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In terms of the problems of �ve categories of nonweld seam stripes, including inclusion, oil-spot, silk-spot, and water-spot, which
interfere with weld seam recognition during robotic welding, a convolutional neural network (CNN) algorithm, combined with a
multistage training strategy, is used to construct a digital model for weld seam recognition, on the basis of which the classi�cation
accuracy is compared with the standard model of seven categories of representative CNN.�e results show that the ResNet model
with a multistage training strategy classi�es weld seams with an accuracy of 83.8%, which is superior to other standard models. In
this study, the physical scenario of weld seam recognition is migrated to a neural network digital model, ful�lling the intelligent
recognition of weld seams in complex scenarios based on the CNN digital model.

1. Introduction

Welding is a kind of method in machining that joints two
parts into the required structure; it is the most basic process
of equipment manufacturing. �e welded joint is highly
dependent on the skill and experience of the worker; bright
light and toxic gases can be generated in this process, and
they are harmful to the health of the worker. In this regard, it
is imperative for the realization of intelligent welding in the
industry. Fortunately, along with the progress of science and
technology, various intelligent technologies supported by
computer science have been widely used in many industries.
�is process liberates people from a harmful work envi-
ronment, while improving production quality and e�ciency.
Welding has also bene�ted from it. �e welding robots have
been replacing workers to complete joint tasks in some
simple scenarios.

�e core technology of robots is to get welding position
information from the photo, which is used to drive the
actuator to complete the welded joint task.�e processing of
the weld seam information that is contained in the photo is a
core technology, and in recent years, for accurate extraction

of weld seam information, many advanced photo processing
algorithms have been introduced. For example, the grayscale
transform method, the neighbourhood averaging method,
the median �lter method, and other related algorithms are
researched for photo noise �ltering [1, 2]. Polar, threshold,
grayscale centre of gravity, Hough transform, and other
related algorithms are researched for weld seam stripe ex-
traction [3–6]. �e adaptive threshold method, random
Hough transform, Steger, laser linear stripe threshold seg-
mentation, and other related algorithms are researched for
weld seam stripe localisation [7, 8], for improving the quality
of weld seam photos, using laser stripe structure to accu-
rately extract stripe features [9], and nearest neighbor
clustering algorithms, directional template methods, genetic
algorithms, etc. used for weld seam stripe extraction [10–12].
In engineering practice, these methods are used to solve the
weld seam localisation problem from di�erent angles.
However, in reality, the workpiece surface is shaped like a
weld seam, such as by inclusions, oil-spot, silk-spot, and
water-spot in nonweld seam stripes, which frequently occur.
In the scenario with high similarity information interfer-
ence, it poses huge challenges to distinguish them in real
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weld seam scenarios with traditional photo processing
methods. What is worse, this phenomenon often leads to
robot welding errors on the workpiece.+erefore, in order to
improve the working efficiency and reliability of the welding
robot, it is significant to recognise the linear stripes that are
on the workpiece surface before performing positioning
welding.

Convolutional neural networks (CNNs) are a deep
learning algorithm specifically used to recognise objects with
high similarity. In recent years, machine vision algorithms
represented by CNNs have been widely used in face rec-
ognition, vehicle recognition, animal recognition, and other
fields. Its core is that the special convolution structure can
extract photo features in detail, so as to identify the target
with high similarity. CNN meets the needs of the weld seam
and the nonweld seam, respectively. In this paper, the CNN
method is used to identify and position a weld seam under
the interference of complex traces and to provide a real and
reliable welding target for robots.

2. Principle of Weld Seam Recognition
Based on CNN

CNN uses a convolutional form to extract pixel-level in-
formation, and CNN has the ability to recognise different
types of targets in photos. In this process, all the features of
the shape of the targets recorded by the pictures are precisely
collected by the input layer of the network. What’s more,
combined with the feature fitting method of neural network
gradient update, under the stimulation of the input of a large
amount of picture information, the network possesses the
features between different types and records them in the
form of weight values [13, 14]. Figure 1 from 1–19 shows the
process of obtaining a CNN weld seam recognition digital
model for weld seam recognition.

Figure 1: (1). Weld seam dataset, collation, and reading,
(2). Standard size photo processing; this process implements
the standard photo size required by the network, (3). Express
the photo in terms of the number of channels, (4). Pre-
processing of convolution samples, (5). Extraction of photo
features using a convolution kernel and convolution cal-
culation is shown in the following formula:
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where j,k denote the jth row and kth column of its feature
vector. w denotes the weight; i corresponds to the number of
neuron feature vectors in the next layer; s represents the
number of feature vectors in the previous layer.M, n denote
the value of the (m,n) th convolution kernel, b is the bias, z is
the neuron input in the layer, a is the neuron output in the
layer (in this study, we consider z as the neuron input, after
the activation functions are changed to a, that is, the neuron
output), and l denotes the lth layer.

6 is the result obtained by convolution. 7 is the pooling
process based on the convolution result, and pooling is
calculated as follows:
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where ap denotes the output of the pooling layer, a is the
output of the neuron of the layer (in this study, we consider z
as the input of the neuron, and after the activation, function
becomes a, i.e., the output of the neuron), d denotes the step
of pooling, m,n denote the value of the (m,n) th of a pooling
kernel. j,k denote the jth row and kth column of its feature
vector, respectively. m,n denote the value of the (m,n)th of a
convolution kernel. l denotes the l th layer.

8 is the result obtained from the pooling process. 9 is the
transformation of the data dimension of the pooling result to
facilitate data transfer with the fully connected layer. 10 is the
fully connected layer, whose computation process is
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where ap denotes the output of the pooling layer. j,k
denote the jth row and kth column of its feature vector; z
denotes the node of the network where it is located. l
denotes the l th layer. s denotes the node of the layer where
it is located.

11 is the output of the results of the fully connected
layer calculations. 12 is the output to perform operations
with labels. 13 are updating weights and biases for
backpropagation (between the output and hidden
layers). 14 are updating weights and biases for
backpropagation (between hidden and input layers). 15 is
an intermediate function transfer. 16 is an intermediate
function transfer 17-18-19. Convolution kernel and bias
update, where the fully connected layer error is calculated
as follows:
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where δlj is the middle term of the definition, z denotes the
host network node, and l denotes the lth layer, j denotes the j
th row of its feature vector. a is the output of the neuron in
that layer. (In this study, we consider z as the neuron input,
after the activation functions are changed to a, which is the
output of the neuron).C denotes the value of the node where
it is located, where the upper label shows the error of the
fully connected layer and the lower label shows the error of
the convolutional layer.

+e fully connected layer passes backwards to the
pooling layer:
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where z denotes the node in the network, l denotes the lth
layer, j,k denote the jth row and kth column of its feature
vector, ap denotes the output of the pooling layer. i cor-
responds to the number of neuron feature vectors in the next
layer. s denotes the node in the layer. C denotes the value of
the node, and δlj is the defined intermediate term.
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+e error of the pool layer to convolution layer:

δl
j � upsample
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where z denotes the node at which the network is located. l
denotes the lth layer. j denotes the jth row of its feature vector.
ap denotes the output of the pooling layer. i corresponds to
the number of neuron feature vectors in the next layer, and C
denotes the value of the node in which it is located.

Error transfer between convolution layers:
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where z denotes the node in the network. l denotes the lth
layer. C denotes the value of the node, and a is the output of
the neuron in the layer (in this study, we consider z as the
input of the neuron, and after the activation, functions
become a, which is the output of the neuron).

Model parameter gradients:
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where l denotes the lth layer. i corresponds to the number of
neuron feature vectors in the next layer. s denotes the node
in the layer where it is located. C denotes the value of the
node where it is located. δlj is the defined intermediate term,
and a is the neuron output of the layer (in this study, we
consider z as the neuron input, and after the activation,
functions become a, i.e., the neuron output).

+e migration of the weld seam information from the
physical scenario to the digital model is achieved by the
process of 1–19 in Figure 1, which enables the identification
of the weld seam entities in the physical scenario through the
digital model.

3. Process of Acquiring Digital Models forWeld
Seam Identification

In the welding process, linear stripes on the surface of the
workpiece to be welded, such as inclusions, oil-spot, silk-
spot, and water-spot, which are highly similar to the weld
seam, they are the main factor used by an interference
welding robot to recognize the weld seam. +e task of CNN
is to establish a digital model for recognizing the weld seam
and nonweld seam information in photos, so as to achieve
intelligent automatic recognition without human partici-
pation. +e difficulty of this process is establishing a highly
accurate digital model for weld seam recognition. Normally,
CNN fitting physical scenario information’s accuracy de-
pends on the design of the network’s optimizer and loss
function.

3.1. Optimizers and Loss Functions for Numerical Models of
Weld Seam Identification. In terms of the future CNN
network, according to the characteristics of the sample,
researchers will select the appropriate optimizer and loss
function based on experience. However, different optimizers
and loss functions have their own advantages; the more
mature neural network optimizers contain two categories:
gradient descent and adaptive learning rate optimization
algorithms. In each round of iteration, stochastic gradient
descent (SGD) only randomly optimizes the loss function on
certain training data. Compared to other optimization
strategies, SGD has a more efficient rate and has the ca-
pability of quickly adjusting the value of the weight array to
the global optimal solution. +e algorithm’s mathematical
principle is shown in the following formula:

θ � θ − η · ∇J θ; x
(i;i+n)

; y
(i;i+n)

 , (9)

where θ is the parameter to be updated, η is the hyper-
parameter (learning rate), and ▽J is the gradient of the
parameter to be updated.

+e more mature adaptive learning rate optimization
algorithms mainly include AdaGrad and Adam, among
which the unique design of Adam’s momentum term makes
it have better finding ability for a global optimal solution.

AdaGrad optimizer structure:

θt+1,i � θt,i −
η

������
Gt,ii + ε

 · gt,i, (10)
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Figure 1: Weld seam identification digital model implementation.
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where θi is the variable, η is the hyperparameter, and g is the
gradient of parameter θi at the moment of time t, where Gt is
a diagonal matrix and the (i, i) element is the gradient sum of
squares of parameter θi at the moment of time t.

Compared with the Batch Gradient Descent (BGD)
optimization strategy, AdaGrad’s learning rate changes
with the gradient calculation process, and its learning rate
does not need to be adjusted manually, which makes it
possible to fit the sample features with smaller gradients at
the later stage and fit themmore carefully. Its disadvantages
are that the denominator will keep accumulating, so that
the learning rate will shrink and eventually become very
small.

Adam optimizer structure is

θt+1 � θt −
η

�����

v
⌢

t + ε
 m

⌢

t, (11)

where θt is the variable, η is the hyper parameter (learning
rate, Lr), and the significance of other variables is shown as
follows:
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where β is the hyperparameter and g is the gradient of the
parameter θi at the moment of t. Ifmt and vt are initialized as
0 vectors, then they are biased toward 0, so a bias correction
is carried out, which is offset by calculating the bias corrected
mt and vt.

+e loss functions of neural networks mainly contain
two categories: the mean square error loss and the cross-
entropy loss, and the common loss functions are LTMAE
(Loss transferring, LT) and LTsoftmax.

LTMAE Function equation is given as follows:
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where yi is the output of the network with input samples
passing through the CNN, yip is input sample label value, and
n represents how many input samples are counted at one
time.

LTMAE is commonly used in loss calculation for re-
gression problems, where the average value of the difference
between the statistical network output and the sample labels
(L1loss) or the difference squared (L2loss) measures the
performance of the fit of the network’s common parameters
to the sample features.

LTsoftmax Function equation is given as follows:
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where n represents howmany input samples are counted at a
time, W is the weight b bias, yi is the output of the network

with input samples passing through the CNN, and xi is the
node input value.

LTsoftmax is commonly used in loss calculation for
classification problems, where a specific function of the
network output is transformed into a probability problem
between 0 and 1, and the difference between the probability
value and the sample label is used to measure the fit between
the network prediction and the sample label.

3.2. Weld Seam Identification Digital Model Driving Strategy
for Optimizer and Loss Function. +e establishment of the
CNN weld seam recognition digital model is performed as
the network’s weights. Upon they are activated by the
training dataset, the gradient descent method is used to
converge on the features possessed by the weld seam and its
interference nonweld type. +e accuracy of this feature
convergence depends on the activation method during
weight update, specifically the choice of network optimizer
and activation function. In terms of the recognition of weld
seams under complex trace interference in this study, due to
the highly similar background of photo information, the
features between recognition targets are also highly similar.
+erefore, using a single optimizer and loss function to fit
the features is difficult, and it is a huge challenge to fulfill the
task of recognizing weld seams under highly nonweld seam
information interference.

In a complex trace interference environment, a high-
precision weld seam recognition CNN model needs to
integrate the advantages of each optimizer and loss
function. In this study, two algorithms, SGD and Adam,
are used in the training phase of the numerical model for
weld seam recognition. +e SGD strategy is used to
quickly approximate the global optimal solution, while
Adam introduced to a method overcome the shortcom-
ings of the SGD, because the SGD will fall into a large
number of local suboptimal solutions or saddle points in
the highly nonconvex error function optimization pro-
cesses, LTMAE and LTsoftmax. +e purpose is to use LTMAE
loss to increase the class spacing between weld seam and
nonweld seam and calculate the LTsoftmax loss to ensure
classification accuracy between different classes. +at is,
the design of multiple optimizations and multiple losses is
used to overcome the difficulty of recognizing high-
similarity physical scenarios in weld seam recognition.
During the training process, the distribution of optimizers
and loss functions is shown in Figure 2.

4. Results

4.1. Dataset Introduction. In the welding task, the common
weld seam identification interference information on the
workpiece surface contains four categories such as inclusion,
oil-spot, silk-spot, and water-spot (https://www.kaggle.com/
datasets/zhangyunsheng/defects-class-and-location (Fig-
ure 3)). +at is, the dataset used in this study consists of 5
categories; each type contains information about 700 pic-
tures, and there are 3500 pictures in 5 categories, small
photos collected from public datasets on the Internet, and
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most of the photos collected in factories. All the photos
together constitute this article’s dataset.

+e composition of five categories of training sets,
validation sets, and test sets in the training phase of the
neural network weld seam recognition digital model is
shown in Table 1. Operating environment GPU: GeForce
RTX2080Ti; CPU: 8-thread Intel(R) Xeon(R) Gold 6130
CPU @2.10GHz; RAM: 32G.

4.2. Classification Results. +e classification effects of a total
of seven representative CNN standard models [15–21] (all
with a single optimizer and a single loss function) containing
AlexNet, GoogleNet, ResNet, VGG, EfficientNet, Mobile-
Net, and ShuffleNet are collected during the determination
of the numerical model for weld seam recognition, and the
classification accuracy of each model is shown in Table 2,
where ResNet is the model with the highest accuracy for
weld seam recognition among all algorithms in the table.
Based on the ResNet model and using the driven strategy in
Figure 2, the classification accuracy obtained was higher
(1.6% improved) compared to the plain ResNet model.

4.3.Model Evaluation. Table 3 is the confusion matrix of the
“ResNet +multistage training strategy model.” Inclusion,
oil-spot, silk-spot, water-spot, and weld seam have 100
photos, respectively, in test data, and correctly classified
photos are 85, 83, 78, 87, and 86 with a total accuracy of
83.8%. Table 4 is a two-class confusion matrix, which takes
weld seam as positive, inclusion, oil-spot, silk-spot, and
water-spot as negative. Table 5 shows the values of F-score,
TPR, FPR, and accuracy, which variables are from Table 4,
and compares our model (ResNet +multistage training
strategy model, ResNet +M) with 3 kinds of the latest im-
proved ResNet algorithm model (ResNet improved 1 [22],
ResNet improved 2 [23], and ResNet improved 3 [24]) in
Table 5.

As shown in Table 5, the ResNet +M model’s F-score is
0.6798, which is smaller than ResNet improved 1’s 0.8572,

0<epoch⊥50 50<epoch⊥100 100<epoch⊥150 150<epoch⊥200

SGD+LTsoftmax

Step1

SGD+LTMAE Adam+LTsoftmaxAdam+LTMAE

Step2 Step3 Step4

Figure 2: Multistage training strategy.

non-welding welding

inclusion

oil-spotsilk-spot

water-spot
Welding-line

Figure 3: Complex traces and weld seams.

Table 1: Division of weld seam identification dataset.

Labels Train (samples) Validation (samples) Test
(samples)

Inclusion 500 100 100
Oil-spot 500 100 100
Silk-spot 500 100 100
Water-spot 500 100 100
Weld seam 500 100 100

Table 2: Classification accuracy of each model.

- Model Parameter
(Mb)

Accuracy
(%)

1 AlexNet 14.591685 79
2 GoolgeNet 10.318655 82
3 ResNet 25.664453 82.2
4 VGG 70.303557 78.8
5 EfficientNet 4.055976 81.6
6 MobileNet 2.264389 80.4
7 ShuffleNet 1.274989 80

8 ResNet +multistage training
strategy 25.664453 83.8

Table 3: Confusion matrix of ResNet +multistage training strategy
model.

-
Reference

Inclusion Oil-
spot

Silk-
spot

Water-
spot

Weld
seam

Prediction

Inclusion 85 1 1 4 2
Oil-spot 3 83 13 6 10
Silk-spot 4 10 78 2 2
Water-
spot 4 0 6 87 0

Weld
seam 4 6 2 1 86
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but is bigger than 0.6044 and 0.5482, which are the results of
“ResNet improved 2” and “ResNet improved 3,” respec-
tively; the value of the TPR of the ResNet +M model is
0.8600, which is bigger than other three contrast algorithms
(the larger the TPR value, the better the model perfor-
mance); the FPR of the ResNet +Mmodel is 0.1675, which is
smaller than other three contrast algorithms (the smaller the
FPR value, the better the model performance); the accuracy
value of the ResNet +M model is 83.80%, which is bigger
than other three contrast algorithms.

5. Conclusion

As an important innovative application of computer tech-
nology in the welding field in recent years, welding robots
are of great significance to promoting the development of
the welding field, improving welding efficiency, and re-
ducing welding costs. However, welding is, after all, a
complex job with an unstable scenario andmany factors that
interfere with the quality of welding, which is limited by
objective factors. At present, welding robots have only been
relatively extensively applied in individual, simple, and high-
repetition processes. Knowing how to accurately recognize a
weld seam under complex interference information is an
important prerequisite when robots are involved in a
complex scenario of welding. In this study, the CNN al-
gorithm is introduced for recognizing weld seams under the
interference of multiple categories of nonweld seam infor-
mation. +e research results show that the ResNet model
under the multistage training strategy can recognize weld
seams with 83.8% accuracy; the overall performance is better
than the other three contrast algorithms in this study.

+is study establishes a CNN model for weld seam
recognition in complex scenarios, which is based on deep
mining of sample features in the training set and realizes the
migration of weld seam recognition tasks from physical
scenarios to digital models under complex welding condi-
tions. +e acquisition of a digital model is an important
prerequisite for automatic weld seam recognition by robots
under unmanned participation. What’s more, this study

provides an important technical approach when robotic
welding cannot be applied in more complex scenarios and
has important practical significance for the further popu-
larization of robotic welding applications.
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