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�e deepmining of passengers’ travel data can identify competitive segments and gain insights into passengers’ characteristics and
di�erentiated demands. �is can not only e�ectively support precise marketing strategy adjustment of railway transport but also
improve its competitiveness in the passenger transportation market. In this paper, hidden railway travel behaviour is introduced
and integrated with railway travel behaviour to create a complete passenger travel chain, based on existing distance-based
competitive segment recognition methods. �e loyalty index values of passengers are calculated using this travel chain to identify
competitive segments. Furthermore, passenger classi�cation and grouping currently ignore social relationships as well as personal
travel characteristics. �erefore, a novel passenger grouping method is proposed; it integrates individuals’ travel characteristics
and social relations. Individual travel labels are created for travellers based on their travel data. Social relation topologies, such as
ticketing relation, the relation of travelling together, and bene�t relation via point redemption, can be extracted using these labels.
Social relation traits can be retrieved using graph attention networks and multigraph fusion. Finally, travellers are categorised
based on their individual travel characteristics. As an example, and a case study, the grouping of Guangzhou–Shanghai passengers
in 2020 is taken which shows that the suggested method has the potential to improve both the precision and the feasibility of
grouping railway passengers. As a result, new ideas for passenger grouping in railway marketing might be o�ered.

1. Introduction

Passengers who have a travel demand select appropriate trip
plans according to their characteristics in conjunction with
various factors related to transportation services, like safety,
comfort, convenience, speed, punctuality, and cost-e�ec-
tiveness. To assist railway passenger transportation ad-
ministration departments in formulating customised and
personalised service strategies based on the travel charac-
teristics of diverse groups, we need to accurately and ef-
fectively de�ne the competitive segments of di�erent
transportation modes, profoundly investigate the vehicle
selection behaviours of passengers, quantitatively analyse the
individual factors in�uencing passengers’ travel choices and
their social relations in travel, gain insights into the char-
acteristics and di�erentiated demands of passengers, and
�nally divide passengers into di�erent groups. �is may
further promote the passenger service mode innovation,

service strategy transformation, and service quality im-
provement of railway transportation. �eoretical bases can
also be provided for railway passenger transport enterprises
to reasonably design train service products and implement
precision marketing activities.

Regarding the di�erent transportation modes in China’s
passenger service market, diverse marketing strategies are
selected for various segments to meet passengers’ demands
and attract passengers, thus improving their market com-
petitiveness. In this context, e�ective recognition of the
competitive segments of various transportation means is the
basis on which railway passenger service enterprises analyse
the advantages of their competitors, discover their weak-
nesses, and optimise their marketing strategies. According to
Dobruszkes et al. [1], supplies are dynamically adjusted by
European aviation companies in line with the running time
of G-series high-speed trains. �e longer the running time,
the greater the number of supplies. Supplies are speci�cally
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at the minimum for running times within 2–2.5 h (corre-
sponding travel distance: approximately 500 km). *rough a
comparative analysis of the superiorities of the passenger
transportation means in Taiwan, Cheng [2] stated that civil
aviation, G-series high-speed train travel, and highway travel
are primarily suitable for distances of 700 km and above,
200–700 km, and 200 km and below, respectively. According
to Zhang et al. [3], the travel distance is a crucial aspect that
influences passengers’ travel decisions. *e 600–1,000 km
segment is themost competitive between G-series high-speed
trains and civil aviation, while the segment with the highest
competition is approximately 1,000 km. Due to the vastness
of China’s territory, imbalanced economic development
between various areas, and changes in passenger composition
within segments, distance-based division and categorisation
of competitive segment may have several drawbacks.

Group segmentation is a foundation of marketing
strategy optimisation. In essence, it aims to learn user
characteristics, demands, and objectives by analysing his-
torical data to provide users with customised service
strategies, maximise benefits, and optimise service quality.
For example, in the intuitive target market selection method
of Chou et al. [4], the personal features of individuals are
established based on demographic variables to identify
potential customers. In another approach, the categories and
prices of products purchased by customers are analysed to
calculate consumer buying behaviour similarity. *e sim-
ulated annealing algorithm is applied in a behaviour-based
customer segmentation model (Yan et al. [5]). According to
Holly, self-organising neural networks may also be used for
customer segmentation, depending on the particular fea-
tures of the customers (Rushmeier et al. [6]). Qian [7]
created a mixture regression model to investigate how
passengers rate safety, comfort, speed, frequency, punctu-
ality, prices, and convenience; he used the expectation
maximisation algorithm to evaluate regression coefficients
and calculate the distribution probability of passengers.
Bayesian statistics is used for this purpose resulting in
passenger group segmentation. *e recency, frequency,
monetary (RFM) model for customer value judgement was
introduced and combined with the analytic hierarchy process
and fuzzy clustering to segment passengers into five cate-
gories and analyse their potential transformation classes; the
resulting model was used to identify customer values (Li [8]).
*emulticlass twin support vector machine (MTWSVM) has
been thoroughly explored and experimentally verified to
perform well in multiclass classification problems (Zhang
et al. [9]). However, the existing travel behaviour research
data are mostly collected by means of questionnaire surveys.
Questions in these questionnaires usually have certain
shortcomings, such as lack of detailed information. Fur-
thermore, although customer segmentation models princi-
pally consider the personal features of customers, they
neglect the social relations of these individuals. *is makes it
unlikely for such models to describe customer characteristics
comprehensively based on vectors and thereby compromises
the performance of the model.

In this study, a passenger railway travel chain that de-
pends on passenger railway travel data is constructed.

Hidden railway travel behaviour is introduced to perfect the
railway travel chain and then analysed to recognise relevant
competitive segments and calculate the railway travel loyalty
indices of passengers. Afterwards, we focus on the grouping
of railway passengers in competitive segments to analyse
their individual travel characteristics and establish social
networks during their travels. *e loyalty indices of pas-
sengers serve as an initial strategy of group segmentation,
and the graph attention mechanism is adopted to build a
group recognition model. *rough passenger group seg-
mentation for competitive segments, passenger transport
products are reasonably designed for different competitive
segments of railways, and personalised marketing strategies
can be made. As a result, passenger experience is improved,
and theoretical support is provided for railway resource
utilisation efficiency.

2. Travel Chain Analysis

2.1. Travel Chains. Travel, a door-to-door traffic behaviour
performed to achieve a certain trip goal, is defined by a set of
behaviours that include information such as departure time,
departure location, destination, mode of transportation, and
journey distance [10]. A travel chain represents the entire
passenger travel process. It is made up of connecting links
that are placed according to the departure time of a travel
behaviour. Generally, passengers select appropriate trans-
portation means to achieve their trip purposes and generate
complete travel chains for themselves.

*e data involved in this study are primarily derived
from the real-name system and travel information of railway
passengers from Guangzhou to Shanghai. Because of data
limitations, no complete travel chains can be formed from
the data of passengers who go on tours by multiple modes of
transportation.*erefore, hidden railway travel behaviour is
introduced, and urban transport is ignored to generate
complete travel chains for these passengers. Travel data from
2020 are ranked based on riding time to construct the travel
chains of passengers, as shown in Table 1. A travel chain
(LC) is formed through an end-to-end connection between
the railway travel behaviour and the hidden railway travel
behaviour, which are, respectively, defined as TBj �

(train date, start time, start city, to city) and OBj � [start
date, stop time, start city, to city]. Integrity (CP) signifies
whether the railway travel behaviour of a passenger con-
stitutes a complete travel chain, that is, whether the desti-
nation city of the j th trip by train is the departure city
selected for the (j + 1)th trip by train. TBH is the number of
hidden railway travels. It represents the least number of trips
that need to be increased when a passenger produces a
complete travel chain based on a railway trip. Loyalty to the
railway industry, which is denoted by LOYi, indicates the
probability of passenger i to complete intercity displacement
by train, and it is expressed as

LOYi �
TBRi

TBRi + TBHi

∗ 100, (1)

where TBRi stands for the total number of times passenger i

travels by train in a travel chain.
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ODY(F, T)i, loyalty to a segment, signifies the proba-
bility of passenger i, who has a travel demand in segment
(F, T) (the segment from departure F to destination T) to
select a railway. It is determined as

ODY(F, T)i �
TBR(F, T)i

TBR(F, T)i + TBH(F, T)i

∗ 100, (2)

where TBR(F, T)i is the total number of times passenger i

takes a train in segment (F, T) belonging to his/her travel
chain and TBH(F, T)i represents the number of times a
hidden railway travel behaviour occurs in segment (F, T).

DDY(Df, Dt)i, loyalty to travel distance, is the proba-
bility of passenger Pi, who has a travel demand to take a train
over the trip distances ofDt andDf.*ey can be calculated by

DDY Df, Dt 
i
�

TBR(F, T)i

TBR(F, T)i + TBH(F, T)i

∗ 100,

Df ≤D(F, T)≤Dt,

(3)

where Df and Dt are the maximum and minimum travel
distances, respectively. *e travel distances, TBR(F, T)i and
TBH(F, T)i, must be within the range of [Df, Dt).

According to Table 1, the travel chain (TC1) of passenger
P1 consists of seven railway travel behaviours. TB1 represents

a travel behaviour involving departure by train from
Hangzhou at 18:46, 19 January 2020, and arrival in Nanjing;
TB2 is a travel behaviour involving departure from Suzhou at
10:46, 12 February 2020, and arrival in Hangzhou; TB3 refers
to a departure from Hangzhou at 9:10, 18 July 2020, and
arrival in Hefei; TB4 means that the passenger leaves Hefei at
15:04, 19 July 2020, for Hangzhou; TB5 stands for departure
fromHangzhou at 17:39, 23 July 2020, and arrival in Nanjing;
TB6 means a departure fromNanjing at 20:19, 7 August 2020,
and arrival in Suzhou; TB7 involves leaving Suzhou at 13:04,
21 September 2020, and arriving in Hangzhou. Analysis
shows that in the travel chain of passenger P1, the destination
city of TB1 is not the departure city of TB2. *is reveals that
this passenger chooses another mode of transportation to
complete his/her travel from Nanjing to Suzhou. In other
words, at least one travel behaviour from Nanjing to Suzhou
is absent. *erefore, the number of occurrences of hidden
railway travel is 1. Considering that 8 is the number of times
of travel in a complete travel chain, the number of trips
completed by train is 7. From equation (1), the passenger’s
loyalty to travelling by train is 87.5. Moreover, the hidden
railway travel behaviour of this passenger occurs in the
segment from Nanjing to Suzhou; hence, either the number
of occurrences of railway travel or that of hidden railway
travel is 1 in this segment. According to equation (2), loyalty

Table 1: Railway passenger travel chain in 2020.

ID LC CP TBH LOY ODY DDY

P1

(20200119, 1846, Hangzhou, Nanjing, 322 km) ->
[20200814, 20200816, Nanjing, Suzhou, 297 km] -
> (20200212, 1046, Suzhou, Hangzhou, 692 km) -

> (20200718, 0910, Hangzhou, Hefei, 443 km) -> (20200719,
1504, Hefei, Hangzhou, 439 km) -> (20200720, 1739,

Hangzhou, Nanjing, 322 km) -> (20200807, 2019, Nanjing,
Suzhou, 297 km) -> (20200921, 1304, Suzhou, Hangzhou,

692 km)

No 1 87.5 (Nanjing, Suzhou, 50) (250 km–350 km, 75)

P2
(20201004, 1816, Jinhua, Cangnan) -> (20201005, 1730,

Cangnan, Jinhua) Yes 0 100 No No

P3

(20200605, 1849, Hangzhou, Jiaxing, 79 km) -> (20200607,
1127, Jiaxing, Hangzhou, 78 km) -> (20201006, 0944,

Hangzhou, Yuyao) -> (20201006, 1928, Yuyao, Hangzhou) -
> (20201107, 1529, Hangzhou, Jiaxing, 79 km) -> (20201108,

1429, Jiaxing, Hangzhou, 78 km)

Yes 0 100 No No

P4

(20200810, 1413, Jiaxing, Hangzhou, 78 km) -> (20200810,
1501, Hangzhou, Jinhua) -> [20200810, 20200814, Jinhua,

Hangzhou, 153 km] -> (20200814, 1308, Hangzhou,
Jinhua) -> [20200814, 20200816, Jinhua, Quzhou, 110 km] -
> (20200816, 2240, Quzhou, Zhuzhou, 666 km) -
> (20200822, 2156, Zhuzhou, Hangzhou, 932 km) -

> (20200823, 2050, Hangzhou, Jiaxing, 79 km) -> (20200827,
1457, Jiaxing, Hangzhou, 78 km) -> (20200827, 1532,
Hangzhou, Quzhou, 263 km) -> [20200827, 20200830,

Quzhou, Hangzhou, 260 km] -> (20200830, 2141,
Hangzhou, Jiaxing, 79 km) -> (20201115, 1523, Jiaxing,
Hangzhou, 78 km) -> (20201115, 1614, Hangzhou, Liling,
887 km) -> (20201116, 1533, Liling, Jinhua, 704 km) -
> (20201116, 2050, Jinhua, Hangzhou, 153 km)

No 3 81.25 (Jinhua, Hangzhou, 50)
(Jinhua, Quzhou, 0)

(150 km–2000 km, 50)
(50 km–100 km)

P5

(20200820, 1832, Hefei, Yangzhou, 143 km) -> (20200824,
1506, Yangzhou, Shanghai, 324 km) -> (20200824, 1828,

Shanghai, Hangzhou, 163 km)
No 0 100 No No
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to the segment of a hidden railway travel behaviour is 50.
Equation (3) is utilised to determine the passenger’s loyalty to
a travel distance of 250–350 km, which is 75.

2.2. Analyses of Competitive Segments. *e proportion of a
hidden railway travel behaviour in a segment can effectively
show whether the passenger service products designed for
this segment are reasonable, whether the service quality
needs to be further enhanced and whether its marketing
strategies should be optimised. A large proportion indicates
that the existing railway passenger services in the segment
fail to meet the travel demands of most passengers. *e
greater the proportion, the lower the competitiveness of this
segment. In this study, the proportions of hidden railway
travel behaviours reflect the competitiveness of competitive
segments, as expressed by

TBHP(F, T) �


n
i�1 TBHi


n
i�1 TBRi + TBHi( 

, (4)

where TBHP(F, T) represents the competition intensity from
a departure city (F) to a destination city (T); 

n
i�1 TBHi is the

number of occurrences of all hidden railway travel behaviours
in the segment; and 

n
i�1 TBRi + TBHi is the sum of the total

number of occurrences of railway travel behaviour and that of
hidden railway travel behaviour in the segment.

Spark is used to analyse data related to the railway travel
behaviour of all passengers in 2020. Being an open source,
Apache Spark is a distributed processing system for big data
workloads. On this basis, the proportions of hidden railway
travel behaviours in segments of different distances are
obtained, as shown in Figure 1. An increase in the travel
distance is clearly accompanied by a drop followed by an
increase in the competition intensity. When the competition
intensity of a segment with a travel distance of no more than
50 km exceeds 10%, highways characterised by flexibility,
simplicity, and convenience become themain competitors of
railways. At travel distances over 1,350 km, the corre-
sponding competition intensity can be raised accordingly. In
such segments, flights become the main competitors of
railways because of their high speed, safety, and other
benefits. *e competition is less intense when the travel
distance varies from 150 to 1,000 km; therefore, this can be
regarded as the dominant segment where railways are su-
perior to other modes of transportation.

3. Construction of Passengers’ Travel
Behaviour Characteristics

*is section presents discussions that are based on railway
ticketing data and oriented by the passenger transportation
market, and aviation marketing strategies are used as ref-
erence. From the perspectives of passengers’ personal
characteristics and social relations, it aims to fulfil the
mining, clustering, regrouping, and deep fusion of digital
railway passenger transportation resources. Furthermore,
different passenger groups can be segmented, which may
help gain insights into the associations between passengers’
characteristics and their selection of transportation means.

Hopefully, a data basis can be provided for model im-
provement, theory refinement, the research process, and the
optimisation method.

3.1. Travel Characteristics of Individuals. In the CRNet
ticketing system, feature data associated with individual
passengers can be divided into two categories: demographic
data (about natural attributes) and travel behaviour data.
*e former relates to information already stored in the
system, such as gender, age, and residence. *ese data are
often known as static data since they rarely change and have
a relatively constant data structure. A sequence of behaviour
records made during a trip, such as ticket booking, travel,
ticket check, and inbound/outbound data, fall under the
latter group.*ey are also known as dynamic data because of
their high frequency of occurrence. Passengers are shown
using multiple data dimensions based on these two kinds of
data. As given in Figure 2, the static and dynamic charac-
teristics of passengers are generated with abstract semantic
labels that are easy to understand, thus producing a full view
of passenger information [11].

3.2. Social Relations. Most passengers in a transportation
system do not make decisions on their own, including how
their travel requests are generated, how their travel routes
are planned, and how their travel times and modes are
decided. Passengers are influenced by their social relation-
ships in addition to their preferences and traffic situations.

Since the 12306 Internet ticketing system went online in
2012, massive data capable of embodying social relations
have been accumulated by its unique business process. Based
on these data, we can extract ticketing relations, relations of
travelling together, and relation of benefits by the point
redemption mechanism.

3.2.1. Ticketing Relation. *is is a relation between a pur-
chaser and a passenger. A single ticketing relation includes
the following information: ticket purchaser, passenger, ticket
purchasing time, ticket price per kilometre, and number of
tickets. Here, G(i, j) represents a behavioural sequence of a
ticketing relation in which passenger i buys a ticket for
passenger j; G(i, j)[k] � (bk, gtk, atpj[k]) denotes a record
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of the k th ticket purchasing behaviour, where bk stands for
the number of tickets purchased, gtk the time of buying a
ticket, and atpj[k] the ticket price per kilometre. In ac-
cordance with the sequence of a passenger’s ticketing re-
lation, the weight of this relation is determined as

wr
g
i,j �

k

wg[k]�
1

����������
bk ×atpj[k]


× ct−gtk( /(ct−ft)( 

, (5)

where wg[k] is the weight generated by passenger i when
buying a ticket for passenger j the k th time, ct is the current
time, and ft is the start date of the sample data. *e weight
of the ticketing relation is time sensitive and may attenuate
as the time window increases.

*e 12306 Internet ticketing system has 600 million
registered users. According to an analysis of the number of
their frequent contact persons (Figure 3), only 34% of these
registered users have a single-frequency contact (i.e., the user
himself/herself ), whereas ticketing relations can be found
among over 60% of the passengers when they buy tickets.

3.2.2. Relation of Travelling Together. *e relation of trav-
elling together exists in passengers under the same ticket

booking order, including the specific passengers, riding
time, ticket price per kilometre, and number of passengers
travelling together. Here, C(i, j) is a behavioural sequence in
which passenger i buys a ticket for passenger j; C(i, j)[k] �

Static characteristics

Dynamic characteristics
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Regional characteristics

Social characteristics

Age
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Figure 2: Travel characteristics of individuals.
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(ck, tk, atpj[k]) represents a record of the k th ticket pur-
chasing behaviour, where ck stands for the number of
passengers travelling together, tk for the riding time, and
atpj[k] for the ticket price per kilometre. Depending on the
sequence of a relation of travelling together, the weight of
this relation can be calculated according to

wr
c
i,j � 

k

wc[k] �
1

����������
ck × atpj[k]


× ct − tk( /(ct − ft)( 

,

(6)

where wc[k] is the weight of the fact that passenger i travels
together with passenger j for the k th time.

*e number of passengers falling into the same online
order numbers in 2020 is statistically analysed, and the
results are presented in Figure 4. Only 20% of the passengers
travelled alone that year, and a relation of travelling together
is found among the remaining passengers.

3.2.3. Benefit Relation by Point Redemption Mechanism.
*is relation means that the purchaser buys a ticket for
another passenger through point redemption. A single
benefit relation by the point redemptionmechanism consists
of the following information: the purchaser, the other
passenger, riding time, and ticket price per kilometre. Here,
S(i, j) is a sequence representing the act of passenger i

buying a ticket for passenger j through point redemption;
S(i, j)[k] � (tk, atpj[k]) is a record of the k th ticket pur-
chasing behaviour based on the point redemption mecha-
nism, where tk stands for the riding time and atpj[k] for the
ticket price per kilometre. Depending on the sequence of this
relation, the corresponding weight is computed according to

wr
s
i,j � 

k

ws[k] �
1

�������
atpj[k]


× ct − tk( /(ct − ft)( 

, (7)

where ws[k] is the weight of passenger i buying a ticket for
passenger j for the k th time by point redemption.

*e benefit relations between purchasers and other
passengers in orders made through point redemption in
2020 are analysed, as presented in Figure 5. Nearly 30% of
the purchasers paid using their points for other passengers in
2020, thus forming a benefit relation with these passengers
by the point redemption mechanism.

3.2.4. Passenger Classification. *e railway trips of a pas-
senger are related to their loyalties to railway travel, hidden
travel segments, and travel distance. In this paper, passen-
gers of a certain segment are grouped, and the importance of
their loyalties is ranked as follows: O DY > LOY > D D Y.
According to equation (8), LY, passengers’ loyalty to a
segment, can be calculated in combination with weights and
diverse loyalty indices.

LY � 0.5∗O DY + 0.3∗ L DY + 0.2∗D D Y. (8)

Based on their indices, passengers are divided into the
following groups: low loyalty (0–10), moderate loyalty
(11–50), high loyalty (51–80), and very high loyalty (81–100).

4. Railway Passenger Grouping Model

A passenger grouping model integrating social relations is
presented based on the travel characteristics and social re-
lations of individual passengers. *is model is made up of a
personal travel characteristics fusion layer, a social relation
fusion layer, an activation layer, and a group categorisation
layer, as illustrated in Figure 6. Passengers’ personal qualities
are initially chosen as input. *e feature fusion layer is then
used to achieve personal feature vector fusion, and dimen-
sionality reduction is used to lower the complexity of the
corresponding algorithm. Following that, a social network
topology is built based on passenger social relationships. *e
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social relation fusion layer receives this topology, as well as the
fused personal travel characteristics, as input.*is approach is
expected to realise feature information interaction between a
goal node and a neighbouring node. In addition, the acti-
vation layer is designed to acquire the target values of pas-
senger grouping from the passengers’ personal characteristics
and passengers’ characteristics fused with the neighbouring
node.

4.1. Personal Feature Fusion Layer. *e number of personal
travel characteristics already exceeds 2,000 in the user portrait
system of railway passengers, which covers redundant and
noisy information. *is may not only interfere with subse-
quent data analysis but also affect the algorithm complexity,
increase the computation overhead, and eventually influence
the accuracy and efficiency of classification. *erefore, an
autoencoder is introduced based on feature dimension re-
duction as the personal feature fusion layer. By virtue of this
encoder, data in the high-dimensional feature space of pas-
sengers can be mapped to a low-dimensional space to re-
construct the passengers’ personal features [12] and acquire
the essential structural features of their characteristics. To
decrease model complexity and improve training efficiency,
personal features are processed through the personal feature
fusion layer during personal feature processing and social
relation fusion, in addition to parameter sharing.

f
→

i
′ � Autoencoder f

→
i , fi

→′ ∈ RP′
, fi

→
∈ RP

, (9)

where f
→

i refers to the original feature vector of passenger i,
P the number of original features, f

→
i
′ the feature vector of

passenger i after feature fusion, and P′ the number of fused
features.

4.2. Social Relation Fusion Layer. *e structure of the social
relation fusion layer is presented in Figure 7. It consists of

three social relation networks and a multigraph feature
fusion process.

4.2.1. Social Relation Network. A social network may clearly
embody the intended ticketing relation, relation of travelling
together, and benefit relation via the point redemption
method. Furthermore, the social network of railway pas-
sengers is represented by three undirected weighted graphs,
namely, Gg � (P, Eg, F′, Wrg), Gc � (P, Ec, F′, Wrc), and
Gs � (P, Es, F′, Wrs), where Gg, Gc, and Gs are the graphs of
the ticketing relation, relation of travelling together, and
benefit relation by the point redemption mechanism, re-
spectively; P is the set of all railway passengers; Eg, Ec, and Es

are the sets of the ticketing relation, relation of travelling
together, and benefit relation by the point redemption
mechanism, respectively; F′ is the set of the personal travel
characteristics of all passengers after feature fusion; Wrg, the
weight of the ticketing relation, comprises wr

g

i,j; and finally,
Wrc and Wrs are the weights of the travelling together
relation and the benefit relation, respectively (the former is
formed by wrc

i,j, whereas the latter is composed of wrs
i,j ).

*e 12306 Internet ticketing system has over 600 million
registered users. *e number of passengers is nearly 900
million. Moreover, there are some abnormal accounts. For
these reasons, the relations of travelling together and tick-
eting are rather complicated for some passengers. In ad-
dition, a large difference lies in the number of neighbouring
nodes around each node. As the passenger nodes possess a
great number of neighbouring nodes, samples are taken
from these neighbouring nodes to improve model training
efficiency. We assume that the number of neighbouring
nodes is N, and the corresponding sampling prescription is
as follows.

When N≤ 20, all nodes are treated as social relation
network nodes. As for N> 20, the nodes need to be classified
based on the number of times of ticketing and the number of

Parameter sharing

Feature input

Personal travel
characteristics fusion layer 

Social relation
fusion layer 

Activation layer

Group classification layer

Personal travel
characteristics fusion layer 

Feature input

Figure 6: Structure of the graph attention network (GAT) with social relation fusion.
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times of railway travel. For each category, the nodes are or-
dered based on the number of times and divided into three
intervalswith proportions of 40%, 40%, and 20% (N1,N2, and
N3, respectively).�eneighbouring nodes in each interval are
sampled in a ratio of 20/N, and the number of neighbouring
node samples can be expressed in N � N1 +N2 +N3.

4.2.2. GAT Layer. In the GAT, the inherent normalised
functions are replaced with an attention mechanism to
assign a weight to each passenger node. During the updating
of the hidden layer, the nodes and neighbouring nodes are
aggregated according to the magnitude of weights [13].

In the present study, three types of social relations are
included. For the relation of ticketing, for example, a feature
vector set of target passengers and their neighbouring nodes
is used as the input of the GAT layer, which can be written as

f′ � fo
�→′, f1

�→′, . . . , fN
��→′{ }fi

→′ ∈ RP′ , (10)

where f′ is the feature vector set of nodes (passengers’
personal characteristics), fo

�→′ the feature vector set of target
nodes, fi

→′ the feature vector set of the i th neighbouring

node of the target node, N the number of neighbouring
nodes associated with the target node, and P′ the number of
passengers’ features after fusion.

A graph attention coe£cient is constructed to output
target node features that contain neighbouring node fea-
tures. �e corresponding computational formula is

eg � ag Wg f
→
i′ ,W

g f
→
j′( ), (11)

αgij � softmax egij( ) �
exp LeakyReLU ag T Wg f

→
i′ ,W

g f
→
j′[ ]( )( )

∑k∈N+iexp LeakyReLU ag T Wg f
→
i′ ,W

g f
→
k′[ ]( )( )

. (12)

In equation (11), Wg is a shared parameter in the net-
work of ticketing relations, and it is used for feature en-
hancement. ag(·) represents the importance of the target
and neighbouring nodes in this network. In equation (12),
αgij is an attention coe£cient of nodes i to j, and LeakyReLU
to an activation function.

After the normalised attention coe£cient is obtained,
linear combinations of the corresponding features are cal-
culated and then selected as the �nal output features of each
node. In this paper, multigraph attention is introduced. �e
multigraph attention mechanism can be utilised to deter-
mine the attention coe£cients of surrounding nodes, thus
stabilising the learning process of the model. An update
process for the hidden state is depicted in Figure 8.

Regarding the computational results subjected to K
independent attentionmechanisms, K-means is adopted and
takes the place of a connection. Its computational formula is

fi
g″ � σ

1
Kg ∑

Kg

k�1
∑
j∈Li

αgij
kWg k f

→
j′ , (13)

where fi g″ is a feature vector after a fusion between a target
passenger and information of neighbouring nodes in a
ticketing relation network formed by this passenger, Kg

stands for the serial number of an independent attention
mechanism, σ(·) stands for the activation function, and αgij k
stands for the attention coe£cient of passenger i relative to
passenger j in the network of ticketing relations.

Multi graph feature fusion

The graphs of the
ticketing relation 

Relation of
travelling together 

Benefit relation by the point
redemption mechanism 

Figure 7: Structure of the GAT.
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Figure 8: Multigraph attention mechanism.
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With the use of the abovementioned calculation pro-
cesses, the ticketing relation network feature fusion, feature
fusion fi

c″ of the relation of travelling together, and feature
fusion fi

s″ of the benefit relation by the point redemption
mechanism are obtained.

4.2.3. Multigraph Feature Fusion. A fully connected layer is
established for themultigraph fusion offi

g″,fi
c″, and fi

s″
(vectors of features incorporating social relations), which
can be expressed as

fPSC i � Wps fi
g″, fi

c″, fi
s″( , (14)

where fPSC i is the target passenger feature undergoing
fusion with multiple social relations and Wps is a training
parameter that denotes the importance of the three relation-
generating features.

4.3. Activation Layer. Node feature vectors that incorporate
the ticketing, travelling together, and benefit relations are
obtained through training by the GAT layer. Personal fea-
ture vectors are also acquired through training by the
personal feature fusion layer. Afterwards, the node and
personal feature vectors are aggregated to generate the final
feature vector, which is then transferred to the activation
layer. In this way, different groups can be obtained as

f � tanh fPIC · fpsc , (15)

q(c) � softmax Wq
f + bq . (16)

In equation (15), fPIC,fPIC stands for the feature vectors
outputted from the personal feature fusion layer, fpsc for the
feature vectors outputted from the social relation fusion
layer, and f for the final feature vector of the target pas-
senger. In equation (16), c is the class label of passengers and
q(·) is the predicted passenger group.

4.4. Model Training. *e methodology divides passengers
into four categories based on the passenger loyalty indices.
Vectors of passengers’ personal travel characteristics are
developed based on passenger portraits of railway trans-
portation through supervised training. A network of trav-
ellers’ social interactions is formed using information from
common contacts and online orders (among other things),
and then used as the model input through rule-based
pruning. Additionally, relevant cross-entropy loss functions
are minimised via L2 normalisation to fulfil model training.
*e corresponding computational formula is

Lloss � − 
c∈C

q
⌢

c · ln qc + λ 
θ∈Θ

θ2, (17)

where q
⌢

c and qc represent the actual class labels of passenger
groups and their model-predicted class labels, respectively,
and λ stands for the normalised parameter L2 and Θ for the
set of model parameters.

5. Case Study and Experiments

*is section descries the overall result of current study.

5.1. Data Description. *e dataset for the case study in this
paper is the real-name information of railway passengers
and their travel data, both of which underwent masking in
2020. As seen in Section 2.2, competition may become in-
creasingly fierce once the travel distance exceeds 1,500 km.
Moreover, passengers in the segment from Guangzhou to
Shanghai (travel distance: 1,800 km) are adopted as the
research object. An analysis of the travel chain of passengers
in 2020 shows a total of 401,300 passengers (railway travel
and hidden railway travel behaviours) from Guangzhou to
Shanghai. *eir loyalty indices are calculated for passenger
segmentation. Here, numerals 1, 2, 3, and 4 are the model
output of different groups, as shown in Table 2.

For reducing the model complexity, 14 travel features are
selected from passengers and listed in Table 3. Features with
a large span are normalised and then combined with a social
relation network constructed for the 401,300 passengers to
serve as the model input.

5.2. Experimental Design. Two experiments are designed for
this study: an accuracy test and a compatibility test. Five
common classification models (Table 4) are introduced in
the accuracy tests for training comparison and accuracy
evaluation of the Guangzhou-Shanghai passenger grouping.
*e compatibility test focuses on grouping prediction for the
passengers from January to October 2021 based on the
model training of the 2020 passenger data and an analysis of
the time-varying performance of the passenger grouping
model.

Here, k-fold cross-validation [16] is used to eliminate
statistical errors incurred by the use of different training
subsets. *e dataset is randomly divided into k groups; for
model construction, one group is used successively as the
test dataset, and the remaining k − 1 groups are regarded as
training sets. Based on the data size of the experimental
samples, the training datasets are randomly classified into
five groups.

5.3. Evaluation Indices. Accuracy, precision, recall, and
harmonic mean F1 are primarily selected as comprehensive
evaluation indices of the passenger grouping model to assess
the accuracy of the passenger grouping results.

Table 2: Loyalty-based distribution of Guangzhou–Shanghai
passengers in 2020.

Passenger types Class labels Loyalty ranges Proportions (%)
Low loyalty 1 0–10 44
Moderate loyalty 2 10–50 22
High loyalty 3 50–80 13
Very high loyalty 4 80–100 21
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Accuracy �
TP + TN
P + N

,

Precision �
TP

TP + FP
,

Re call �
TP

TP + FN
,

F1 �
2 × Precision × Recall
Precision + Recall

.

(18)

In comparison with deep learning models, machine
learning models, such as random forest, XGBoost,
MTWSVMs, and LightGBM, have lower complexity, fewer
training parameters, and shorter training times. However,
the classification accuracy of machine learning models is
poor. Training time is, therefore, not considered a model
evaluation index in this experiment.

5.4. Experimental Results and Analyses. *rough threshold
adjustment,optimalresultsofvariousclassificationmethodsare
obtainedbasedon the trainingdatasets.*evalues of themodel
evaluation indices are determined as well. For each passenger
grouping model, the corresponding indices are averaged via
fivefold cross-validation. *e results are listed in Table 5.

According to Table 5, random forest has the worst ac-
curacy and precision; XGBoost, MTWSVMs, and LightGBM
outperform it to a certain extent in terms of these indices.
*e performance of the proposedmodel is superior to that of
the other models. In some cases, the proposed model even
performs the best, followed by DNN.*e overall tendency of
the proposed model for recall is the same as that for accuracy

and precision. According to the F1 values, there are 85%
commonalities in the passenger characteristics reflected in
the proposed passenger grouping model. Hence, the pas-
senger grouping of the proposed model is highly accurate.

*e 2021 testing data are separated into 10 parts by
month, and passenger groups are predicted using these
parts. Figure 9 shows the prediction results, with the x-axis
representing the months and the y-axis representing the F1
values. *e F1 values of all models gradually decrease with
time, and passenger grouping effects turn worse. Previous
data training models are no longer sufficient to meet the
future segmentation needs of passengers’ attributes in this
case. *e longer the interval from the training time, the
worse the passenger grouping results. In particular, the F1
values of random forest and LightGBM are already below
50% in October 2021, showing the worst adaptation. Con-
cerning all tests, the proposed model produces F1 values no
less than 70, proving that it is well applicable to future data.

In summary, travel characteristic selection and knowl-
edge extraction are important factors influencing the results
of passenger grouping. *e features of the random forest
model are comparatively static and simple; it ignores feature

Table 3: Passenger feature selection.

Serial nos. Features Categories Descriptions
1 Students or not Enumeration 0: no, 1: yes
2 Business persons or not Enumeration 0: no, 1: yes
3 Sex Enumeration 0: male, 1: female
4 Age Numerical values Normalisation
5 Number of times of local train ticket booking Numerical values Normalisation
6 Number of times of D-series high-speed train ticket booking Numerical values Normalisation
7 Number of times of taking local trains Numerical values Normalisation
8 Number of times of taking D-series high-speed trains Numerical values Normalisation
9 Proportion of passengers taking D-series high-speed trains Numerical values Actual values
10 Proportion of passengers purchasing D-series high-speed trains Numerical values Actual values
11 Proportion of passengers taking premium seats Numerical values Normalisation
12 Proportion of passengers forming a relation of travelling together Numerical values Actual values

Table 4: Grouping algorithm description.

Algorithms Description
Random forest An algorithm integrating multiple decision trees through ideas of ensemble learning to achieve classification

XGBoost [14] A gradient boosting decision tree that combines multiple weak classifiers accumulatively into a strong classifier to
minimise the objective loss function

MTWSVMs Primarily fulfilling multiclass problems
LightGBM
[15]

A distributed classification algorithm implementing GBDTenabling highly efficient training over large-scale data with low
memory cost and high accuracy

DNN Deep learning

Table 5: Comparison of model-based experiments.

Models
Evaluation indices

Accuracy Precision Recall F1
Random forest 59.83 60.13 83.21 69.81
XGBoost 62.63 62.93 84.92 72.28
MTWSVMs 64.36 65.23 85.82 74.12
LightGBM 63.62 65.68 83.91 73.68
DNN 71.42 72.82 88.64 79.95
Proposed algorithm 82.54 84.73 92.36 88.38
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correlations and produces the worst grouping results under
the same conditions. *e XGBoost model performs well in
terms of prediction precision when applied to low-/medium-
dimensional data, but it fails to adapt to large-scale feature
inputs. Given a large sample size and large numbers of
features and classes, the number of subclassifiers of
MTWSVMs exponentially rises, thus excessively increasing
the complexity of the corresponding classification system. In
this scenario, large quantities of passengers cannot be
grouped.*e LightGBMmodel is highly susceptible to noisy
information. Finally, DNN can perform feature fusion for
passengers’ travel characteristics, thereby reducing feature
processing complexity and improving model accuracy.
Regarding the proposed passenger grouping algorithm, the
fusion of social relations and personal features is completed,
and the model can correctly extract common features of
various passenger groups. From the perspectives of effects,
accuracy, and adaptation, the proposed algorithm outper-
forms the abovementioned existing models.

6. Conclusions

To create a comprehensive travel chain for passengers,
hidden railway travel behaviour is introduced and integrated
with railway travel behaviour. Passengers’ indices of loyalty
to railway travel, hidden railway travel segments, and travel
distance are determined independently based on passengers’
specific information, such as the number of instances of
hidden railway travel behaviour, number of railway travels,
travel distances, and travel segments. Furthermore, the ra-
tios of segments featuring hidden railway travel behaviour
are determined in order to disclose the degree of compe-
tition in various segments. *e competition is at its peak
when the journey distance exceeds 1,350 kilometres,
according to the findings. *e competition intensity is
comparatively low for travel distances of 150 to 1,000 km,
and the railway clearly outperforms. As a result, passengers’
personal travel characteristics are determined from the

dimensions of time and space established on their travel
behaviour and real-name data. Furthermore, the point re-
demption system creates a social relation network of pas-
sengers based on their ticketing, travelling together, and
benefit relations. Finally, the loyalty of passengers is de-
termined by determining their devotion to railway travel,
hidden railway travel segments, and travel distance. *e
passengers are then divided into four categories based on
their level of loyalty: 0–10, 10–50, 50–80, and 80–100.

An autoencoder is employed in addition to the suggested
passenger grouping model to minimise the dimensionality
of passenger attributes and reduce algorithm complexity. To
vectorise the social relations, a graph attention mechanism
and a multigraph fusion mechanism are also used. To
complete passenger grouping, a fusion of social relation
vectors and feature dimensionality reduction outcomes is
obtained. *e experimental dataset is made up of data from
Guangzhou–Shanghai travellers in 2020, which is then
trained, tested, and matched to existing classification models
including random forest, XGBoost, MTWSVMs, LightGBM,
and DNN. According to the findings, the developed pas-
senger grouping model, which adds social ties, beats the
other models in terms of accuracy and adaption [17].
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