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Aerial images play a key role in remote sensing as they can provide high-quality surface object information for continuous
communication services. With advances in UAV-aided data collection technologies, the volume of aerial images has been greatly
promoted. To this end, semantic understandings for these images can signi�cantly improve the quality of service for smart devices.
Recently, the multilabel aerial image classi�cation (MAIC) task has been widely researched in academics and applied in industries.
However, existing MAICmethods su�er from suboptimal performance as objects are located in di�erent sizes and scales. To address
these issues, we propose a novel multigrained semantic grouping model for aerial image learning, named MSGM. First, image
features presented by the backbone are sent to spatial pyramid convolutional layers which extract the instances in a parallel manner.
�en, three grouping mechanisms are designed to integrate the instances from the pyramid framework. In addition, MSGM builds a
concept graph to represent the label relationship. MSGM resorts to the graph convolutional network to learn the concept graph
directly. We extensively evaluate MSGM on two benchmark aerial image datasets, the commonly used UCM dataset, and the high-
resolution DFC15 dataset. Quantitative and qualitative results support the e�ectiveness of the proposed MSGM.

1. Introduction

Great improvements in computer vision tasks have been
achieved in the last few years, especially on image classi�-
cation [1], object detection [2, 3], semantic segmentation
[4, 5], and so on. In the �eld of remote sensing, vision-based
sensors can integrate aerial images for continuous com-
munication services. �us, these devices are densely de-
veloped in applications. With the advances of data collection
technologies, huge amounts of aerial panoramic images are
monitored and available for academic research. So how to
automatically acquire semantic understandings for these
aerial images is of great signi�cance. Recently, aerial pan-
oramic image classi�cation provides a solution for this kind
of problem automatically.

Traditional models map the given aerial image into a
single semantic information, named the single-label aerial
image classi�cation (SAIC) task [6]. However, aerial

panoramic images with a higher spectral resolution can
provide a much wider �eld of view and are thus associated
with abundant content [7, 8]. For example, in Figure 1, ship,
water, and tree coexist in the given aerial image. For these
aerial images, complex variations in viewpoint, scale, illu-
mination, and occlusion make existing course-grained SAIC
methods fail to learn semantic information su£ciently. As a
result, multilabel aerial image classi�cation (MAIC)
methods are proposed to deal with novel aerial panoramic
image understanding tasks. For a given aerial image, MAIC
methods aim to build a function that produces multiple
labels (objects) of interest inside [9]. As an emerging re-
search �eld, MAIC has attracted huge attention of re-
searchers and is therefore applied in many applications, such
as air quality monitoring [10], urban management [11], and
social community detection [12, 13]. An increasing number
of multilabel classi�cation frameworks have been designed
on aerial images from various angles.
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However, existing MAIC methods still suffer from
suboptimal performance as it is hard to extract objects lo-
cated in different areas and scales of aerial panoramic im-
ages. It is well recognized that aerial image features provide
the most fundamental information in the label predicting
process. Early models commonly employ pretrained con-
volutional neural networks (CNNs) as the backbone to learn
images. However, the direct use of the rough features can
result in limitations in the effectiveness on the aerial images.
As these backbones are designed to extract single core
feature for the given image, which cannot handle the
complicated multilabel image feature learning. *en, some
MAIC methods extract semantic features from aerial images
with object localization models. However, object localization
models need a large number of irrelevant, redundant pro-
posals, accompanying with high computing costs [14]. Some
other methods introduce recurrent neural networks (RNNs)
to further build label correlations to guide the final pre-
diction [15]. *ey learn dependencies sequentially and
cannot exploit the content correlations, thus would miss key
information when predicting multiple labels.

To address these issues, our motivation is to design novel
semantic understanding methods in the multilabel classification
task on aerial panoramic images. Inspired by the recently
proposed spatial pyramid convolutional (SPC) technologies [16],
which learn the multiscale representations of the given image in
a parallel way, we designed a multigrained semantic grouping
framework for the MAIC task. To do so, we first leverage
specifically designed SPC layers to generate multiple feature
maps for the raw image.*ese feature maps are at various scales
and contain some semantic instances. *en, we integrate these
multigrained maps with three designed semantic grouping
mechanisms. Besides, to capture the semantic features from label
correlations, we build a concept graph to present the relation-
ships of labels and resort to the graph convolutional network
(GCN) to extract the features of the label graph directly.

*e main contributions of this article are as follows:

(1) We propose a novel multigrained semantic grouping
model for multilabel aerial image understanding,
named MSGM. MSGM aims to provide compre-
hensive semantic classifications for aerial panoramic
images by learning multigrained semantic features of
images and the concept graph of labels.

(2) To extract more fine-grained features from the given
aerial image, we design SPC layers with multiscale
feature encoders in a parallel manner. *en, these
multidimensional representations are organized into
final aerial image features by three designed multi-
grained semantic grouping mechanisms. To capture
self-adapted information of aerial label correlations,
we build the label relationship into a concept graph
and learn the concept graph structure directly by a
designed GCN module with an attention mechanism.

(3) Sufficient experiments at various angles are carried out
to verify the performance of the proposedMSGMmodel
on both the UCMandDFC15 aerial image datasets.*e
results demonstrate the effectiveness of MSGM in not
only the research but also the real-world application.

1.1. RelatedWork. In the existing remote sensing ecosystem,
a large amount of data generated by sensors and devices is
transferred [17, 18]. Recently, with the advances in real-time
data collection technologies, an increasing number of aerial
panoramic images have been acquired for scientific research
[19]. *e MAIC task has become a fundamental problem in
the aerial image learning field.

Benefiting from machine learning technologies, aerial
image classification has a broad follow-up application prospect
[20]. A plethora of work has been carried out from awide range
of angles in this task to achieve higher accuracy in the aerial
image label predicting. Among these proposed methods, one
strategy, named problem transformation, aims to convert the
MAIC problem into existing, well-established learning sce-
narios, binary relevance classifiers [21], and the K-medoids
approach [22], to name a few. Other strategies, named algo-
rithm adaptation, leverage popular learning techniques to deal
with multilabel aerial images directly, such as decision trees
[23] and neural networks [24]. State-of-the-art aerial image
classifiers can be integrated into MAIC problems directly by
multibinary classification loss. However, they cannot achieve
satisfying performance as they ignore two kinds of crucial
information during the pipeline of MAIC tasks: heuristic label
correlation features and representative image features.

1.2. Image Feature Extraction. Image feature extraction is the
fundamental step during aerial image processing. In the past
few years, deep learning-basedmodels have shown a powerful
ability to extract representative features. And MAIC methods
based on deep learning have shown perspective performance.
Usually pretrained on large datasets, these CNN-based
models can be applied directly in MAIC tasks in an end-to-
end way. Many types of research have been conducted by first
extracting features with the CNN decoder and then grafting
label predictors such as active learning framework [25] and
GCN [26]. However, the CNN encoder is trained on single-
label aerial images each of which has only one object of
interest. To this end, features from CNN encoders are for the
whole image and may result in a suboptimal prediction for
aerial images with multiple objects because these objects exist
in the image in various locations, sizes, and shapes.
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Figure 1: An example multilabel aerial image. Annotations: car,
water, ship, tree, and buildings.
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To overcome the abovementioned drawbacks, a series of
models were proposed to learn more fine-grained features
from the raw aerial images, such as object detection methods
by localizing the task-specific regions [14], handling partial
occlusions by part detection [27], detecting local informa-
tion via SPC layers [16], and so on.

1.3. Label Correlations Learning. Extensive methods of
image classification tasks in the literature focus on exploring
the correlations among labels. Probabilistic graph models
are widely utilized to formulate the coexistence of labels in
early research [28]. *e CGL model builds a conditional
label structure learning method within a unified Bayesian
framework [29]. Also, label correlation was signified by a
low-rank mapping matrix in [30]. A method was designed
based on the graph Laplacian regularization to exploit the
label correlation in the local neighborhood [31]. Suffering
from computational cost, these methods are difficult to apply
to reality.

Recently, with the inference ability of RNN, both se-
mantic and spatial label relations can be extracted with only
image-level supervision in a sequential way [14, 32]. Fur-
thermore, methods based on the attention mechanism were
also proposed for automatically assigning the weight of
different label dependencies [33].

Lately, the newly proposed graph convolutional net-
works, designed for nongrid structured data modeling, have
been introduced in classification tasks [26]. Different from
the traditional Euclidean-structured CNNmodels, GCN can
learn a non-Euclidean graph structure directly and thus hold
the strong ability of correlation inference [9].

1.4. Motivation. *e aforementioned methods coped with
the two crucial challenges of the MAIC task by different
kinds of well-designed frameworks. However, most of them
either ignore the label correlations during extracting more
representative image features or just utilize rough course-
grained image features during building label dependencies
in the MAIC task. In addition, the deep learning-based
models utilize pretrained backbones to extract image fea-
tures. However, these backbones are designed to extract a
single core feature for the given image, which is suboptimal
for multilabel image feature learning. Based on this obser-
vation, in this paper, we aim to propose a comprehensive
model for the MAIC task that integrates multigrained se-
mantic information from both images and labels. Inspired
by the success of the SPC framework, the proposed MSGM
model leverages SPC layers in a parallel manner to extract
fine-grained image representations. *en, we design dif-
ferent grouping mechanisms to adjoin these representations,
each containing several instances. Furthermore, the GCN
framework is introduced to learn the semantic network
features of the label correlation.

2. Methodology

2.1. ProblemDefinition. Given the image set X and the label
set L, whereX� {x1, x2, . . . , xn} represents the n aerial images

and L� {l1, l2, . . . , lc} be c labels of this dataset. Each image
xi ∈X is annotated with its labels yi � {y1i, y2i, . . . , yci}, where
yki � 1 if xi is labelled with lk, k∈[1, 2, . . ., c], otherwise yki � 0.
*e primary definition of the MAIC problem is to model a
function that takes the given input image xi as the inde-
pendent variable and outputs its predicting label vector yi,
i.e., f: xi⟶ y i.

2.2. 7e Proposed MSGM Model. Figure 2 illustrates the
framework of the proposed model including the image
feature extractor, label correlation extractor, and multilabel
classifier. *e image feature extractor is constructed by
multiscale SPC layers. In addition, the label correlation
extractor constructs the concept graph and utilizes the at-
tention GCN framework to directly extract the concept
graph representations. Finally, the multilabel classifier in-
tegrates the bilateral information and outputs the predicted
labels.

2.2.1. Image Feature Extractor. To extract more task-specific
image features, we generate multiple instances of each
image. For the given input image xi, the output feature map
from the backbone has a dimension of 2048×14×14. *en
the feature map is filtered by different sizes of kernels on
each SPC layer to get a group of feature maps in a parallel
manner, which is described in Subsection C. Finally, the
feature space is integrated by the grouping mechanisms to
get the image-level feature fi ∈Rm (m� 2048).

2.2.2. Label Correlations Extractor. To represent label cor-
relations, we first build the concept graph based on the
cooccurrence of labels in the label set L. *en, the attention
GCN (which is described in Subsection D) extracts the
concept graph topologies and generates the label-level fea-
tures G ∈ Rc×m.

2.2.3. Multilabel Classifier. *e image-level feature fi ∈Rm

and label-level features G ∈ Rc×m are integrated by the
multilabel classifier as follows [9]:

yi � sigmoid Gf
T
i . (1)

*e predicted score yk
i ∈ yi is the probability of the

corresponding label lk, yk
i ∈[0,1], with its ground truth value

yki ∈ {0,1}. In this way, if yk
i is above 0.5, we set the lk as

positive for the image xi.

2.3. Pyramid Convolution for the Image Feature Extraction.
To get more fine-grained features and generate multiple
instances for each image, we treat the output from the
backbone as a bag. Each 14×14 sized feature vector on
dimension of 2,048 represents an instance of the input
image. To this end, the bag contains these instances that
represent different patches of the raw input image. However,
filters with receptive fields of the same size are unlikely to
capture all objects in different sizes and scales. To address
this problem, we introduced the SPC component to learn the
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multiscale task-speci�c features. As is illustrated in Figure 2,
SPC components consist of two components: SPC �ltering
layers and SPC grouping mechanism.

2.3.1. SPC Filtering Layers. SPC �ltering layers are a set of
parallel convolution operations whose �lters are with a range
of sizes from 1× 1 tow × w.(w � .14). With input x̂i from the
backbone, the output of i−th convolutional operation is as
follows:

fjfilter � σ x̂i, θj( ), (2)

where θj indicates model parameters, and σ is the activation
function.

�e output of each convolution operation is a group of
feature maps, denoted as Ffilter � fjfilter{ }

w

j�1, f
j
filter ∈

R(w− j+1)×(w− j+1)×2,048, and each of them contains the corre-
sponding instances. A j× j size �lter generates (w−j+1)× (w−j+
1) feature maps and instances. For example, a 2× 2 size �lter
generates the corresponding feature map with the size of
13×13 and instance number of 169. Furthermore, there are
196 instances for a 1× 1 size �lter. �e stride is a hyper-
parameter, which is empirically set to 1 in the experiments.
Since the sizes of the �lters are in various scales, the receptive
�eld sizes are di�erent. Each layer contains �lters of di�erent
sizes and depths, which can capture di�erent levels of features
from the scenes. To this end, the SPC �ltering layers can learn
the features of objects with di�erent sizes, positions, and scales.

2.3.2. SPC Grouping Mechanism. �e feature maps Ffilter
generated by SPC �ltering layers are in di�erent scales and
each of them can have some instances. To this end, the
instances of a bag need to be aggregated into �nal aerial
image features for the multiple label predicting. To address

the abovementioned issue, we designed three grouping
mechanisms at various angles, the feature alignment
grouping (FAG): the feature stacking grouping (FSG), and
the aligned feature stacking grouping (AFSG), respectively,
as shown in Figure 3.

(a) �e design of FAG aims to align the di�erent di-
mensions of feature vectors. To do so, a parallel of
fully connected (FC) layers are applied to the feature
maps Ffilter, as shown in Figure 3(a).
�e output of the FC layers is uni�ed-scaled feature
vectors FFAG � fjFAG{ }

w

j�1, f
j
FAG ∈ R2,048.�en, these

feature vectors are integrated as the �nal image
feature fi by the average operation as follows:

fi �∑
w

j�1
φ fjFAG,WFAG( ), (3)

where WFAG is the weight matrix in FC layers, w �
14 is the number of SPC �ltering layers, and φ() is the
activation function. In this way, FAG provides a
solution where instances on each feature map can be
learned independently.

(b) Compared with FAG, the idea of FSG is concate-
nating the feature vectors with di�erent dimensions
directly. As shown in Figure 3(b), the group of
feature maps Ffilter from SPC �ltering layers are �rst
integrated into a uni�ed feature map
FFSG ∈ R1×2,048×(1+22+···+w2) as follows:

FFSG � conc fjFAG( ) � f1
FAG, f

2
FAG, . . . , f

w
FAG{ }, (4)

where w� 14 is the number of SPC �ltering layers.
�en, a FC layer and a max-pooling layer are utilized
to transform the scale of FFSG as follows:
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Figure 2: Flow chart of the proposed MSGM framework.
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fi � φ conc f
j

FAG , WFSG , (5)

where WFSG is the weight matrix in FC layers, and
φ() is the activation function. As a result, FSG
provides a direct approach by absorbing information
from every feature representation and treating them
as a whole map.

(c) Based on the abovementioned two approaches,
AFSG deals with the feature maps in a fine-grained
way, which can be the combination of FAG and FSG.
As in Figure 3(c), AFSG first utilizes FC layers to get
the unified-scaled feature vectors FFAG, same as in
FAG. *en, these feature vectors FFSG are stacked
into a unified feature space FFSG ∈ R14×2,048, followed
by the FC layer to generate image feature f i as
follows:

fi � φ conc φ f
j

FAG, WAFSG1  , WAFSG2 , (6)

where WAFSG1, WAFSG2, are two weight matrix in the
FC layers, and φ() is the activation function.

Based on the grouping mechanisms, we get the image-
level feature fi ∈ Rm from various perspectives. In the ex-
perimental part, we will evaluate the three grouping
mechanisms, respectively. In the following part of this paper,
the AFSG method in Figure 3(c) is set as the default choice
without special instructions.

2.4. GCN for the Label Correlations Extraction

2.4.1. Construction of Concept Graph. To build the concept
graph, we first represent all label nodes in the label space L as
d-dimensional feature vectors L, where each label node li ∈ L
is denoted as li ∈Rd. Inspired by ML_GCN [34], for the
common label space L, we model the label correlation de-
pendency in the form of conditional probability, i.e., P(lj|li) is
the probability of occurrence of label lj when label li appears:

P lj|li  �
Ni,j

Ni

, (7)

where Ni,j denotes the frequency of images that contain both
label li and lj, and Ni denotes the frequency of images that
contain label li.

To clarify, the correlation matrix is asymmetrical, where
P(lj|li) is not equal to P(li|lj). *e concept graph is a direct
graph. Based on the coexistence of labels in the correlation
matrix, the concept graph is built to represent the label
correlations.

2.4.2. Graph Convolutional Network Recapitulation. For a
given graph G, the processing idea is to integrate the
knowledge from other neighbor nodes to update the central
node features. Different from the traditional CNN-based
models, GCN aims to learn a function on the given graph G
that takes nodes features Hi ∈ Rc×d and the correlation
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Figure 3: Frameworks of three kinds of feature grouping mechanisms. (a) FAG, (b) FSG, and (c) AFSG.
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matrix A ∈ Rc×c as inputs, and outputs the features of
updated nodes Hi+1 ∈ R

c×d′. Specifically, for the i-th GCN
layer, for the input feature representation Hi ∈ Rc×d, the
output Hi+1 ∈ R

c×d′ can be written as a nonlinear operation
[34]:

H
i+1

� g AHi
W

i
 , (8)

where Wi ∈ R
d×d′ is the weight transformation matrix. A∈

A ∈ Rc×c denotes the correlation matrix. *e nonlinear
function g( ) is usually acted by LeakReLU [35].

2.4.3. 7e Attention-Based GCN. From (8), GCN works by
propagating information between nodes based on the cor-
relation matrix A. However, in most previous works, A is
predefined by the conditional probability and kept fixed
during the node feature learning. *is kind of fixed matrix is
not enough for the complicated correlations of objects. We
design the attention-based GCN (attGCN) layer to address
this problem in the MAIC task.

*e detailed introduction of the attGCN layer can be
elaborated as follows: the attGCN layer is designed to learn
the label node feature by integrating the typology infor-
mation from its 1-step neighbors. First, a DotProduct at-
tention mechanism is performed on the input of label
embeddings and their 1-step neighbors embeddings [36].
*en, the label embeddings are updated by the combination
of their attention-weighted neighbor node embeddings. In
specific, we first represent all label nodes as d-dimensional
feature embeddings. *e label node li ∈ L is embedded as li
∈Rd. *e neighbor node set hi ∈H of li is denoted as
hi � h1i ,h2i , . . . , hK

i , in which hK
i ∈ Rd, k∈[1,2, . . ., K], K is

the number of neighbors. *en, the attention score between
the label node li and its one neighbor node h

p

i is calculated in
reference to [36] as follows:

uip � g w
T

li · h
p
i  , (9)

wherew ∈ Rd is the weight vector to be learned. li ∈ Rd is the
feature embedding of the label node li, and hp

i ∈ Rd is the
feature embedding of the neighbor node h

p
i .*e operation of

(·) represents a dot product operation. *e g is a nonlinear
function (acted by LeakReLU). *e softmax function is
utilized to normalize the attention scores among different
label nodes. Based on the attention scores above, the feature
vector of label node li is then calculated as the weighted
combination of K neighbor nodes [9] by

li �
1
K



K

k�1
uikh

k
i + li, (10)

where li represents the updated feature vector of the label
node li.

2.5. Learning Algorithm. As is introduced above, there are
three components in the proposed MSGM framework,
namely, an image feature extractor (with the backbone, SPC
filtering layers, and the SPC grouping mechanism), a label
correlation extractor (with the concept graph and attention-
based GCN), and a multilabel classifier. *e whole model is
trained end-to-end. We utilize the cross-entropy loss
function to train the model with the annotation y and the
prediction y. *e loss function Loss is as follows [34]:

Loss �
1
c



c

k�1
y

klog y
k

  + 1 − y
k

 log 1 − y
k

  , (11)

where yk and yk are the k-th dimension of y and y, re-
spectively, k∈[1,2, . . ., c], and c is the size of the label set L. In
addition, the backpropagation algorithm with a stochastic
gradient descent mechanism is utilized to optimize the
parameters.

We emphasize the preciseness of this learning proce-
dure. During the training phase, the multilabel classifier
generates the final predictions with the image feature f i and
the label correlation feature G.

3. Experiments and Results

We conducted two kinds of experiments, quantitative and
qualitative, to evaluate the proposed MSGM method.
Quantitative results are numerical scores of these metrics
studied in this manuscript, i.e., scores on EP, ER, EF1, EF2,
and CP, CR, CF1, CF2. Quantitative results show the per-
formance comparison with state-of-the-art methods on the
UCM and DFC15 multilabel datasets. Qualitative results are
the results of case studies, feature visualization, and histo-
gram. Qualitative results illustrate the effectiveness of the
proposed MSGM method. *is section will illustrate the
experimental results in comparison with the state-of-the-art
on UCM and DFC15 multilabel aerial image datasets, re-
spectively. *en, the ablation studies are conducted to
evaluate the key aspects of the proposed approach.

3.1. Experiment Details

3.1.1. Evaluation Metrics. *ree kinds of metrics are widely
used for classification models: precision, recall, and F-score.
Specifically, in the multilabel classification task, the method
performance can be valued on both example-based and
label-based angles [9]. Here, example-based metrics dem-
onstrate the dimension of aerial images. And the label-based
metrics evaluate the performance from the perspective of
labels [34]. In this way, we calculate the example-based
precision (EP), recall (ER), F-scores (EF1 and EF2), and the
label-based precision (LP), recall (LR), and F-scores (LF1 and
LF2) as metrics in this paper.
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*e average label-based and example-based metrics are
formalized as follows:

EP �


M
i−1 N

cor
i


M
i−1 N

pre
i

,

LP �
1

M


M

i�1

N
cor
i

N
pre
i

,

EP �


M
i−1 N

cor
i


M
i−1 N

gt
i

,

LP �
1

M


M

i�1

N
cor
i

N
gt

i

,

EFn �
1 + n

2
  × EP × ER

n
2EP + ER

, n � 1, 2, 3

LFn �
1 + n

2
  × LP × LR

n
2LP + LR

, n � 1, 2, 3,

(12)

where M is the scale of label set L. For i-th label li, Ncor
i

represents the number of correctly predicted samples, N
pre
i

represents the total number of samples predicted as positive,
and N

gt

i denotes the number of ground truth.

3.1.2. Implementation Details. *e details of the model
components are as follows: the image encoder module
utilizes the Resnet-101 (pretrained on ImageNet) as the
backbone. *en, a set of pyramid convolutional layers is
stacked in parallel for feature extraction. *e label encoder
module is composed of two stacked GCN layers (with output
sizes of 1,024 and 2,048, respectively). *e fusion layer is a
dot product operation layer. In the experiment part of this
paper, the AFSG method in Figure 3(c) is set as the default
choice.

We select the hyperparameters of our model via grid
search according to the metrics on the validation set. Spe-
cifically, we select the learning rate among {0.0005, 0.001,
0.003, 0.005} and the batch size as {8, 16, 32}. Finally, the
learning rate is set to 0.001, and the batch size is 16. We
utilize the SGD as the optimizer of the network and Lea-
kyReLU as the nonlinear activation function. *e network is
trained for 20 epochs in total. All experiments are performed
on an NVIDIA GeForce RTX GPU and implemented in
Python using the PyTorch framework.

3.1.3. Datasets. We employ two multilabel aerial image
datasets, UCM [37] and DFC15 [15] multilabel datasets. *e
number of aerial images and classes in each dataset are
shown in Table 1. Rebuilt from the single-labeled UC
Merced Land Use Dataset [38], the UCM multilabel dataset
is annotated with multiple tags based on visual inspection.
*ere are 2,100 samples in UCM and each sample has
256× 256 pixels with a spatial resolution of one foot. *e
label space consists of airplane, sand, pavement, buildings,

cars, chaparral, court, trees, dock, tank, water, grass, mobile-
home, ship, bare-soil, sea, and field. In this work, we ran-
domly sampled 80% of images evenly from every category
for training and the remaining 20% for testing.

*e DFC15 dataset is a newly proposed multilabel
dataset. It is rebuilt from the single-labeled dataset (pub-
lished in the 2015 IEEE GRSS Data Fusion Contest [39]).
Compared to the UCM dataset, the DFC15 dataset is more
challenging with an extremely higher spectral resolution of
5 cm. *ere are totally eight labels in the label set, including
impervious, water, clutter, vegetation, building, tree, boat,
cars. *e number of images is 3, 342. 80% of them are
randomly selected as the training set and 20% for network
testing.

3.2. Experimental Results. In this subsection, the experi-
mental results of MSGM on two datasets are illustrated. To
clarify, we compare MSGM with other candidates with the
backbone of ResNet. In addition, some benchmark com-
parisons with GCN-based multilabel image classification
models are conducted. Besides, we list the annotation case
study results to show the effectiveness of MSGM. In addi-
tion, results of MSGM with three grouping mechanisms are
compared and analyzed.

3.2.1. Results on the UCM Multilabel Dataset. We compare
with current multilabel aerial image classification methods,
ResNet-50 [40], ResNet-RBFNN [41], CA-ResNet-LSTM
[15], CA-ResNet-BiLSTM [15], Image-GCN [42], and
ML_GCN [34]. *is is because they are trained based on
pretrained ResNet. Table 2 lists the scores of different models
on each metric that we analyze in this paper. For reading
convenience, we mark the highest scores in bold. In general,
MSGM achieves superior performance on both example-
based and label-based metrics.

For example-based metrics, the scores of MSGM on EP
and ER are 83.61% and 85.48%. MSGM surpasses EP by
5.67% over CA-ResNet-BiLSTM which is state-of-the-art. In
terms of EF1 and EF2, MSGM achieves 84.54% and 85.10%,
respectively. Although slightly lower on EF2 than CA-
ResNet-BiLSTM, our model achieves a corresponding im-
provement on EF1, showing that our model can obtain high
precision while maintaining the recall. Furthermore, MSGM
outperforms the GCN-based model from [42] remarkably
on every metric. In comparison with ML_GCN [34], MSGM
shows a stronger ability on example-based metrics with
increases of 3.58% on EF1 and 3.46% on EF2.

For label-based metrics, the proposed MSGM achieves
89.98% and 85.07% on LP and LR, which are 3.86% and
0.81% over CA-ResNet-BiLSTM. In addition, the scores of
MSGM on LF1 and LF2 are 87.46% and 86.01%, much higher

Table 1: Statistics of multilabel aerial image datasets.

Dataset Image Class Training Testing
UCM 2,100 17 1,680 420
DFC15 3,342 8 2674 668
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than the second place. Specifically, MAGM improves
ML_GCN by over 3.93% on LF1 and 4.12% on LF2.

*e experimental results on the UCM dataset verify the
effectiveness of MSGM with the SPC layers and the concept
graph. In the image feature learning phase, the SPC-based
extractor can learn more fine-grained representations to
help the model understand the image. During label pre-
dicting, the concept graph provides significant semantic
information from label correlations.

3.2.2. Results on the DFC15 Multilabel Dataset. On
theDFC15 dataset, we compare with existing MAIC methods,
the ResNet-50 [40], ResNet-RBFNN [41], CA-ResNet-LSTM
[15], CA-ResNet-BiLSTM [15], and ML_GCN [34]. Quanti-
tative scores are organized in Table 3. And as abovementioned,
we mark the highest scores on each metric in bold.

On example-based metrics, the proposed MSGM method
obtains 94.61% and 92.71% on EP and ER and 93.65% and
93.08% on EF1 and EF2, respectively. Compared with CA-

ResNet-BiLSTM which is the state-of-the-art on this dataset,
MSGM improves EP by 2.68% and ER by 13.59%. Furthermore,
MSGM increases EF1 and EF2 scores by 8.6% and 11.69% over
CA-ResNet-BiLSTM. In addition, the proposed MSGM out-
performs state-of-the-art methods not only in example-based
indexes but also in label-based scores. MSGM reaches 91.42%
on LP and 90.70% on LR. In comparison with CA-ResNet-
BiLSTM, MSGM is 30.65% higher on LR, proving the ro-
bustness of the MSGM model. *e improvements by MSGM
on theDFC15 dataset further demonstrate the robustness of the
proposed model on the more challenging DFC15 dataset. By
extracting the fine-grained image feature and learning the self-
adapted semantic information, MSGM can provide a more
effective solution for the current MAIC task.

3.2.3. Annotation Case Study. To further evaluate the ef-
fectiveness of MSGM, we conducted a case study with
several images. *e results are listed in Table 4. We note that
the proposed MSGM generally works well for images with

Table 2: Performance comparison with state-of-the-art methods on the UCM multilabel dataset (%).

Model EP ER EF1 EF2 LP LR LF1 LF2
ReNet-50 [40] 80.86 81.95 81.4 81.73 88.78 78.98 83.59 80.76
ResNet-RBFNN [41] 79.92 84.59 82.19 83.61 86.21 83.72 84.95 84.21
CA-ResNet-LSTM [15] 79.9 86.14 82.90 84.82 86.99 82.24 84.55 83.15
CA-ResNet-BiLSTM [15] 77.94 89.02 83.11 86.56 86.12 84.26 85.18 84.63
Image_GCN [42] 75.00 69.00 71.86 70.12 76.00 69.00 72.33 70.29
ML_GCN [34] 79.86 82.10 80.96 81.64 86.42 80.83 83.53 81.89
MSGM 83.86 85.48 84.54 85.10 89.98 85.07 87.46 86.01

Table 3: Performance comparison with state-of-the-art methods on the DFC15 multilabel dataset (%).

Model EP ER EF1 EF2 LP LR LF1 LF2
ReNet-50 [40] 84.89 75.64 80 77.33 81.5 59.99 69.11 63.33
ResNet-RBFNN [41] 82.64 78.76 80.65 79.51 72.01 69.85 70.91 70.27
CA-ResNet-LSTM [15] 85.66 75.84 80.45 77.62 83.83 60.05 69.97 63.66
CA-ResNet-BiLSTM [15] 91.93 79.12 85.05 81.39 94.35 62.35 75.08 66.89
ML_GCN [34] 93.52 93.76 93.64 93.71 91.15 90.02 90.58 90.24
MSGM 94.61 92.71 93.65 93.08 91.42 90.70 91.06 90.84

Table 4: Example predictions on the UCM multilabel dataset.

Images in
UCM dataset

(a) (b) (c) (d)

Ground truth bare-soil, trees, buildings,
pavement, cars, court, grass

cars, bare-soil, pavement,
buildings, trees, grass grass, trees, water buildings, pavement

Predictions bare-soil, trees, buildings,
pavement, cars, court, grass

cars, bare-soil, pavement,
buildings, trees, grass grass, sand, trees, water bare-soil, buildings, grass,

pavement
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Table 5: Attention maps for label-specific features of several samples selected from UCM.

(a) (dock) (ship) (water) (buildings)

(b) (buildings) (cars) (pavement) (water)

(c) (buildings) (cars) (grass) (tree)

Note: regions marked as red imply strongly activated, and blue indicates weakly activated.

EP ER EF1 CP CR CF1

82.63 85.84 84.20 91.32 82.40 86.63
87.25 80.16 83.55 91.64 81.61 86.34

GEM-FAG
GEM-FSG
GEM-AFSG 83.61 85.48 84.54 89.98 85.07 87.46
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Figure 4: Results of MSGM with three grouping mechanisms.
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dense labels, as shown in the example images (a) and (b) in
Table 4. For instance, MSGM predicts all candidate labels for
image (a) bare-soil, cars, buildings, court, grass, pavement,
and trees.

In addition, MSGM can classify images accurately, even
those with sparse labels. For image (c), the annotation in-
cludes three labels (grass, trees, and water). While in the
prediction results, MSGM not only predicts all ground
truths but also marks sand as positive. *is provides more
fine-grained semantic information of images for the follow-
up computer vision tasks.

3.2.4. Fine-Grained Feature Visualization. Table 5 shows the
predicted labels and the corresponding semantic feature
maps ofMSGMon the UCMdataset. For images (a), (b), and
(c), the positive labels (ground truth) are in black and the
negative labels are in red. Moreover, the activation areas of
each label are concentrated on semantic-aware areas. It is
intuitive that the label-correlated areas are activated. For
image (a), the image patch corresponding to the label ship is
annotated in red, while the whole image is in blue for the
label buildings. It reveals that MSGM can learn task-specific
features and explore label-region interaction.

3.2.5. Results on 7ree Grouping Mechanisms. As intro-
duced previously, we designed three grouping mechanisms,
FAG, FSG, and AFSG, for aerial image feature extraction. So
in this part, we discuss the results on different mechanisms.
For reading convenience, we name the proposed MSGM
based on three modules as MSGM-FAG, MSGM-FSG, and
MSGM-AFSG, respectively. *e qualitative (the histogram)
and quantitative (scores on EP, ER, EF1, and CP, CR, CF1)
results are illustrated in Figure 4. It is intuitive that MSGM-
AFSG surpasses the other two candidates on almost all
metrics. Particularly on F-scores, MSGM-AFSG achieves
84.54% on EF1, and 87.46% on LF1, improving MSGM-FAG
(the second place) by 0.34% and 0.83%. In addition, for
results on precision, MSGM-FSG achieves the best on both
EP and LP, indicating the effectiveness of concatenating the
feature vectors with different dimensions directly. Another
interesting observation is that all three modules outperform
the existing MAIC methods, verifying the robustness and
feasibility of our MSGM model.

4. Conclusions

*is paper provides a new solution for fine-grained semantic
understandings of aerial panoramic images. Focusing on the
crucial challenges of this research task, we designed a
comprehensive multilabel aerial image classification model,
named MSGM. To tackle the problem of how to learn more
task-specific features from aerial panoramic images, MSGM
designs pyramid convolutional layers to extract multiple
instances by multiscale feature encoders. And then, three
groupingmechanisms are designed to integrate the instances
into the final aerial panoramic image features. Furthermore,
MSGM learns semantic features from label dependencies
during the multilabel predicting phase. Inspired by the

recently proposed GCN-based models, which can deal with
graph structure directly, MSGM builds a concept graph to
represent the label correlations and then feeds the graph into
a designed GCN based on the attention mechanism. To this
end, with the multigrained semantic features, a novel end-
to-end multilabel aerial image classification considering
label correlations is built. *ree components constitute the
whole framework of the proposed MSGM: the image feature
extractor, the label correlation extractor, and the multilabel
classifier. Experimental results verify the effectiveness of the
proposed method both quantitatively and qualitatively on
two benchmark aerial panoramic image datasets, UCM and
DFC15. In the future, we will further explore the dimensions
of SPC layers to provide more adaptive approaches in
applications.
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high resolution urban remote sensing with multimodal deep
networks,” ISPRS Journal of Photogrammetry and Remote
Sensing, vol. 140, pp. 20–32, 2018.

[12] A. Hanyu, Y. Kawamoto, and N. Kato, “Adaptive channel
selection and transmission timing control for simultaneous
receiving and sending in relay-based UAV network,” IEEE
Transactions on Network Science and Engineering, vol. 7, no. 4,
pp. 2840–2849, 2020.

[13] X. Wang, X. Wang, and S. Mao, “Deep convolutional neural
networks for indoor localization with csi images,” IEEE
Transactions on Network Science and Engineering, vol. 7, no. 1,
pp. 316–327, 2020.

[14] J. Zhang, Q. Wu, C. Shen, J. Zhang, and J. Lu, “Multilabel
image classification with regional latent semantic depen-
dencies,” IEEE Transactions on Multimedia, vol. 20, no. 10,
pp. 2801–2813, 2018.

[15] Y. Hua, L. Mou, and X. X. Zhu, “Recurrently exploring class-
wise attention in a hybrid convolutional and bidirectional
lstm network for multi-label aerial image classification,”
ISPRS Journal of Photogrammetry and Remote Sensing,
vol. 149, pp. 188–199, 2019.

[16] W.-J. Yu, Z.-D. Chen, X. Luo, W. Liu, and X.-S. Xu, “Delta: a
deep dual-stream network for multi-label image classifica-
tion,” Pattern Recognition, vol. 91, pp. 322–331, 2019.

[17] D. Parashar and D. K. Agrawal, “Automatic classification of
glaucoma stages using two-dimensional tensor empirical
wavelet transform,” IEEE Signal Processing Letters, vol. 28,
pp. 66–70, 2021.

[18] L. Mou and X. X. Zhu, “Im2height: height estimation from
single monocular imagery via fully residual convolutional-
deconvolutional network,” 2018, http://arXiv.org/abs/:1802.
10249.

[19] B. Mei, Y. Xiao, R. Li, H. Li, X. Cheng, and Y. Sun, “Image and
attribute based convolutional neural network inference at-
tacks in social networks,” IEEE Transactions on Network
Science and Engineering, vol. 7, no. 2, pp. 869–879, 2020.

[20] I. Shendryk, Y. Rist, R. Lucas, P. *orburn, and C. Ticehurst,
“Deep learning-a new approach for multi-label scene classi-
fication in planet scope and sentinel-2 imagery,” in Pro-
ceedings of the . IEEE International. Geoscienceand Remote
Sensing. Symposium. (IGARSS), pp. 1116–1119, IEEE,
Valencia, Spain, July 2018.

[21] A. Melo and H. Paulheim, “Local and global feature selection
for multilabel classification with binary relevance,” Artificial
Intelligence Review, vol. 51, no. 1, pp. 33–60, 2019.

[22] X. Wang, X. Xiong, and C. Ning, “Multi-label remote sensing
scene classification using multi-bag integration,” IEEE Access,
vol. 7, Article ID 120410, 2019.

[23] M. Majzoubi and A. Choromanska, “Ldsm: logarithm-depth
streaming multi-label decision trees,” in Proceedings of the
International Conference on Artificial Intelligence and Sta-
tistics, pp. 4247–4257, August 2020.

[24] H. Cevikalp, B. Benligiray, and O. N. Gerek, “Semi-supervised
robust deep neural networks for multi-label image classifi-
cation,” Pattern Recognition, vol. 100, Article ID 107164, 2020.

[25] Y. Yan and S.-J. Huang, “Cost-effective active learning for
hierarchical multi-label classification,” in Proceedings of the
27th International Joint Conference on Artificial Intelli-
genceJuly 2018 IJCAI, pp. 2962–2968, AAAI Press, Stockholm,
Sweden, July 2018.

[26] Y. Wang, D. He, F. Li et al., “Multi-label classification with
label graph super imposing,” 2019, http://arXiv.org/abs/:1911.
09243.

[27] C. Zhou and J. Yuan, “Multi-label learning of part detectors
for heavily occluded pedestrian detection,” in Proceedings of
the IEEE International Conference on Computer Vision,
pp. 3486–3495, IEEE, Venice, Italy, October 2017.

[28] I. B. Rejeb, S. Ouni, W. Barhoumi, and E. Zagrouba, “Fuzzy
va-files for multi-label image annotation based on visual
content of regions,” Signal, Image and Video Processing,
vol. 12, no. 5, pp. 877–884, 2018.

[29] Q. Li, M. Qiao, W. Bian, and D. Tao, “Conditional graphical
lasso for multi-label image classification,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
pp. 2977–2986, IEEE, Las Vegas, NV, USA, June 2016.

[30] J. Wu, A. Guo, V. S. Sheng, P. Zhao, and Z. Cui, “An active
learning approach for multi-label image classification with
sample noise,” International Journal of Pattern Recognition
and Artificial Intelligence, vol. 32, no. 03, Article ID 1850005,
2018.

[31] X. Yang, Y. Zhou, Q. Zhu, and Z.Wu, “Joint graph regularized
extreme learning machine for multi-label image classifica-
tion,” Journal of Computational Methods in Science and En-
gineering, vol. 18, no. 1, pp. 213–219, 2018.

[32] F. Zhu, H. Li, W. Ouyang, N. Yu, and X. Wang, “Learning
spatial regularization with image-level supervisions for multi-
label image classification,” in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
pp. 5513–5522, HI, USA, July 2017.

[33] G. Sumbul and B. Demir, “A novel multi-attention driven
system for multi-label remote sensing image classification,” in
Proceedings of the IEEE International. Geoscience. Remote
Sensing. Symposium. (IGARSS), pp. 5726–5729, Yokohama,
Japan, July 2019.

[34] Z.-M. Chen, X.-S. Wei, P. Wang, and Y. Guo, “Multi-label
image recognition with graph convolutional networks,” in
Proceedings of the. IEEE Conference. Computer. Vis. Pattern
Recognition. (CVPR), pp. 5177–5186, Long Beach, CA, USA,
June2019.

[35] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlin-
earities improve neural network acoustic models,” in Pro-
ceedings of the 30th International Conference on International
Conference on Machine Learning(ICML), p. 3, Atlanta GA
USA, June 2013.

[36] A. Vaswani, N. Shazeer, N. Parmar et al., “Attention is all you
need,” in Proceedings of theAdvances in Neural Inf. Process.
Syst, pp. 5998–6008, CA, USA, December 2017.

[37] B. Chaudhuri, B. Demir, S. Chaudhuri, and L. Bruzzone,
“Multi-label remote sensing image retrieval using a semi-

Scientific Programming 11

http://arXiv.org/abs/:1802.10249
http://arXiv.org/abs/:1802.10249
http://arXiv.org/abs/:1911.09243
http://arXiv.org/abs/:1911.09243


supervised graph-theoretic method,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 56, no. 2, pp. 1144–1158,
2017.

[38] Y. Yang and S. Newsam, “Bag-of-visual-words and spatial
extensions for land-use classification,” in Proceedings of the
18th SIGSPATIAL International. Conference on Advance
Geographic Information System, pp. 270–279, California, San
Jose, November 2010.

[39] M. Campos-Taberner, A. Romero-Soriano, C. Gatta et al.,
“Processing of extremely high-resolution LiDAR and RGB
data: outcome of the 2015 IEEE GRSS data fusion contest-Part
A: 2-D contest,” Ieee Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, vol. 9, no. 12,
pp. 5547–5559, 2016.

[40] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE Conf.
Comput. Vis. Pattern Recognit.(CVPR), pp. 770–778, HI, USA,
July 2016.

[41] A. Zeggada, F. Melgani, and Y. Bazi, “A deep learning ap-
proach to UAV image multilabeling,” IEEE Geoscience and
Remote Sensing Letters, vol. 14, no. 5, pp. 694–698, 2017.

[42] N. Khan, U. Chaudhuri, B. Banerjee, and S. Chaudhuri,
“Graph convolutional network for multi-label vhr remote
sensing scene recognition,” Neurocomputing, vol. 357,
pp. 36–46, 2019.

12 Scientific Programming


