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 e arms of the Internet octopus have reached the ends of the planet. As it has become indispensable in our daily lives, huge
amounts of information are transmitted through this network, and it is growing momentarily, which has led to an increase in the
number of attacks on this information. Keeping the security of this information has become a necessity today.  erefore, the
scientists of cryptography and steganography have seen a great and rapid development in the previous years to the present day,
where various security and protection techniques have been used in these two technologies. In this research, it was emphasized to
secure the con�dentiality and security of the transmitted data between the sending and receiving parties by using both techniques
of encryption and steganography. In contrast, where genetic algorithms and logic gates are exploited in an encryption process, in
an unprecedented approach, protein motifs are used to mask the encoded message, gaining more dispersion because there are 20
bases used to represent the protein.  e real payload gained ranges between 0.8 and 2.666, which outperforms the algorithms that
depend on DNA sequences.

1. Introduction

In the era of the current technology revolution, and with the
increasing growth of multimedia applications and the wide
spread of Internet networks, it has become di�cult to
maintain the security and con�dentiality of the information
of individuals and institutions in this digital world.  ere-
fore, providing security and maintaining the con�dentiality
of information has become very important in our day, so
encryption processes are always required [1, 2].

Cryptography has been known since ancient times, as it
was used in the military �eld. It was mentioned that the �rst
encryption process for messaging between the army sectors
was accomplished by the Pharaohs. It was also mentioned
that the Arabs had made serious attempts in the �eld of
encryption.  e Chinese used many methods of cryptog-
raphy to transmit messages during wars.  eir intention was
to use encryption to hide the true form of messages, even if
they fell into the hands of the enemy, as it would be di�cult
for them to understand.

Cryptography is the transformation of information from
a readable state to a completely opaque state, such that it

becomes not useful and does not add information to the
reader.

 e idea of any encryption system is to hide con�dential
information in such a way that its meaning becomes in-
comprehensible to any unauthorized person.  e two most
common uses of encryption are to securely store data in a
computer �le or to transmit it over an insecure channel such
as the Internet. In either case, the fact that the document is
encrypted does not prevent unauthorized people from
accessing it, but it does ensure that they cannot understand
what they see. In addition to many encryption algorithms,
the genetic algorithmGA, or its genetic operations, is used in
a variety of aspects of data security [1, 3–7].

In addition to encryption processes, to ensure greater
protection of information, another technology is used, that
is, hiding information or steganography.

Steganography is the process of hiding information
within di�erent media such as video, audio, and image,
where these media are considered as an envelope sur-
rounding valuable information.  is type of protection
increases the security and con�dentiality of data. Often, the
process of data encryption is confused with the process of
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data hiding. In the process of encryption, the form of data is
completely changed and modified, and this change is visible.
As for the process of concealment, its results are not visible
[8–12]. ,e encryption and steganography will be used in
this paper to increase the security of transmitted data.

Recently, DNA and RNA have been exploited to hide
data through their four-letter structures, bases, used as a
cover to hide data inside. In this paper, protein motifs are
used to hide the encryptedmessage instead of DNA to obtain
more scattering because there are 20 bases used to represent
a protein. ,e next sections present some concepts that are
used in this paper, such as GA and bioinformatics [13–16].

2. Genetic Algorithm

In the 1850s, the British naturalist Charles Darwin wrote his
book “On the Origin of Species,” in which he claimed that
organisms evolve to adapt to the environment and compete
for the acquisition of nature’s resources to achieve their
survival. He also established the rule of survival for the
strongest beings, and this principle constitutes a natural
selection for the most fit organisms, whose survival is ex-
pected more than the weak ones. Genetic traits are enhanced
in the coming generations, generation after generation. ,e
theory of evolution inspired John Holland to introduce the
genetic algorithm [17–19]. A genetic algorithm (GA) is an
instance of the evolutionary algorithms (EA) that draws its
inspiration from the idea of natural selection. GA is a
metaheuristic search algorithm which is frequently
employed to provide optimal or nearly optimal solutions to
optimization and search problems via biologically inspired
operators such as mutation, crossover, and selection. Fig-
ure 1 shows some important steps in the GA.

After this elementary abstraction and the presentation of
Figure 1, the general structure of a GA can be written as
follows:

t = 0;
Construct the initial population Pt from randomly
generated individuals;
WHILE stopping condition is not satisfied DO.
{
Select fittest individuals for reproduction, Pt;
Create offsprings by crossing individuals;
Eventually mutate some individuals;
t++;
Compute new generation, Pt;
}

,e algorithm above makes clear that the change from
one generation to the next is accomplished based on four
genetic operations:

(i) Selection is a technique for choosing which indi-
viduals (strings/chromosomes) to be used for re-
production based on their values of fitness function
(objective function value).

(ii) Crossover: this technique combines the genetic
information of two individuals; if the coding is
chosen appropriately, two parents with prominent
traits will result in offspring with prominent
features.

(iii) During the evolution of the creatures, the genetic
information may change at random due to ineffi-
cient reproduction or other gene alterations, such as
those caused by gamma radiation. In GAs, mutation
may be implemented as a probabilistically random
distortion of the strings. Maintenance of genetic
variety is an advantage of the mutation, and as a
result, that local maxima can be avoided.

(iv) Sampling is a procedure which computes a new
generation from the previous one and the generated
offsprings.

In addition to the previously mentioned GA operations,
designers should think about the fitness function, which
determines the legibility of the individuals in the population,
in addition to the chromosomes’ representation. Usually,
binary representation is used, but many other representation
methods are available, which vary in complexity and effi-
ciency according to the problem to be solved. ,is paper
deals with data security; therefore, binary representation is
used to represent the chromosome, that is, plain data, keys,
etc.

,e performance of genetic algorithms largely depends
on crossover and mutation of individuals and, of course, the
method of representation and calculation of fitness function.
In this research, three types of crossover are used and de-
scribed as follows [7]:

(i) Single-point crossover: in this type, a single cross-
over point is initially determined, and then the
genes for the first child are copied from the be-
ginning of the chromosome of one of the parents to
the crossover point, and the rest is copied from the
second parent, and the second child is produced
from the remaining genes of the selected two par-
ents. Figure 2 depicts the single-point crossover for
chromosomes represented as binary representation.

Initial
Population Selection Crossover Mutation Result

Go to the new generations

Figure 1: General scheme of a GA.
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Binary representation is used for illustration be-
cause this research deals with streams of byte data.

(ii) Two-point crossover: in this type, two random
crossover points are determined for the parental
chromosomes and the offspring are formed by
exchanging chromosome segments as shown in
Figure 3.

(iii) Uniform crossover: in this type of crossover, bits are
randomly selected and copied from the first parent
or the second parent of the child. Figure 4 illustrates
Uniform crossover.

As in crossover, there are many methods of genetic
mutation according to the way the chromosome is repre-
sented (see Figures 3 and 4). In binary representation, bits
are inverted from zero to one and vice versa in pre-
determined locations as shown in Figure 5.

,e randomness of the genetic algorithms included in
crossover and genetic mutation operations in the process of

encoding and hiding information was exploited by the
characteristics of the genetic algorithms, including crossover
and mutation, to produce a new generation (cipher text) of
information that differs from the old generation (the
plaintext).

3. Protein in Bioinformatics

Bioinformatics, sometimes known as “computational bi-
ology,” is a growing, developing field that blends biology,
information technology, and mathematics to assist in
solving biological problems. In reality, computational bi-
ology mostly works with modeling biological processes.
,e design of software tools and algorithms and the
analysis and interpretation of biological data utilizing a
variety of software tools and specific algorithms are the two
primary pillars of bioinformatics. It usually involves genes,
DNA, RNA, or protein chains and is particularly useful for
comparing genes with other protein chains and with other
chains within or between organisms, looking at the evo-
lutionary relationships between organisms, and using
patterns in DNA and protein sequences to figure out their
functions [20].

While DNA chemically consists of phosphate, sugar,
and one of four nucleotides of (G) guanine, (C) cytosine,
(A) adenine, and (T) thymine, the protein sequences
consist of 20 different kinds of chemical compounds,
known as amino acids (bases), and they serve as building
blocks of proteins. ,e typical three- and one-base rep-
resentations of the protein sequences are used. Typically,
single-base representation is used to code databases. ,ese
bases are adenine (A), thymine (T), cytosine (C), guanine
(G), isoleucine (I), phenylalanine (F), serine (S), glutamine
(Q), histidine (H), asparagine (N), aspartic acid (D), ar-
ginine (R), glutamic acid(E), lysine (K), leucine (L), valine
(V), tryptophan (W), tyrosine (Y), methionine (M), and
proline (P) [21, 22]. In this paper, the bases of protein
motifs will be used to hide data in specified bits of binary
representation of a base.
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Figure 3: Two-point crossover.
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4. The Proposed Approach to Hide GA-Based
Encrypted Data

,e proposed approach can manipulate text, images, audio,
video, etc. ,e data are encrypted on the sender side using a
GA-based algorithm and an agreed-upon key, and then the
encrypted data are hidden in a protein motif based on the
Fibonacci series and a number of protein base combinations.
At the receiver side, the hidden data should be uncovered
and then it will be decrypted. Figure 6 shows the block
diagram of the proposed approach.

,e following sections concentrate on the components
of the proposed system, which consists of two divisions: the
first division is related to data encryption that can be ac-
complished by any encryption algorithm rather than the
presented algorithm, while the second division is related to a
new algorithm to hide the encrypted data in protein
sequences.

4.1. GA-Based Encryption Algorithm (GABEA). ,e en-
cryption algorithm converts plain text to cipher text. It
depends on logic gates and some characteristics of GA. In
addition to the plain text, the input to this algorithm in-
cludes a symmetric key, K, agreed upon by the sender and
recipient. Algorithm 1 presents the pseudocode of the GA-
based encryption algorithm (GABEA).

,e first step is responsible for generating a new key by
calling the Generated_Key algorithm. ,e Generated_Key
algorithm will be explained in Section 4.2. ,e second and
third steps find the length of the plaintext string and the
length of the key.,e next steps are responsible for encoding
the plaintext using logic gates and some properties of the
genetic algorithm, beginning with step 4. ,is step begins
with converting the plaintext to binary code and putting the
result in a one-dimensional matrix called Binary_PlainText.
,en, the process of XORing the bytes of Binary_PlainText
and the bytes of the KEY starts. ,e result of this logic gate is
placed in the BPT_XOR matrix.

,e results of the XORing operation in the previous step
will be used to accomplish the crossover operation for every

two consecutive bytes stored in BPT_XOR. ,e type of
crossover is determined according to (1):

TypeOfCrossover � number of itertion mod 4. (1)

Four crossover schemes are used: one-point, two-point,
multipoint, and uniform crossover according to the values of
TypeOfCrossover, 0, 1, 2, and 3, respectively. After the
crossover genetic operation, the mutation operation will be
done by NOT gate.

4.2. Key-Generating Algorithm. ,e Key-Generating Algo-
rithm is responsible for generating a key.,is algorithm uses
the properties of the genetic algorithms and the logic gates in
its processes. ,e pseudocode of this algorithm is presented
in Algorithm 2.

,e first step divides the entered key, K, into two keys k1
and k2. ,e length of k1 and k2 will be calculated in the
second step and then each character of these keys will be
converted to decimal by using ASCII code table. ,e
statement (new_key1[ L-(j-1) ]� dec_key1[j] – 1) will be
applied to all the characters of the first key and the results are
stored in horizontal matrix called new_key1 in reverse order.
When the second key is entered in the next iteration,
(new_key2[j]� dec_key1[j] –(2∗ j)) will be applied to the
parts of the second key and in vertical matrix called
new_key2.

,e third step of this algorithm is to multiply the ele-
ments of the two matrices (new_key1 and new_key2), where
an element is taken from new_key1 matrix and this element
is multiplied by all the elements of new_key2 matrix. ,en,
each result is tested; if the value of this product (M) is greater
than 256, the mod 256 is calculated for this value.

,e final result (M) will be converted into binary codes
that are stored in the Key. For more explanation, consider
the following example.

Example 1. In this example, the encryption algorithmwill be
shown in detail. ,e inputs for this algorithm are shown in
Table 1.

Sender side
Key

Key

Plain text

Plain text

Cipher Text

Cipher Text

Receiver side

Hidden mask
And

Protein motif
Fibonacci seeds Protein path

GA Cipher system

Decipher system Discovering

steganography

Figure 6: ,e proposed approach architecture.

4 Scientific Programming



,e first step in this algorithm is to create the key that
will be used in the encryption process by calling the Gen-
erated_Key Algorithm. ,e letters of key1 are converted to
decimal ASCII code and the first equation is applied to each
letter. ,e results are stored in inverse order in a horizontal
matrix called new_key1.

,e same process is done when entering the second key,
but the second equation is used instead of the first equation,
and the storage is done by natural arrangement in a vertical
matrix called new_key2 as shown in Table 2.

,e next step will be a multiplication between the two
matrices where each value in the new_key1 matrix will be
multiplied by all the values in the new_key2 matrix as the
following:

84∗113 = 9492 51∗113 = 5763.
84∗101 = 8484 51∗101 = 5151.
84∗109 = 9156 51∗109 = 5559.
Each product will be tested; if the result is greater than

256, the mod operation will be done for this product and the
result will be put in M variable. Each element in M will be
transformed from decimal to binary codes and the result will
be put in the Key matrix. ,is process is shown in Table 3.

Here, the first stage of the text encryption process ended,
as a new key was created using the Generated_Key Algo-
rithm. Now the second stage of the text encryption process
will start using the new key. ,e first step in this stage is to
convert the plaintext (May-21) into binary code. Each

character converted to binary code is passed to an XOR gate
with a byte chosen from the key matrix. ,e result will be
stored in BPT_XOR. All these steps are shown in Table 4.

,e last stage of encoding is limited to crossover op-
erations, which occur between the two successive bytes
selected from the BPT_XOR matrix and determine the type
of cut for them, where the type of cut depends on the se-
quence of two bytes in the BPT_XOR matrix, as we
explained earlier when explaining the encryption algorithm
in section (4.1). ,ese operations are declared in Table 5.

,e resulting chromosomes are passed to NOT gate as
shown in Table 6 and the product through this gate is stored
in the En_text matrix.

Finally, the text is encrypted and is now ready to be
hidden in protein sequence.

4.3. Steganography Using Protein Motif. In bioinformatics,
the protein motif is represented using 20 bases. Table 7
shows sufficient information about the protein
representation.

,e hiding algorithm divides each byte of the encrypted
message into 3 parts: 3 bits, 3 bits, and 2 bits partitions.
,erefore, each byte of the encrypted message requires
3 bytes to be covered. Table 8 presents the protein bases
matching the possibilities of 3 bits starting from the least
significant bit of the base, while Table 9 shows the protein

Input: PlainText, K.
Output: En_text.//cipher text.
Begin.

(1) key�Generated_Key(K);
(2) L_P� length (PlainText);
(3) L_K� length(key);
(4) for i� 1 to L_P do

{//byte by byte.
Binary_PlainText[i]� char_to_binary(ascii(PlainText[i]);
BPT_XOR[i]�XOR_gate(Binary_PlainText[i],key[i]);
}

(5) i� 1; x� 0;
(6) While(i≤ L_P)

{
Cut_type� x mod 4; //crossover type.
if(Cut_type� � 0).
then one_point_crossover(BPT_XOR[i], BPT_XOR[i+1]);
else if(Cut_type� � 1).
then two_point_crossover(BPT_XOR[i], BPT_XOR[i+1]);
else if(Cut_type� � 2).
then multi_point_crossover(BPT_XOR[i], BPT_XOR[i+1]);
else uniform _crossover(BPT_XOR[i], BPT_XOR[i+1]);
for(j� 0; j< 2; j++).
En_text[j + i]�Not_gate(BPT_XOR[j + i]);//Mutation.
i� i+2;
x� x+1;
}//while.
Return En_text;
End.//Algorithm.

ALGORITHM 1: GABEA.

Scientific Programming 5



Input: K.
Output: Key.//generated key
Begin

(1) divide Key(K, K1, K2); //divide K into two divisions k1 and k2
(2) For i� 1 to 2 do

{
L[i]� length(Ki);
For j� 1 to L[i] do
{
if (i� � 1) then
{
dec_key1[j]� char_to_decimal(ascii(K[j]));
new_key1[ L-(j-1) ]� dec_key1[j] – 1;
}//if
else {
dec_key2[j]� char_to_decimal(ascii(K[j]));
new_key2[j]� dec_key2[j] –(2∗ j);
}//else
}//for j
}//for i
k� 1;

(3) for i� 1 to L [1] do
for j� 1 to L [2] do
{
M� new_key1[i]∗ new_key2[j];
If (M> 256) then M�M mod 256;
key[k]� decimal_to_binary(ascii(M) );
k� k+1;
}//for
Return Key;
End.//Algorithm

ALGORITHM 2: Key-Generating Algorithm.

Table 1: Plain text and used key.

Input of encryption algorithm
Key� 4Usis

Plaintext Key1 Key2
May-21 4U Sis

Table 2: Key construction.

Symbol dec_key Equations New_key

Key1 4 52 new_key1[ L-(j-1) ]� dec_key1[j]– 1 Horizontal_M
U 85 84 51

Key2
S 115

new_key2[j]� dec_key1[j] –(2∗ j)

Vertical _M
113

I 105 101
S 115 109

Table 3: Binary coding of the key.

M
Multiplication results 9492 8484 9156 5763 5151 5559
M % 256 20 36 196 131 31 183
Key 00010100 00100100 11000100 10000011 00011111 10110111
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bases matching 2-bit patterns starting from the 4th bit of the
base.

Accordingly, if the sender and receiver agreed upon a
base for each 2-bit or 3-bit pattern, this would lead to 864
possible paths for 3-bit patterns and 210 paths for 2-bit
patterns, as shown in Figure 7, which represents part of the
tree of possible combinations of the protein bases matching
the 3-bit patterns.

Each possible path is assigned a unique number. For
example, the combination P, Q, R, C, D, E, F, and G is

assigned path number 1, indicating that it will be used to
conceal 000, 001, ..., 111. ,e path number must be agreed
upon by the sender and receiver exactly as the encryption
key. At the same time, they should agree upon the path
number of 2-bit patterns. Algorithm 3. shows the details of
the hiding algorithm.

,e locations of the hidden data in the protein motif are
determined according to the Fibonacci sequence. ,erefore,
the first and second “seed” should be known to the sender
and the receiver; therefore, they are given as input in Al-
gorithm 3. To avoid the rapid growth of Fibonacci terms, the
following formula is suggested to determine the number of
amino acids generated for each byte of encrypted data:

Table 4: XOR_gate results.

PlainText M a y - 2 1
Binary PlainText 01001101 01100001 01111001 00101101 00110010 00110001
Key 00010100 00100100 11000100 10000011 00011111 10110111
BPT_XOR�

BinaryPT (XOR_get)key 01011001 01000101 10111101 10101110 00101101 10000110

Table 5: Crossover operations.

Types of cut One-point cut Two-point cut Multipoint cut (three points or more)
Sequence of chromosome Crossover (1 and 2) Crossover (3 and 4) Crossover (5 and 6)

Crossover operation (A&B) 01011001
01000101

10111101
10101110

00101101
10000110

Result of crossover (C&D) 01010101
01001001

10101101
10111110

10001110
00100101

Table 6: Mutation operations.

Crossover result 01010101 01001001 10101101 10111110 10001110 00100101
Not_gate result 10101010 10110110 01010010 01000001 01110001 11011010

Table 7: Protein representation in bioinformatics.

Iupac amino acid
code Binary ,ree-letter

code Amino acid

A 01000001 Ala Alanine
C 01000011 Cys Cysteine
D 01000100 Asp Aspartic acid
E 01000101 Glu Glutamic acid
F 01000110 Phe Phenylalanine
G 01000111 Gly Glycine
H 01001000 His Histidine
I 01001001 Ile Isoleucine
K 01001011 Lys Lysine
L 01001100 Leu Leucine
M 01001101 Met Methionine
N 01001110 Asn Asparagine
P 01010000 Pro Proline
Q 01010001 Gln Glutamine
R 01010010 Arg Arginine
S 01010011 Ser Serine
T 01010100 ,r ,reonine
V 01010110 Val Valine
W 01010111 Trp Tryptophan
Y 01011001 Tyr Tyrosine

Table 8: ,e protein bases matching 3 bits.

3 bit pattern Base
000 P, H
001 Q, A, I, Y
010 R
011 C, K, S
100 D, L, T
101 E, M
110 F, N, V
111 G, W

Table 9: ,e protein bases matching 2 bits starting from 4th bit.

bit pattern Base
00 A, C, D, E, F, G
01 H, I, K, L, M, N
10 P, Q, R, S, T, V, W
11 Y

Scientific Programming 7



generated number for each Fibonacci Term � trunc(abs(sin (FibonacciTerm))∗ 10). (2)

P

YIAQ

RRRR

SCK

TDL TDL TDL

EM EM EMEM

Root

H

Figure 7: Subtree of all possible combinations of protein bases.

Input: En_text, Fibonacci_Seed1, Fibonacci_Seed2, P2bits_path, P3bits_path;
Output: Protein_cover;
Begin.
//Initialization.
0:Protein_cover� “”; new� Fibonacci_Seed2;

(1) while (abs(sin(Fibonacci_Seed1))<0.3 or abs(sin(Fibonacci_Seed2))<0.3)
new�Generate_fibonacci_term();//Generate a new Fibonacci term.

(2) while (not_end_of(En_text)) do
{

(3) Byte� get_byte(En_text);//get a byte from the cipher text
//return 2× 3 bits patterns and 1× 2 bits pattern starting from LSB.

(4) Divide_Byte(Byte, P2bits, P3bits2, P3bits1);
(5) sin4FibonacciTerm� trunc(abs(sin(new))∗10);
(6) if (sin4FibonacciTerm≥ 3)
(7) { Generate 3 protein bases according to the P2bits_path and P3bits_path, bases_3;

//fill the rest with protein bases.
(8) Randomly generate (sin4FibonacciTerm –3)) protein bases, RestBases;

//string concatenation.
(9) Protein_cover�Protein_cover + bases_3 + RestBases;
(10) }
(11) new�Generate_fibonacci_term();
(12) }//while
(13) return binary code of Protein_cover to be sent to the receiver;

End.//Hiding Algorithm.
(14) integer Generate_fibonacci_term()//Function to generate new Fibonacci term.

Begin.
(15) new� Fibonacci_Seed2 + Fibonacci_Seed1;
(16) Fibonacci_Seed1� Fibonacci_Seed2; Fibonacci_Seed2� new;
(17) return new;

End.

ALGORITHM 3: Hiding algorithm.

8 Scientific Programming



,e absolute value is used to avoid the negative values of
the sine function. ,ese values will be multiplied by 10 to
obtain a number ranging from 0 to 10 for each Fibonacci
term. Recall that the proposed algorithm specifies 3 amino
acids for each encrypted byte for hiding; therefore, each
value less than 3 will be ignored and a new Fibonacci term
will be calculated. In this way, the accepted values range
from 3 to 10. For this reason, Step 1 is iterated to generate a
new Fibonacci term when one or both seeds are initially less
than 3.,e while statement in Step 2 will be executed when 2
Fibonacci terms with values greater than 3 become available.
It gnaws the text byte by byte via the get_byte function,
which gets a byte and stores it in the Byte variable. Step 4
divides the Byte variable’s content into three parts as follows
(x8x7|x6x5x4|x3x2x1), which corresponds to the variables
P2bits, P3bits2, and P3bits1, respectively. Step 5 is an
implementation of (2), which generates a number that
ranges from 1 to 10. ,e result is stored in the sin4Fibo-
nacciTerm variable. ,e number which is less than 3 will be
ignored and a new number will be generated in Step 11.
Otherwise, steps 7, 8, and 9 will be executed under the
control of the if statement in step 6. Step 7 generates 3
protein bases according to the agreed upon path number of
2-bit patterns and the path number of 3-bit patterns. ,ese
three bases are concatenated in the base_3 variable. Step 8
generates the rest (sin4FibonacciTerm-3) bases and stores
them in the RestBases variable. Step 9 combines the bases
generated in steps 7 and 8 with the previous value of the
Protein_cover variable. ,is means that the proposed al-
gorithm generates a corresponding number of protein
amino acids; the first three are generated according to the
agreed protein paths, while the rest will be generated ran-
domly from the protein amino acids to maintain neutrality
of the protein sequence. ,e first amino acid will be chosen
to hide the 7th and 8th bits of a byte of cipher text. ,e next
two amino acids of a protein motif will be chosen to hide the
remaining 6 bits of the byte of cipher text.

Example 2. Table 10 presents a tracing of the proposed
hiding algorithm. Let the 3-bit pattern be P, Q, R, C, D, E, F,
and G and the 2-bit pattern be A, H, Q, and Y. Also, suppose
that the Fibonacci sequence starts from 8 to 10. To hide the
encrypted message of the encryption algorithm example,
consider Table 10. ,e generated Fibonacci terms will be 8,
10, 18, 28, 46, 74, 120, 194, and 314 and the corresponding
sequence generated according to (2) will be 1, 1, 3, 4, 7, 9, 8,
2, and 7.

4.4. Discovery Phase. ,is phase is the first one on the re-
ceiver side. It recovers the data from protein cover
depending on the Fibonacci sequence and the 2-bit and 3-bit
patterns. ,e self-documented algorithm, Algorithm 4,
depicts this process.

,is algorithm simply performs its duty by generating
the sequence of numbers by applying Equation 2 on the
Fibonacci numbers and extracts two bits from the specified
byte starting from bit number four and then extracts three
bits from each one of its two consecutive bytes.,e extracted

bits are collected to form one byte of the hidden data that will
be decrypted by the Decryption algorithm.

4.5. DecryptionAlgorithm. As it is mentioned in Section 4.2,
the encrypted message is hidden in a monad protein motif.
At the receiver side, the message will be uncovered and
passed to the Decryption algorithm to obtain the plain text.
Algorithm 5. depicts the pseudocode of this algorithm.

,e initial steps are similar to those of the encryption
algorithm. Starting from step 5, many decoding steps will be
done. Step 5.1 demutates the encrypted message using a
NOT gate for each bit, and the result will be stored in
Out_Not. Step 5.2 performs the crossover GA operation in
the same manner as the crossover of an encryption algo-
rithm. Step 7 accomplishes the XORing of the crossover
message bytes and the key bytes with the same index. ,e
XORed bytes are then converted to decimal numbers
depending on the ASCII code table.

Example 3. ,e decoding process begins when the protein
sequence reaches the recipient and the cipher text is
extracted from it. It starts first by generating the key as
shown in Table 11, which will be used in the decryption
process. ,is key is the same key used in the encryption
process.

Now we will start the decoding process by selecting two
successive bytes from the ciphertext (En_text) and inserting
them into the NOT gate sequentially. Table 12 declares the
results of the NOT gate operation.

,e two results obtained from NOT gate will be taken
and the crossover operation will be performed on them after
determining the type of cutting used as explained previously.
,ese steps will be repeated for all bytes in the cipher text.
,e resulting chromosomes from crossover operations will
be stored in the Out_Not matrix instead of their parents.,e
results of these operations are shown in Table 13.

In the last stage of decoding, a byte of the Out_Not
matrix and a byte of the generated key will be selected and
fed to the XOR gate. ,e resulting byte of this gate will be
converted to decimal and then tested. If it is greater than 256,
the mode of 256 will be taken for it. ,is process will be
repeated for all the elements of the Out_Not matrix. All of
these operations are shown in Table 14.

5. Data Payload of the Proposed
Steganography Algorithm

In steganography, the payload is represented by the
maximum number of bits that can be covered by the cover
medium. In the cases of bio-sequences such as DNA, RNA,
and protein, the payload unit is bit per nucleotide (bpn). In
the proposed steganography algorithm, each byte of the
encrypted data, E, requires 3 bytes to be covered; that is, if
the length of E is L bytes, then (3L) protein bases actually
embed the bytes of E. Recall (2), where the accepted range
of the generated protein bases is 3–10 for a term of
Fibonacci sequence. Hence, the length of the protein cover
which hides E can be defined in three cases: the worst case,
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Table 10: Tracing of hiding algorithm.

Statements Values Remarks
Protein_cover� ““; “”
While (abs(sin(Fibonacci_Seed1))<0.3 or
abs(sin(Fibonacci_Seed2))<0.3)
{ new�Generate_fibonacci_term(); }

Fib. Sequence: 8,10, new� 18.
Eq.2 sequence: 1, 1

Seed1� 8
Seed2�10
New� 18

Byte� get_byte(En_text);
Divide_Byte(Byte, P2bits, P3bits2, P3bits1);
sin4FibonacciTerm� trunc(abs(sin(new))∗
10);
If (sin4FibonacciTerm≥ 3
Generate 3 protein bases according to the
P2bits_path and P3bits_path, bases_3;
new�Generate_fibonacci_term();

Byte� 10101010
sin4FibonacciTerm� 3
Protein_cover�QER

New� 28

8, 10, 18,
28.
,e

protein
sequence
is in
binary

Byte� get_byte(En_text);
Divide_Byte(Byte, P2bits, P3bits2, P3bits1);
sin4FibonacciTerm� trunc(abs(sin(new))∗
10);
If (sin4FibonacciTerm≥ 3
Generate 3 protein bases according to the
P2bits_path and P3bits_path, bases_3;
Randomly generate
(sin4FibonacciTerm–3)) protein bases,
RestBases;

Byte� 10110110
sin4FibonacciTerm� 4

Protein_cover�QERQFFT
New� 46

Amino acids in blue color are randomly generated

8, 10, 18,
28, 46

Byte� get_byte(En_text);
Divide_Byte(Byte, P2bits, P3bits2, P3bits1);
sin4FibonacciTerm� trunc(abs(sin(new))∗
10);
If (sin4FibonacciTerm≥ 3
Generate 3 protein bases according to the
P2bits_path and P3bits_path, bases_3;
Randomly generate
(sin4FibonacciTerm–3)) protein bases,
RestBases;

Byte� 01 010 010
sin4FibonacciTerm� 7

Protein_cover�QERQFFTHRRDEWV
New� 74

8, 10, 18,
28, 46, 74

Byte� get_byte(En_text);
Divide_Byte(Byte, P2bits, P3bits2, P3bits1);
sin4FibonacciTerm� trunc(abs(sin(new))∗
10);
If (sin4FibonacciTerm≥ 3
Generate 3 protein bases according to the
P2bits_path and P3bits_path, bases_3;
Randomly generate
(sin4FibonacciTerm–3)) protein bases,
RestBases;

Byte� 01000001
sin4FibonacciTerm� 9

Protein_cover�QERQFFTHRRDEWVHPQNMGFLA
New� 120

8, 10, 18,
28, 46, 74,

120

Byte� get_byte(En_text);
Divide_Byte(Byte, P2bits, P3bits2, P3bits1);
sin4FibonacciTerm� trunc(abs(sin(new))∗
10);
If (sin4FibonacciTerm≥ 3
Generate 3 protein bases according to the
P2bits_path and P3bits_path, bases_3;
Randomly generate (sin4FibonacciTerm
–3)) protein bases, RestBases;

Byte� 01110001
sin4FibonacciTerm� 8

Protein_cover�QERQFFTHRRDEWVHPQNMGFLAHFQQQVTS
New� 194

8, 10, 18,
28, 46, 74,
120, 194

Byte� get_byte(En_text);
Divide_Byte(Byte, P2bits, P3bits2, P3bits1);
sin4FibonacciTerm� trunc(abs(sin(new))∗
10);
If (sin4FibonacciTerm≥ 3
Generate 3 protein bases according to the
P2bits_path and P3bits_path, bases_3;
Randomly generate (sin4FibonacciTerm
–3)) protein bases, RestBases;

Byte� 11011010
sin4FibonacciTerm� 2 ignored

Protein_cover�QERQFFTHRRDEWVHPQNMGFLAHFQQQVTS
New� 314

8, 10, 18,
28, 46, 74,
120, 194,

314
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the average case, and the best case. ,e worst case happens
when the sine of all Fibonacci terms is 1, which leads to
generating 10 protein bases, and the best case scenario
happens when the sine of all Fibonacci terms is 0.3, which
leads to generating 3 protein bases. Practically, the best and
worst cases did not occur for all Fibonacci terms.,erefore,
the real payload ranges between 0.8 and 2.666 according to
(3), 4, and 5.

worst payload �
(L∗ 8 bit)

10∗ L nucleotides
�

8
10

� 0.8 bpn, (3)

best payload �
(L∗ 8 bit)

3∗ L nucleotides
�
8
3

� 2.666 bpn, (4)

average payload �
(L∗ 8 bit)

(10 + 3)/2∗ L nucleotides

�
8
6.5

� 1.23 bpn.

(5)

6. Experimental Results

Five data files of different sizes are used to test the execution
time and the scalability of the proposed algorithms. ,ree or
more Fibonacci series are applied to each data file. Table 15
depicts the data file properties and the results obtained.

,e fifth data file is the C++ programs used to implement
the proposed algorithms.,e results show that the proposed
algorithms are scalable to the data size and the payload

Input: Protein_cover.
Fibonacci_Seed1.
Fibonacci_Seed2;
Output: Encrypted Data;
Begin.
0://Initialization.
Enc_data� “”; new� Fibonacci_Seed2;
while (abs(sin(Fibonacci_Seed1))<0.3 or abs(sin(Fibonacci_Seed2))<0.3).
{ new�Generate_fibonacci_term(); }
Step� 1;

(1) while (not_end_of(Protein_cover)) do
{//get byte from cipher text.
sin4FibonacciTerm� trunc(abs(sin(new))∗10);
Byte1� get_byte_at_location(Protein_cover, Step);
P2bits� extract(Byte1, 4,2);//extract 2 bits starting from bit#4.
Byte2� get_byte_at_location(Protein_cover, Step+1);
P3bits2� extract(Byte2, 1,3);//extract 3 bits starting from bit#1.
Byte3� get_byte_at_location(Protein_cover, Step+2);
P3bits1� extract(Byte3, 1,3);//extract 3 bits starting from bit#1.
Enc_data�Enc_data + concatenate(P2bits, P3bits2, P3bits1);
Step� Step + sin4FibonacciTerm;
new�Generate_fibonacci_term();
}//while.
return Encrypted data, Enc_data, to be decrypted by the decryption algorithm;
End//Hiding Algorithm.

ALGORITHM 4: Discovery Algorithm.

Table 10: Continued.

Statements Values Remarks
Byte� get_byte(En_text);
Divide_Byte(Byte, P2bits, P3bits2, P3bits1);
sin4FibonacciTerm� trunc(abs(sin(new))∗
10);
If (sin4FibonacciTerm≥ 3
Generate 3 protein bases according to the
P2bits_path and P3bits_path, bases_3;
Randomly generate (sin4FibonacciTerm
–3)) protein bases, RestBases;

Byte� 11011010
sin4FibonacciTerm� 7

Protein_cover�QERQFFTHRRDEWVHPQNMGFLAHFQQQVTSYCRHIYG
New� . . .

8, 10, 18,
28, 46, 74,
120, 194,

314
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Input: En_text,K;
Output: PlainText;
Begin.

(1) key�Generated_Key(K);
(2) L_P� length (En_text);
(3) L_K� length(key);
(4) i� 1; x� 0;
(5) While(i≤ L_P)

{
for (j� 0; j< 2; j++).
(5.1)Out_Not[j + i]�Not_gate(En_text[j + i]);//complement the cipher text
(5.2)Cut_type� x mod 4;
if (Cut_type� � 0).
then one_point_crossover(Out_Not[i], Out_Not[i+1]);
else if(Cut_type� � 1).
then two_point_crossover(Out_Not[i], Out_Not[i+1]);
else if(Cut_type� � 2).
then multi_point_crossover(Out_Not[i], Out_Not[i+1]);
else uniform_point_crossover(Out_Not[i], Out_Not[i+1]);
i� i+2;
x� x+1;
}//while.

(6) j� 1;
(7) for i� 1 to L_P do

{
Out_XOR[i]�XOR_gate(Out_Not[i],key[j]);
Dec[i]� binary_to_decimal(ascii(Out_XOR[i]);
If(Dec[i]>257) then Dec[i]�Dec[i] mod 256;
PlainText[i]� decimal_to_char(ascii(Dec[i]));
If (j� � L_K) then j� 1;
Else j� j+1;
}//for.
End.//Algorithm.

ALGORITHM 5: Decryption algorithm.

Table 11: ,e generated key.
Key 00010100 00100100 11000100 10000011 00011111 10110111

Table 12: Mutation using NOT gate.

En_text 10101010 10110110 01010010 01000001 01110001 11011010
Result of NOT gate 01010101 01001001 10101101 10111110 10001110 00100101

Table 13: Crossover operations.

Types of cut One-point cut Two-point cut Multipoint cut (three points or more)
Sequence of chromosome Crossover (1 and 2) Crossover (3 and 4) Crossover (5 and 6)

Crossover (A&B) 01010101
01001001

10101101
10111110

10001110
00100101

Result of crossover (C&D) 01011001
01000101

10111101
10101110

00101101
10000110

Table 14: ,e XOR_Get operations to extract the plaintext.

Out_Not (crossover result) 01011001 01000101 10111101 10101110 00101101 10000110
Key 00010100 00100100 11000100 10000011 00011111 10110111
Out_Not (XOR) key 01001101 01100001 01111001 00101101 00110010 00110001
Decimal 77 97 121 45 50 49
PlainText M A Y - 2 1
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revolves around the average payload. Also, we considered
that the results are sensitive to the initial terms of the
Fibonacci series.

6.1. Comparison with Other Techniques. ,e idea of hiding
information in protein motifs is unprecedented, so it is
impossible to compare it with other hiding methods.
However, to demonstrate the efficiency, we will compare it
with some methods that depend on DNA chains. Table 16
shows a comparison among four DNA-based algorithms
[16, 23–25] and the proposed one. ,e comparison depends
on three factors: blindness, which means that the recovery
process does not need a reference to the cover sequence;
function conservation, which means the identicalness of
amino acid sequence after and before the hiding process; and
capacity. ,e table shows that the proposed algorithm
outperforms the mentioned algorithms.

7. Conclusion and Future Works

In this research, we protect data by using robust GA-based
cipher algorithm and novel protein motif steganography
techniques to obtain a high level of security. GA operations
provided high degree of randomness for the bits of plain data
while the wide range of protein bases, 20 bases, makes the
concealment process unquestionable. ,e high number of
protein bases provides large numbers of 2-bit and 3-bit
patterns which support the encryption and hiding processes.
In this paper, the effective features of GA are utilized to
cipher the plain data and then generate a protein sequence to
hide the encrypted data depending on a Fibonacci series to
keep the natural distribution of the protein sequence. ,e
protein cover is generated according to the initial Fibonacci
terms and the agreed protein paths; therefore, hidden data
can be extracted without references to predefined sequences
which leads to regarding the proposed method as blind and
functionally conserved.

,e proposed stego-protein algorithm provides the
highest capacity among its relative DNA-based algorithms.
,e proposed algorithms’ scalability makes them applicable
in a variety of fields, including image, audio, video, bio-
informatics, cryptosystems, and so on. We intend to use the
proposed algorithms in future work in the so-called medical
cyber physical systems, or MCPSs [26–29], because they
represent an environment rich in data of various types,
formats, and resources.
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