2535E − 16 8.9575E − 17 100
FPA 3.7164E + 02 4.4779E + 01 1.8784E + 02 7.2688E + 01 0

f2

TPSA 0 0 0 0 100
PSA 8.6501E + 18 2.4299E + 02 1.8195E + 17 1.2108E + 18 0
PSO 5.0133E + 02 1.8937E − 08 1.2650E + 02 1.1368E + 02 0
GSA 2.0481E + 02 2.7189E + 01 1.2732E + 02 4.4311E + 01 0
FPA 7.8048E + 24 6.3226E + 14 2.2139E + 23 1.1082E + 24 0

f3

TPSA 0 0 0 0 100
PSA 1.8668E + 04 3.1818E + 03 1.0352E + 04 3.1218E + 03 0
PSO 4.3081E + 04 8.8462E + 02 1.0044E + 04 7.8544E + 03 0
GSA 7.8187E + 02 1.7901E + 02 4.3920E + 02 1.5134E + 02 0
FPA 8.1612E + 02 1.5802E + 02 3.3916E + 02 1.3053E + 02 0

f4

TPSA 5.2583E − 289 5.8643E − 303 1.7908E − 290 0 100
PSA 2.9045E + 01 1.3501E + 01 2.0567E + 01 3.4324E + 00 0
PSO 1.4003E + 01 0 3.8561E + 00 3.4079E+00 24
GSA 7.5445E + 00 9.6194E-09 1.2244E + 00 1.4659E + 00 0
FPA 2.2979E + 01 9.3920E+00 1.5441E + 01 2.6835E + 00 0

f5

TPSA 0 0 0 0 100
PSA 5.8848E + 02 3.2698E + 01 1.7675E + 02 1.2039E + 02 0
PSO 3.0490E + 03 2.0097E + 00 4.8320E + 02 7.8745E + 02 0
GSA 2.4491E + 01 7.2369E − 02 3.3335E + 00 4.4974E + 00 0
FPA 1.0469E + 01 9.5436E − 01 3.5689E + 00 2.3036E + 00 0

f6

TPSA 0 0 0 0 100
PSA 3.4823E + 10 2.0340E + 09 1.0593E + 10 6.8734E + 09 0
PSO 1.3010E + 11 0 1.0386E + 10 3.5207E + 10 26
GSA 5.0482E + 09 4.3220E + 07 9.9831E + 08 9.5587E + 08 0
FPA 2.4020E + 08 1.0554E + 07 6.1445E + 07 4.2426E + 07 0

f7

TPSA 0 0 0 0 100
PSA 1.8910E + 10 3.0492E + 02 2.0857E + 09 3.4464E + 09 0
PSO 4.2990E + 02 2.3275E + 01 1.2350E + 02 8.4891E + 01 0
GSA 3.0694E + 02 8.5564E + 01 2.0274E + 02 4.8898E + 01 0
FPA 5.5954E + 01 1.4387E + 01 3.4120E + 01 9.9402E + 00 0

f8

TPSA 0 0 0 0 100
PSA 2.1925E + 08 2.6450E + 07 8.1240E + 07 4.0316E + 07 0
PSO 6.1954E + 08 2.4364E + 05 7.6950E + 07 1.3218E + 08 0
GSA 3.2377E + 05 9.3534E + 03 9.9924E + 04 6.7542E + 04 0
FPA 1.1461E+06 2.0683E+05 4.9640E+05 2.1939E+05 0

f9

TPSA 0 0 0 0 100
PSA 1.1378E + 05 3.0631E + 04 5.9152E + 04 1.6057E + 04 0
PSO 3.5381E + 04 6.9216E + 01 7.9496E + 03 9.0176E + 03 0
GSA 4.9584E + 03 4.3621E + 01 1.4216E + 03 1.0296E + 03 0
FPA 9.4585E + 02 1.0100E + 02 3.8616E + 02 1.6617E + 02 0
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rate of 100%. 'e optimization performance of PSA, GSA,
and FPA was poor as they could not find the theoretical
optimal value of the function, and the search success rate was
low.

4.2.4. Convergence and Stability Analysis. 'e fitness con-
vergence curve for some functions is shown in Figure 3, and
a boxplot of the experimental results is shown in Figure 4.
Figures 3 and 4 showed the advantages of the optimization
performance of TPSA over the other algorithms. 'e the-
oretical optimal values of the selected functions were zero.

For the convenience of display and observation, the fitness of
the algorithm for all functions is treated with a logarithm
base of 10.

Figure 3 shows that TPSA converged to the theoretical
optimal value of the function, whereas PSA, PSO, GSA, and
FPA could not. Particularly, for f6, f10, f14, and f15 functions,
TPSA converged to the theoretical optimal value with only a
few iterations. 'erefore, its convergence speed has obvious
advantages over the other algorithms.

Figure 4 shows that TPSA converged to the theoretical
optimal value of the function each time, and its convergence
accuracy and stability were better than those of PSA, PSO,

Table 3: Comparison of experimental results of high-dimensional multimodal functions.

Function Algorithm Worst Best Mean SD SR (%)

f10

TPSA 0 0 0 0 100
PSA 5.3243E + 03 1.5101E + 03 3.1699E + 03 8.7013E + 02 0
PSO 1.0334E + 04 0 1.1450E + 03 3.0064E + 03 26
GSA 1.0248E + 02 1.4924E + 01 3.1083E + 01 1.2654E + 01 0
FPA 1.5850E + 04 3.0588E + 03 8.6987E + 03 3.1586E + 03 0

f11

TPSA 8.8818E − 16 8.8818E − 16 8.8818E − 16 9.8608E − 32 100
PSA 1.2710E + 01 7.7566E + 00 1.0667E + 01 1.1378E + 00 0
PSO 1.9963E + 01 8.8818E − 16 6.6833E + 00 6.5146E + 00 14
GSA 1.3481E − 08 5.1989E − 09 8.1720E − 09 1.8738E − 09 0
FPA 1.0798E + 01 6.2700E + 00 8.5933E + 00 1.0135E + 00 0

f12

TPSA 0 0 0 0 100
PSA 5.6870E + 01 1.4115E + 01 2.6771E + 01 8.8474E + 00 0
PSO 9.1658E + 01 0 1.0034E + 01 2.7102E + 01 38
GSA 2.0670E + 01 2.8808E + 00 7.7031E + 00 3.4148E + 00 0
FPA 4.8585E + 00 1.8950E + 00 2.9952E + 00 6.7713E − 01 0

f13

TPSA 6.5082E − 01 2.5722E − 01 4.3957E − 01 8.5590E − 02 0
PSA 5.7305E + 04 7.4754E + 00 1.6894E + 03 8.2435E + 03 0
PSO 1.6549E + 01 3.4360E − 02 1.5472E + 00 2.6489E + 00 0
GSA 1.5056E + 00 2.4170E − 19 1.7726E − 01 3.1821E − 01 54
FPA 6.5574E + 00 2.6707E + 00 4.4358E + 00 9.5450E − 01 0

f14

TPSA 0 0 0 0 100
PSA 2.3751E + 14 1.6164E + 12 3.7241E + 13 4.2866E + 13 0
PSO 5.9552E + 11 2.2880E + 07 5.6009E + 10 9.8986E + 10 0
GSA 3.4627E + 12 5.6796E + 09 6.7758E + 11 7.4711E + 11 0
FPA 4.3402E + 11 5.9743E + 09 9.8737E + 10 9.6611E + 10 0

f15

TPSA 0 0 0 0 100
PSA 2.4480E + 01 1.5150E + 01 1.8746E + 01 2.3177E + 00 0
PSO 1.7371E + 01 1.4570E − 01 7.6387E + 00 3.7595E + 00 0
GSA 4.7486E − 01 3.8953E − 04 2.4014E − 02 9.1282E − 02 0
FPA 2.2947E + 01 1.5719E + 01 1.8563E + 01 1.6641E + 00 0

f16

TPSA 0 0 0 0 100
PSA 1.9898E + 00 1.3864E − 01 1.2006E + 00 3.6791E − 01 0
PSO 1.8408E + 00 0 4.3056E − 01 5.6643E − 01 12
GSA 1.4778E − 01 4.4409E − 16 3.2513E − 02 6.1219E − 02 78
FPA 1.6005E + 00 7.9387E − 01 1.1614E + 00 1.8987E − 01 0

f17

TPSA 0 0 0 0 100
PSA 5.4875E + 00 3.8224E + 00 4.5343E + 00 4.1785E − 01 0
PSO 4.5043E + 00 1.4720E − 01 2.3700E + 00 1.1092E + 00 0
GSA 1.7893E + 00 1.1465E − 02 6.0515E − 01 3.9595E − 01 0
FPA 6.5163E + 00 4.3662E + 00 5.5227E + 00 5.4053E − 01 0

f18

TPSA 5.0000E − 01 4.6881E − 01 4.9888E − 01 4.9713E − 03 0
PSA 5.5137E + 03 1.4041E + 03 3.0520E + 03 8.8917E + 02 0
PSO 2.0339E + 04 4.8126E − 01 1.6625E + 03 4.2390E + 03 0
GSA 7.7704E − 01 3.3108E − 01 4.8888E − 01 6.2067E − 02 0
FPA 3.9094E + 02 7.9807E + 01 2.0618E + 02 7.3277E + 01 0
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GSA, and FPA.'e convergence results of PSA showed a low
precision and high fluctuation; although PSO converged to
the theoretical optimal value on f1, f6, and f10 functions, the
fitness fluctuation was strong, and the algorithm perfor-
mance was unstable. 'e fitness fluctuation of GSA and FPA
improved; however, neither of them could converge to the
theoretical optimal value of the function.

In conclusion, TPSA has significantly improved con-
vergence accuracy, convergence speed, robustness, and
stability, compared with the other algorithms and is com-
petitive among intelligent optimization algorithms.

4.3. Wilcoxon Rank-Sum test. As the performance of the
algorithm cannot be fully described using only the mean and
standard deviation, a statistical validation is required [41].
'erefore, in this study, the Wilcoxon rank-sum test was
chosen to verify whether TPSA is significantly different from
PSA, PSO, GSA, and FPA at the p� 5% significance level to
determine the level of superiority and inferiority among them.
When p <5%, it is considered that the H0 hypothesis is rejected
and there is a significant difference between the two algorithms.
Conversely, there is no obvious difference between the two
algorithms, and their performance is equivalent.

Table 5 shows the values of theWilcoxon rank-sum test p
of TPSA and other algorithms for all benchmark functions,

where “N/A” indicates that the performances of the two
algorithms are quite incomparable. TPSA cannot be com-
pared with itself and is marked as “N/A”, whereas “+“, “− ,”
and “�” indicate that TPSA is superior, inferior, or equiv-
alent to the other algorithms, respectively. 'e value of p in
Table 5 is greater than 0.05 only when TPSA is compared
with PSO on the f13 function, and with FPA on the f22
function, which is marked in bold in the table; it is less than
0.05 in other cases. Table 5 shows that the optimization
performance of TPSA was significantly better than that of
PSA, PSO, GSA, and FPA, thus verifying the effectiveness of
the improved strategy in this study.

4.4. TPSA in Higher-Dimension Performance Analysis. To
further verify the stability and convergence accuracy of
TPSA in higher dimensions, three functions, f5, f12, and f15,
were selected from two types of high-dimensional unimodal
and multimodal test functions for simulation experiments in
500, 1,000, and 2,000 dimensions. 'e program indepen-
dently ran 50 times, and the mean and standard deviation
were used as evaluation metrics. Table 6 presents the ex-
perimental results. It is observed that, with a significant
increase in the function dimension, the mean value and
standard deviation of fitness of TPSA were 0 and remained
unchanged, while the optimized mean value of PSA

Table 4: Comparison of experimental results of low-dimensional functions.

Function Algorithm Worst Best Mean SD SR (%)

f19

TPSA −10.1532 −10.1532 −10.1532 5.2670E - 09 100
PSA − 1.5165 −10.1532 − 5.6914 3.5463E + 00 30
PSO − 5.0552 −10.1532 − 9.7454 1.3831E + 00 92
GSA − 0.8890 − 5.0552 − 4.1730 1.6788E + 00 0
FPA − 10.1511 −10.1532 − 10.1531 3.0174E − 04 18

f20

TPSA −10.4029 −10.4029 −10.4029 3.2162E − 08 100
PSA − 2.0021 −10.4029 − 6.7117 3.5352E + 00 36
PSO − 0.9098 −10.4029 − 9.5752 2.1231E + 00 86
GSA − 0.9081 −10.4029 − 6.5803 2.9854E + 00 34
FPA − 10.4000 −10.4029 − 10.4027 4.9174E − 04 62

f21

TPSA − 2.8066 −10.5364 − 10.2272 1.5147E + 00 96
PSA − 1.6610 −10.5364 − 6.8643 3.5147E + 00 38
PSO − 5.1285 −10.5364 − 10.4283 7.5711E − 01 98
GSA − 5.1285 −10.5364 − 9.9956 1.6224E + 00 90
FPA −10.4971 −10.5364 −10.5351 5.6111E − 03 32

f22

TPSA − 3.1628 −3.3220 − 3.3017 5.0245E − 02 86
PSA − 3.0580 −3.3220 − 3.2443 8.1362E − 02 40
PSO − 2.2671 −3.3220 − 3.1373 2.3962E − 01 40
GSA − 0.7011 − 2.7094 − 1.4795 4.6529E − 01 0
FPA −3.2935 −3.3220 −3.3196 4.4393E − 03 90

f23

TPSA −1 −1 −1 0 100
PSA − 0.92181082 − 0.99028409 − 0.98891462 9.5863E − 03 0
PSO −1 −1 −1 0 100
GSA − 0.87252750 − 0.99865097 − 0.97599226 2.6079E − 02 0
FPA − 0.99028409 − 0.99996853 − 0.99407718 3.5339E − 03 0

f24

TPSA −1 −1 −1 0 100
PSA − 0.93624533 − 0.99999999 − 0.96939776 3.1852E − 02 20
PSO −1 −1 −1 0 100
GSA − 0.95502962 − 0.99995018 − 0.98787620 1.1911E − 02 0
FPA − 0.93624533 − 0.99999430 − 0.99574642 1.0612E − 02 0
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Figure 3: Comparison of fitness convergence curves of five algorithms. (a) f1. (b) f3. (c) f6. (d) f10. (e) f14. (f ) f15.
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Figure 4: Boxplot of optimal fitness. (a) f1. (b) f3. (c) f6. (d) f10. (e) f14. (f ) f15.
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increased significantly. 'is shows that TPSA did not fall
into a “dimension disaster” with an increase in dimensions,
which reduces the optimization performance. Compared
with PSA, TPSA had a stronger ability to jump out of the
local extreme value to maintain a good stability and could
converge to the theoretical extreme value in higher di-
mensions. 'is further demonstrates the effectiveness of the
t-distributed elite mutation strategy proposed in this study.

4.5. Strategy Effectiveness Analysis. PSA using only the t-
distribution mutation strategy, optimal Porcellio scaber re-
tention strategy, and dynamic adaptive weight allocation
strategy were denoted as TMPSA, ORSPSA, and DAPSA,
respectively. PSA was compared experimentally with the
three single-strategy improved algorithms described above,
and the results are listed in Table 7. As seen in Table 7, for
unimodal and multimodal functions of f1, f3, f5, f7, f9, f11, f13,
f15, and f17, the three strategies improved PSA performance
overall, in which the t-distribution mutation strategy played

a key role. For the functions f3, f9, and f13, TPSA obtained the
optimal solution with the integrated action of the three
strategies. For the fixed-dimensional multimodal functions
f19–f22, the optimization results of ORSPSA and DAPSA
were comparable to PSA, but TMPSA performed worse.
However, as shown in Table 4, with the integrated action of
the three strategies, TPSA had 100, 100, 96, and 86% of the
search success of them, respectively. 'e optimization
performance was substantially improved compared with
same of PSA; therefore, the strategy proposed in this paper is
effective.

5. Engineering Applications of TPSA

To further study the performance of TPSA, it was applied to
solve three practical engineering problems—three-bar truss,
welded-beam, and tension/compression-spring design-
s—and the results were compared with those reported in the
literature. 'ese engineering application problems are
multiconstraint optimization problems; however, PSA

Table 5: p values of Wilcoxon rank-sum test on benchmark function.

Function PSA PSO GSA FPA TPSA
f1 3.31E − 20 + 7.24E − 11 + 3.31E − 20 + 3.31E − 20 + N/A�

f2 4.03E − 19 + 4.01E − 19 + 4.03E − 19 + 4.03E − 19 + N/A�

f3 3.31E − 20 + 3.31E − 20 + 3.31E − 20 + 3.31E − 20 + N/A�

f4 7.07E − 18 + 5.62E − 04 + 7.07E − 18 + 7.07E − 18 + N/A�

f5 3.31E − 20 + 3.31E − 20 + 3.31E − 20 + 3.31E − 20 + N/A�

f6 3.31E − 20 + 7.24E − 11 + 3.31E − 20 + 3.31E − 20 + N/A�

f7 3.31E − 20 + 3.31E − 20 + 3.31E − 20 + 3.31E − 20 + N/A�

f8 3.31E − 20 + 3.31E − 20 + 3.31E − 20 + 3.31E − 20 + N/A�

f9 3.31E − 20 + 3.31E − 20 + 3.31E − 20 + 3.31E − 20 + N/A�

f10 3.31E − 20 + 2.81E − 11 + 3.30E − 20 + 3.31E − 20 + N/A�

f11 3.31E − 20 + 2.13E − 14 + 3.31E − 20 + 3.31E − 20 + N/A�

f12 3.31E − 20 + 5.25E − 13 + 3.31E − 20 + 3.31E − 20 + N/A�

f13 7.07E − 18 + 2.13E − 01� 8.46E − 14 − 7.07E − 18 + N/A�

f14 3.31E − 20 + 3.31E − 20 + 3.31E − 20 + 3.31E − 20 + N/A�

f15 3.31E − 20 + 3.31E − 20 + 3.31E − 20 + 3.31E − 20 + N/A�

f16 3.31E − 20 + 6.95E − 17 + 3.09E − 20 + 3.31E − 20 + N/A�

f17 3.31E − 20 + 3.31E − 20 + 3.31E − 20 + 3.31E − 20 + N/A�

f18 7.07E − 18 + 7.77E − 04 + 5.60E − 04 − 7.07E − 18 + N/A�

f19 7.07E − 18 + 2.63E − 14 + 6.54E − 19 + 7.07E − 18 + N/A�

f20 2.62E − 17 + 1.02E − 10 + 5.29E − 03 + 7.07E − 18 + N/A�

f21 1.31E-15 + 1.17E − 18 − 2.87E − 13 + 2.29E − 15 + N/A�

f22 8.08E − 06 + 3.29E-07 + 2.75E-19 + 4.13E-01� N/A�

f23 1.85E − 21 + N/A� 3.31E − 20 + 3.31E − 20 + N/A�

f24 3.25E − 20 + N/A� 3.31E − 20 + 3.31E − 20 + N/A�

+/�/− 24/0/0 20/3/1 22/0/2 23/1/0 0/24/0

Table 6: Comparison of experimental results for higher dimensions.

Function Algorithm
d� 500 d� 1,000 d� 2,000

Mean SD Mean SD Mean SD

f5
TPSA 0 0 0 0 0 0
PSA 1.773E + 04 1.731E + 03 4.025E + 04 2.399E + 03 8.885E + 04 4.129E + 03

f12
TPSA 0 0 0 0 0 0
PSA 1.285E + 03 6.565E + 01 2.796E + 03 7.661E + 01 5.898E + 03 1.481E + 02

f15
TPSA 0 0 0 0 0 0
PSA 4.625E + 02 1.081E + 01 9.719E + 02 1.567E + 01 1.993E + 03 1.908E + 01
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cannot solve constrained optimization problems. 'is study
uses the penalty function in the literature [15] to transform
constrained optimization into unconstrained optimization
for the solution.

5.1. Eree-Bar Truss Design Problem. Figure 5 illustrates the
three-bar truss structure. 'e height of the truss is H; the
cross-sectional areas of each bar are A1, A2, and A3; and the
concentrated load is p. 'e problem is solved to minimize
the volume of a three-bar truss under stress constraints,
deflection, and buckling. 'is problem requires the opti-
mization of two variables (A1 and A2) to adjust the cross-

sectional area of each bar. 'e problem is mathematically
described as follows:

Minimizef(x) � 2
�
2

√
x1 + x2(  × l,

subject to g1(x) �
�
2

√
x1 + x2( /

�
2

√
x
2
1 + 2x1x2  p − σ ≤ 0,

g2(x) � x2/
�
2

√
x
2
1 + 2x1x2  p − σ ≤ 0, and g3(x)

� 1/
�
2

√
x1 + x2( ( p − σ ≤ 0,

(8)

where 0≤x1, x2 ≤ 1, l � 100cm, p � 2kN/cm2, and
σ � 2kN/cm2.

'e population size was set to 50 and the maximum it-
eration to 1,000. 'e optimal solutions of TPSA and PSA were
compared with the optimal solution of the algorithm reported
in the relevant literature.'e results are listed in Table 8, which
shows that the optimal solution solved by TPSA is superior to
PSA, CS [42], HHO [43], SC-GWO [44], and GLF-GWO [45]
and equivalent to the results of AEO [46]. 'is shows that
TPSA can optimize the design of the three-bar truss with a
good effect.

5.2. Welded-Beam Design Problem. 'e welded-beam
structure is shown in Figure 6 with four design parameters:
weld thickness (h), length of the clamped bar (l), height of

Table 7: Comparison of experimental results of single-strategy improvement algorithms.

Function Index
Algorithm

TMPSA ORSPSA DAPSA PSA

f1
Mean 0 2.7617E + 03 1.9585E + 03 3.1699E + 03
SD 0 7.9656E + 02 6.5230E + 02 8.7013E + 02

f3
Mean 3.2077E − 46 1.0321E + 04 1.0779E + 04 1.0352E + 04
SD 1.7274E − 45 2.9644E + 03 4.2197E + 03 3.1218E + 03

f5
Mean 0 1.6753E + 02 1.2979E + 02 1.7675E + 02
SD 0 1.2045E + 02 8.1983E + 01 1.2039E + 02

f7
Mean 0 1.6270E + 09 1.9854E + 09 2.0857E + 09
SD 0 2.0596E + 09 3.5314E + 09 3.4464E + 09

f9
Mean 2.8676E − 157 6.8316E + 04 5.8668E + 04 5.9152E + 04
SD 0 1.8130E + 04 1.5567E + 04 1.6057E + 04

f11
Mean 8.8818E − 16 1.0599E + 01 8.9165E + 00 1.0667E + 01
SD 9.8608E − 32 9.6940E − 01 1.1473E + 00 1.1378E + 00

f13
Mean 1.2186E + 00 9.1168E + 02 1.8062E + 01 1.6894E + 03
SD 1.8625E − 01 3.1424E + 03 9.9452E + 00 8.2435E + 03

f15
Mean 0 1.9208E + 01 1.7209E + 01 1.8746E + 01
SD 0 1.6213E + 00 2.3737E + 00 2.3177E + 00

f17
Mean 0 4.6834E+00 4.1558E + 00 4.5343E + 00
SD 0 5.1606E-01 5.8120E − 01 4.1785E − 01

f19
Mean − 1.9358 − 6.7180 − 4.8770 − 5.6914
SD 1.9013E + 00 3.5153E + 00 2.8937E + 00 3.5463E + 00

f20
Mean − 2.3798 − 5.8143 − 7.1833 − 6.7117
SD 2.1818E + 00 3.2631E + 00 3.5881E + 00 3.5352E + 00

f21
Mean − 2.3632 − 5.8501 − 5.5687 − 6.8643
SD 1.8139E + 00 3.4774E + 00 3.5058E + 00 3.5147E + 00

f22
Mean − 2.2669 − 3.2684 − 3.2610 − 3.2443
SD 5.5717E − 01 6.7457E − 02 7.9217E − 02 8.1362E − 02

HH

H

A2

A1 A1=A3

p

Figure 5: 'ree-bar truss design.
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the bar (t), and thickness of the bar (b). 'e optimal design
should minimize the construction cost under the constraints
of shear stress τ, bending stress σ, buckling load Pc, and
deflection δ. 'e mathematical description of the problem is
as follows:

Minimizef(x) � 1.10471x
2
1x2 + 0.04811x3x4 14.0 + x2( ,

Subject tog1(x) � τ(x) − 13600≤ 0,

g2(x) � σ(x) − 30000≤ 0,

g3(x) � x1 − x4 ≤ 0,

g4(x) � 0.10471x
2
1

+ 0.04811x3x4 14.0 + x2(  − 5.0≤ 0,

g5(x) � 0.125 − x1 ≤ 0,

g6(x) � δ(x) − 0.25≤ 0, and

g7(x) � p − pc(x)≤ 0,

(9)

where τ(x) �

��������������������������

(τ′)2 + 2τ′τ″(x2/(2R)) + (τ″)2


,
τ′ � (p/(

�
2

√
x1x2), τ″ � (QR/J), Q � p(L + (x2/2)),

R �

������������������

x
2
2/4 + x1 + x3( /2( 

2


,

σ(x) � 6pL/ x4x
2
3 ,

J � 2
�
2

√
x1x2 x

2
2/12  + x1 + x3( /2( 

2
  ,

δ(x) � 4pL
3/ Ex

3
3x4 , and

pc(x) � 4.013E

���������

x
2
3x

6
4/36 



/L2
  1 − x3/2L( 

������
E/(4G)


 ,

(10)

where p � 6000, L � 14, E � 30 × 106, L � 14, and
G � 12 × 106.

Variable range is 01≤ x1, x2 ≤ 2, 0.1≤x3, x4 ≤ 10.
'e population size was set to 50; the maximum

number of iterations was 10,000, the step-size scaling factor
c was 2; and the program independently ran 30 times.
TPSA and PSA were used to solve the welded-beam design
problem and the results were compared with those of the
algorithms reported in the relevant literature. A compar-
ison of the optimal solution and statistical results are
presented in Tables 9 and 10, respectively. It is observed
that the optimal solution by TPSA is superior to PSA, CPSO
[47], IGMM [48], TEO [49], IGWO [50], SFOA [51], CS-
BSA [52], andWAROA [53] and is equivalent to the results
of AEO [46]. However, the mean and standard deviation of
TPSA are better than those of AEO. 'is indicates that
TPSA is better than the others in solving welded-beam
design problems.

5.3. Tension/Compression-Spring Design Problem.
Figure 7 shows the structure of the tension/compression
spring with three design parameters: average coil diameter
(D), number of active coils (p), and wire diameter (d). 'e
design goal was to minimize the weight under certain
constraints. 'e mathematical description of the problem is
as follows:

Minimizef(x) � x3 + 2( x2x
2
1,

Subject tog1(x) � 1 − x
3
2x3/ 71785x

4
1  ≤ 0,

g2(x) � 4x
2
2 − x1x2 / 12566 x2x

3
1 − x

4
1   + 1/ 5108x

2
1 ≤ 0

g3(x) � 1 − 140.45x1/ x
2
2x3  ≤ 0, and

g4(x) � x1 + x2( /1.5 − 1≤ 0,

(11)

where .05≤ x1 ≤ 2.00, 0.25≤ x2 ≤ 1.30, and
2.00≤x3 ≤ 15.00.

'e population size was set to 50; the maximum
number of iterations was 1,000; the step-size scaling

Table 8: Comparison of optimal solutions for three-bar truss
design problem.

Algorithms x1(A1) x2(A2) f(x)
TPSA 0.7886705 0.4082615 263.895843
PSA 0.7912275 0.4011807 263.9110069
CS 0.78867 0.40902 263.9716
HHO 0.7886628 0.4082831 263.8958434
SC-GWO 0.78941 0.40617 263.8963
GLF-GWO 0.788174 0.4096753 263.8969
AEO 0.788707 0.408159 263.895843

P

t

b
Ll

b

h

Figure 6: Welded-beam design.
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Table 9: Comparison of optimal solutions for welded-beam design problem.

Algorithm x1(h) x2(l) x3(t) x4(b) f(x)
TPSA 0.2057292 3.4704977 9.0366239 0.2057296 1.7248529
PSA 0.240753 3.068655 8.694284 0.240753 1.915351
CPSO 0.202369 3.544214 9.048210 0.205723 1.728024
IGMM 0.205729 3.470496 9.036625 0.205730 1.724855
TEO 0.205681 3.472305 9.035133 0.205796 1.725284
IGWO 0.20571 3.4714 9.0369 0.20573 1.7250
SFOA 0.205728 3.47040 9.03694 0.205728 1.72488
CS-BSA 0.20573 3.4705 9.0366 0.20573 1.7249
WAROA 0.20573 3.4705 9.0366 0.20573 1.7249
AEO 0.2057296 3.4704886 9.0366239 0.2057296 1.724852

Table 10: Comparison of statistical results for welded-beam design problem.

Algorithm Best Worst Mean SD
TPSA 1.7248529 1.7257362 1.7249917 1.9533E− 04
PSA 1.915351 4.743892 3.183695 0.700671
CPSO 1.728024 1.782143 1.748831 0.012926
IGMM 1.7248552 1.74769 1.732152 7.14E− 03
TEO 1.725284 1.931161 1.768040 0.0581661
IGWO 1.7250 1.7263 1.7255 4.72E− 04
SFOA 1.72488 1.73930 1.72874 3.71610E− 03
CS-BSA 1.7249 1.7249 1.7249 4.44089E− 16
WAROA 1.7249 1.7252 1.7249 —
AEO 1.724852 1.7255664 1.7250057 2.4763E− 04

P
D

P

d

Figure 7: Tension/compression-spring design.

Table 11: Comparison of optimal solutions for tension/compression-spring design problem.

Algorithm x1(d) x2(D) x3(p) f(x)
TPSA 0.0516851 0.3566230 11.2945227 0.0126652
PSA 0.0556512 0.459735 7.086870 0.0129381
HMPA 0.051608 0.354788 11.40295 0.01266535
AEO 0.051897 0.361751 10.879842 0.0126662
CPSO 0.051728 0.357644 11.244543 0.0126747
IGWO 0.051701 0.356983 11.2756 0.012667
SFOA 0.051794 0.359257 11.1417 0.0126654
PO 0.05248 0.37594 10.24509 0.01267
TEO 0.051775 0.3587919 11.168390 0.012665
WAROA 0.051676 0.35640 11.308 0.012665
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factor c was 5; and the program ran independently for 30
times. TPSA and PSA were used to solve the tension/
compression-spring design problem and the results were
compared with those of the algorithms reported in the
relevant literature. A comparison of the optimal solution
and statistical results are shown in Tables 11 and 12,
respectively. Tables 11 and 12 show that the optimal
solution of TPSA is superior to PSA, HMPA [4], AEO
[46], CPSO [47], IGWO [50], SFOA [51], and PO [54] and
is equivalent to the results of the TEO [49] and WAROA
[53]. However, the worst and average values of TPSA are
better than those of WAROA. 'is indicates that TPSA
can effectively solve a tension/compression-spring design
problem.

Table 12 shows that the optimal solution of PSA is
inferior to all other algorithms and its average value
and standard deviation are relatively large. 'is indicates
that PSA is unstable in solving this problem. TPSA results
are superior to those of the algorithms reported in
the literature, which further shows that the improved
strategy in this study effectively improves the perfor-
mance of PSA.

TPSA mutates the elite Porcellio scaber using the
t-distribution operation. 'e degrees of freedom of the
t-distribution are the number of iterations of the algo-
rithm, and their values dynamically increase as the al-
gorithm runs. 'us, its morphology changes dynamically
from a Cauchy to Gaussian distribution. In the early
stage of the algorithm, the dynamically changing char-
acteristics maintain the diversity of the population to a
large extent so that the population can sufficiently
explore the search space. In the late stage of algorithm
operation, the t-distribution mainly presents Gaussian
distribution characteristics, and the mutated population
implements fine exploitation in a smaller space around
the optimal Porcellio scaber, which improves the con-
vergence accuracy while avoiding the algorithm from
sinking into a local optimum.'e optimal Porcellio scaber
retention strategy in TPSA partially overcomes PSA’s
disadvantage of losing the optimal solution of the pre-
vious generation. TPSA’s dynamic adaptive improvement
of weight distribution parameters improves the balance
of exploration and exploitation and enhances perfor-
mance. In summary, the TPSA assembled with these
strategies has good performance; therefore, good optimal

solutions are obtained when solving the three engineering
problems.

6. Conclusions

PSA is a new swarm intelligence optimization algorithm,
which has the disadvantages of low convergence accuracy
and easy premature convergence. To address these issues, an
improved PSA (TPSA), based on the t-distribution elite
mutation mechanism, is proposed. First, using t-distribution
for each generation of elite Porcellio scaber for a dimension-
by-dimension mutation, the characteristics of t-distribution
are used to maintain population diversity, thus enhancing
the algorithm’s ability to explore and exploit the global and
local space. Secondly, the judgment mechanism between the
contemporary optimal solution and the previous generation
optimal solution is added to the algorithm process to address
the shortcoming that the basic PSA may lead to the loss of
information of the previous generation of elite Porcellio
scaber. Finally, dynamic adaptive improvements are made to
the weight assignment parameters of PSA to achieve a
balance between exploitation and exploration and improve
its performance in finding the best solution.

'e performance and practicality of TPSA were evalu-
ated on 24 benchmark functions and applied to three real-
world engineering problems. First, the convergence accu-
racy, convergence speed, and stability of TPSA were eval-
uated on 24 benchmark functions, including high-
dimensional unimodal, high-dimensional multimodal, and
low-dimensional functions. 'e results show that TPSA has
significant advantages over basic PSA, PSO, GSA, and FPA.
'is was also proved by the Wilcoxon rank-sum test on the
experimental results. To further validate the performance of
TPSA, experiments were conducted in 500, 1,000, and 2,000
dimensions on some functions, and the results show that
TPSA converged to the theoretical optimum of the function
without falling into “dimension disaster,” which further
demonstrated its good convergence and stability. In the
three practical engineering problems of three-bar truss,
welded-beam, and tension/compression-spring designs, the
optimal solution of TPSA was better than those of the al-
gorithms reported in related literature, which verified its
practicality. However, it should also be noted that TPSA is
inferior to PSO and GSA in optimizing some functions.
'erefore, in the future, we will continue to improve the

Table 12: Comparison of statistical results for tension/compression-spring design problem.

Algorithm Best Worst Mean SD
TPSA 0.0126652 0.0127196 0.0126856 1.9589E-05
PSA 0.0129381 8.7917E + 14 9.2191E + 12 8.7488E + 13
HMPA 0.01266535 0.01268822 0.01267299 6.6537E − 06
AEO 0.0126662 0.0127271 0.01272712 2.5401E − 05
CPSO 0.0126747 0.012924 0.012730 5.1985E − 05
IGWO 0.012667 0.012718 0.012691 1.97E − 05
SFOA 0.0126654 0.0130107 0.0127312 6.76788E − 05
PO 0.0127 0.0128 0.0127 —
TEO 0.012665 0.012715 0.012685 4.4079E − 06
WAROA 0.012665 0.012821 0.012693 —
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optimization performance of TPSA and apply it to more
complex engineering optimization problems.
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