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In Bike-Sharing System (BSS), the initial number of bikes at station will affect the time interval and the amount of rebalancing,
which is usually empirically determined and does not reflect the characteristics of consumer demand in finer time granularity, thus
possibly leading to biased conclusions. In this paper, a fleet allocation method considering demand gap is first proposed to
calculate the initial number of bikes at each station. *en, taking the number of demand gap periods as the decision variable, an
optimization model is built to minimize the total rebalancing amount. Furthermore, the research periods are divided into multiple
subcycles, the single-cycle and multicycle rebalancing strategies are presented, and the additional subcycle rebalancing method is
introduced to amend the number of bikes between subcycles to decrease the rebalancing amount of the next subcycle. Finally, our
methods are verified in effectively decreasing the rebalancing amount in a long-term rebalancing problem.

1. Introduction

In recent years, the rapid expansion of motorized trans-
portation system in cities has made the urban environment
deteriorate rapidly and traffic congestion seriously, posing a
serious threat to the health and travel convenience of urban
residents [1]. Today’s petroleum-based mobility system is
making transportation systems face unprecedented pressure.
Especially in the past decades, with the accelerated pace of
globalization, urbanization, and motorization in the world,
energy shortage and environmental pollution are common
problems faced by many developed and developing coun-
tries [2]. According to official statistics, traffic jams caused
urban Americans to travel an extra 8.8 billion hours and
purchase an extra 3.3 billion gallons of fuel for a congestion
cost of $166 billion. In particular, we can see many cities all
over the world sunk in heavy smokes in the winter
threatening the health of citizens. Consequently, the search
for low-consumption and low-emission transports has be-
come an urgent issue that many researchers and practi-
tioners are willing to challenge. To our relief, many exciting

advancements in transportation appear, such as the station-
base bike-sharing which is not only a green and healthy way
to travel, but also a traffic mode of energy saving and
emission reduction. After the first Bike-Sharing System
(BSS) appeared in Amsterdam, the Netherlands, the system
quickly spread around the world because of its flexibility,
economy, and convenience [3]. Compared to motorized
transport, BSS provides an alternative to short distance
travel, effectively addresses the last mile travel problem,
significantly reduces traffic accidents and congestion [4].

In BSS, bikes and empty docks are arranged at fixed
stations available for users to ride when and where they
require. *e station has capacity limitations, representing
the maximum number of bikes or empty docks at a station.
When people require, they rent from the nearest station and,
after a short ride, return them to the station closest to their
destination. However, when BSS runs, people usually start
and finish their riding at two different stations, which often
lead to the imbalance of system. *e imbalance here means
that the bikes or empty docks of a station cannot meet its
customer demand, which not only increases economic losses
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of operators, but also decreases the service quality, thus
affecting the normal operation and sustainable development
of BSS. An effective solution to this issue is the operators
using vehicles to transfer bikes from excessive stations to
deficient ones, which is called a bike-sharing rebalancing
problem or bike-sharing repositioning problem (BRP).

In parallel with the explosion of BSS worldwide, in
addition to BRP, experts and scholars have been concerned
about the fleet allocation optimization of BSS, such as how
many bikes are required for each station during BSS plan-
ning stage and how many bikes are configured for each
station during rebalancing responding to customer demand
for renting and returning bikes, in addition to the extent to
which the fleet allocation affects the rebalancing operation
and so on.

Martinez et al. [5] designed a mixed integer linear
program, while Saharidis et al. [6] introduced a pure integer
linear program, both of which optimize the station locations,
fleet size, and bicycle relocation activities in daily operations.
With the deepening of research, Yan et al. [7] developed four
planning models for leisure-oriented public bicycle rental
systems under deterministic and stochastic demands, re-
spectively. Chen et al. [8] formulated two mathematical
programming models to determine the number of bikes
maximizing the time interval between repositioning events
and the satisfaction of demands. formulated two-stage and
multistage stochastic optimization models to determine the
optimal number of bikes to assign to each station at the
beginning of the service. Vishkaei et al. [9] determined the
station capacity and fleet size, taking into account a con-
straint for the fleet size of the system, then formulated a
model using the Jackson network, and developed a genetic
algorithm to obtain the proper amounts of variables to
balance the inventory of the system.

Once station configuration has been determined, the
capacity of each station, i.e., the maximum number of bikes
and empty docks, is difficult to change in the short term, but
the consumer demand for renting and returning bikes is
constantly changing over time. Rebalancing is the best
option to solve this problem, which is more efficient and
economical than replacing the facilities.

*e vast majority of BRP studies belong to the operator-
based BRP, and the objectives of BRP considered in the
existing literature are diverse. Most of them are intended to
minimize the total rebalancing cost or time from the op-
erator’ s point of view to improve the effectiveness and
efficiency of BSS [10, 11]. In addition to these objectives,
many of the literature also target customer satisfaction or
service level [12]. In recent years, the user-based BRP has
received some attention and several incentive strategies have
been proposed to encourage users to relocate the bikes
among stations [13].

*e fleet size of the station has a great influence on the
rebalancing amount, but only a few scholars have explored
their comprehensive optimization; for example, Yuan et al.
[14] proposed a unified mixed integer linear programming
(MILP) model to provide an integrated solution for the
number, location, capacity of bicycle stations, total fleet size
design, depot location design, and rebalancing and

maintenance plans. Sayarshad et al. [15] proposed a
mathematical model which attempted to optimize a BSS by
determining theminimum required bike fleet size in order to
minimize unmet demand, unutilized bikes, and the need to
transport empty bikes between rental stations. Frade and
Ribeiro [16] formulated maximal covering models and took
the available budget as a constraint to determine the location
of new stations, station capacity, number of bikes, and
rebalancing quantity. Chen et al. [8] studied how to de-
termine the number of bikes that need to be deployed at
stations to maximize the time interval or the satisfaction of
demands within a fixed time interval during rebalancing.
modeled the evolution of the number of vehicles at each
station as a stochastic process and proposed a rebalancing
strategy iteratively to solve a chance-constrained optimi-
zation problem in order to find a rebalancing schedule
ensuring no service failures in the future with a given level of
confidence. Being different from previous studies, proposed
a framework to obtain the optimal bike fleet size and
rebalancing strategy from the life cycle’s perspective.

We study how to achieve guaranteed service availability
in such systems. Specifically, we are interested in deter-
mining (a) the fleet size and (b) a vehicle rebalancing policy
that guarantees that (a) every customer will find an available
vehicle at the origin station and (b) the customer will find a
free parking spot at the destination station. We model the
evolution of the number of vehicles at each station as a
stochastic process. *e proposed rebalancing strategy iter-
atively solves a chance-constrained optimization problem to
find a rebalancing schedule that ensures that no service
failures will occur in the future with a given level of con-
fidence. We show that such a chance-constrained optimi-
zation problem can be converted into a linear program and
efficiently solved.

*is article seeks answers to two major questions:

(i) How can the fleet allocation (i.e., the initial number
of bikes at each station) be determined?

(ii) Are the research periods considered as a cycle (single
cycle) or divided into multiple subcycles (multicycle)
to rebalance?

*en, a series of questions are derived from them, such
as whether and to what extent does the initial number of
bikes of stations influence the rebalancing interval and
amount? Which is better, the single-cycle rebalancing or the
multicycle rebalancing? At the same time, if the research
periods are divided into subcycles, how is the initial number
of bikes of each subcycle determined?

Aiming at the above problems, this paper focuses on the
fleet allocation and cycle rebalancing of BSS. First, con-
sidering the demand gap, a fleet allocation method is pro-
posed to determine the initial number of bikes. Secondly, an
optimization model with the objective of minimizing the
total rebalancing amount is established. *en, the research
periods are divided into subcycles, and a multicycle reba-
lancing strategy (MCRS) is presented, in which the single-
cycle rebalancing strategy (SCRS) is introduced to rebalance
in each subcycle and an additional subcycle rebalancing
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method (ACRM) is proposed to decrease the rebalancing
amount of the latter subcycle. *irdly, a fleet allocation
optimization algorithm embedded in the fleet allocation and
cycle rebalancing strategy is designed to solve the problem.
Finally, the effectiveness of our methods is verified by a large
number of experiments.

*e key contributions of this article are as follows:

(i) A fleet allocation method for determining the initial
number of bikes is proposed, which considers the
demand gap in finer time granularity.

(ii) A mathematical model is formulated, which takes
the number of demand gap periods as decision
variables and aims at the objective of minimizing
the total rebalancing amount.

(iii) Based on cycle division, a multicycle rebalancing
strategy (MCRS) is presented, including a sing-cycle
rebalancing strategy (SCRS) and an additional
subcycle rebalancing method (ACRM). *e cycle
division method can give full play to the effect of the
fleet allocation method in reducing the rebalancing
amount.

2. ProblemDescription andModel Formulation

2.1. Problem Description. In order to reveal the effect of the
initial number of bikes on the rebalancing interval and
amount, we set up two scenarios which have the same daily
customer demands, choosing two stations 1 and 2 with
different initial number of bikes in the two scenarios, and a
datum period of one day, as shown in the table in the upper
left of Figure 1.

In scenario 1, more bikes were rented from station 1 than
were returned on days 1 and 2, resulting in a steady decline in
the number of bikes, so that no bikes were available for renting
the third day. Similarly, there will be no empty docks at station
2 for customers to return their bikes on that day. *erefore, a
rebalancing is required. Furthermore, customers cycle 18
times from station 1 to station 2 and 12 times from station 2 to
station 1, resulting in a demand gap of 18−12� 6 at station 1,
meaning that station 1 needs at least 6 bikes to meet the
customer demands. Instead, the demand gap at station 2 is −6,
standing that station 2 requires 6 empty docks to meet the
customer demands of that day. *erefore, at the end of the
second day, 6 bikes had to be transported from station 2 to
station 1 to meet the customer demands on the third day.

During the study periods, more bikes are rented from
station 1 than returned each day, so at the beginning of
scenario 2, 25 bikes are placed at station 1. In contrast to
scenario 1, the rebalancing is delayed by one day to the third
day and the rebalancing amount is only 1. *erefore, the use
of the demand gap to determine the initial number of bikes
at a station can extend the time interval until the next
rebalancing and reduce the rebalancing amount. However,
existing studies determining the initial number of bikes at
stations tend to base on station capacity percentage [17] or
the ratio of rental demand to returning demand [18], ig-
noring the demand gap, which is often subjective and
arbitrary.

When the initial number of bikes or empty docks of a
station plus the demand gap is within its station capacity,
this means that the station can meet its customer demand
and is defined in this paper as a normal station without
having to rebalance. Otherwise, the station is called a
problem station and needs to be rebalanced. If the initial
number of bikes or empty docks of a station plus multi-
period demand gaps remains within its station capacity, it
stands that the station can meet its customer demand for all
these periods without having to rebalance. Here the mul-
tiperiod demand gaps are defined as a cumulative demand
gap value based on how many periods are used to determine
the initial number of bikes, called demand gap periods.
Problem stations can be further divided into loading and
unloading stations. As the name implies, the loading station
is a station without enough bikes to meet the rental demand,
while the unloading station means that its empty docks are
not sufficient to cover the returning demand.

In addition, effective rebalancing strategies should also
be developed, including the stations that need to be reba-
lanced, the rebalancing amount of each station, and the
route of rebalancing, all of which have a profound impact on
the rebalancing.

Here is an example, assume that there are four stations in
BSS, as can be seen in Figure 2. *e three figures above a

bikes

Rebalance 6 bikes

periods

Rebalance 1 bikes

scenario 1

scenario 2

bikes at station 1 of scenario 1
bikes at station 2 of scenario 1
bikes at station 1 of scenario 2
bikes at station 2 of scenario 2
capacity of station 1
capacity of station 2

station 1 to
station 2

station 2 to
station 1

day1 15 10
day2 20 10
day3 18 12
day4 15 10

user cycling data

0
5

10
15
20
25
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40

0
5

10
15
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Figure 1: *e influences of setting different number of bikes at the
initial moment on rebalancing.

Scientific Programming 3



station represent the capacity, the initial number of bikes,
and the demand gap of the station, respectively. For instance,
at station 1, its capacity and initial number of bikes are 30
and 25, respectively. *e demand gap −10 means 10 empty
docks are needed to meet its customer demand for the next
day, while there are only 5 empty docks currently; thus, 5
bikes are needed to be loaded from station 1. Similarly,
stations 2 and 3 can meet their customer demand, while
station 4 is required to unload 10 bikes to meet its customer
demand the following day. According to the definition of
station, stations 1 and 4 are problem stations, further station
1 is loading station and station 4 is unloading station, and
stations 2 and 3 are normal stations.

*e two rebalancing strategies are then compared, one of
which is the traditional strategy of selecting the closest
station to participate in the rebalancing and then extending
it from the near to the far stations, regardless of whether they
are normal or problem stations. Another is to give priority to
rebalance between problem stations, more specifically, be-
tween the loading and unloading stations; when one of these
types of station disappears, problem stations still exist; then
the rebalancing will continue between problem stations and
normal stations. *e processes of these two rebalancing
strategies are shown in Figure 2. Obviously, the rebalancing
amounts in two strategies are 15 and 10, respectively, in-
dicating that strategy 2 can greatly reduce the rebalancing
amount.

From the analysis and discussion above, the preliminary
conclusions can be easily drawn: (i) setting the appropriate
initial number of bikes at stations can reduce the rebalancing
amount and increase the interval between rebalances and (ii)
effective rebalancing strategy can reduce the rebalancing
amount and the workload of operators, while improving
customer satisfaction.

2.2.MathematicalModel. As mentioned above, demand gap
can reflect the customer demand over periods. Considering
multiperiod demand gaps to determine the initial number of
bikes can effectively extend the time interval of rebalancing
and reduce the rebalancing amount. *erefore, the number
of demand gap periods needs to be first determined, and the
cumulative demand gap value of these periods should be
calculated; then rebalancing is performed. In this section, an
optimization model is proposed which takes the number of
demand gap periods as decision variables and aims at
minimizing the total rebalancing amount, which calculates
the optimization objective value based on the cumulative

rebalancing amount of all periods. *e main reason for this
is that BRP is a multiple periods problem, if taking a day as
found and reducing the total rebalancing amount in multiple
periods is of great significance to reduce the rebalancing
amount and cost of rebalancing and improve the overall
operating efficiency of BSS.

2.2.1. Assumptions.

(1) Take one day as a basic period and perform reba-
lancing at 24 : 00 every night

(2) *e daily demand of each station is known

2.2.2. Sets.

S is the set of stations, indexed by i and j where i, j� {1,
2, . . ., n}
T is the set of time periods, indexed by t where t� {1, 2,
. . ., m}

2.2.3. Decision Variables.

bit is the number of bikes at station i (i ∈ S) at the
beginning of period t (t ∈T)
rijt is the number of bikes rebalanced from station i
(i ∈ S) to station j (j ∈ S) at the ending of period t (t ∈T)
zi is the number of demand gap periods of station i
(i ∈ S)

2.2.4. Parameters.

ci is the capacity of station i (i ∈ S)
α is the initial bike availability rates
fit is the rental demand of station i (i ∈ S) during period t
git is the returning demand of station i (i ∈ S) during
period t
M is the number of periods

Based on the above notations, the following mathe-
matical model can be formulated:

min 
t∈T


i∈S


j∈S

rijt. (1)

S.t.

bi1 � α × ci + 

zi

t�1
fit − git(  ∀i ∈ S, (2)

bi1 �
0, if bi1 < 0
ci, if bi1 > ci

∀i ∈ S, (3)
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bit � bi(t−1) + gi(t−1) − fi(t−1) + 
j∈S

rji(t−1) − 
j∈S

rij(t−1) ∀i ∈ S, j ∈ S, t ∈ T,
(4)

0≤ bit ≤ ci ∀i ∈ S, t ∈ T, (5)

1≤ zi ≤M ∀i ∈ S, (6)

bit ≥fit − git ∀i ∈ S, t ∈ T, (7)

ci − bit ≥git − fit ∀i ∈ S, t ∈ T, (8)


j∈S

rijt ≤ bi ∀i ∈ S, t ∈ T,
(9)


j∈S

rjit ≤ ci − bit ∀i ∈ S, t ∈ T,
(10)

bit, rijt ∈ N∀i ∈ S,∀j ∈ S,∀t ∈ T. (11)

*e objective function (1) minimizes the total accu-
mulative rebalancing amount of BSS. Constraint (2) is to
determine initial number of bikes at station i. Constraint (3)
modifies the initial number of bikes at station i. Constraint
(4) defines the number of bikes of station i at the beginning
of period t, which is the number of bikes at the beginning of
period t−1 plus the customer demand of period t−1 plus the
rebalancing amount of period t−1. Constraint (5) defines
that the number of bikes of station i at the beginning of
period t is within the station capacity ci. Constraint (6)
defines the demand gap within the longest period. Con-
straint (7) defines that station i must have enough bikes to
meet the rental demand at period t. Constraint (8) defines
that station i must have enough empty docks to meet the
returning demand at period t. Constraint (9) defines that the
number of bikes rebalance from station i is within the station
capacity bit. Constraint (10) defines that the number of bikes

rebalance to station i is within the station capacity ci-bit.
Constraint (11) restricts the domain of the decision
variables.

3. A Fleet Allocation Optimization Algorithm
Based on Demand Gap and Cycle
Rebalancing Strategy

In this paper, a day is taken as a basic period instead of an
hour, mainly because hourly user demand is constantly
changing; in particular, there are morning and evening rush
hours during the working day that are difficult to track.
Furthermore, rebalance is usually carried out at night when
the number of bike-sharing used is very low, so that the
impact of changes in user demand on the rebalancing can be
largely ignored.

S1 S2

S3 S4

Rebalance 5 bikes

Rebalance 5 bikes

S1 S2

S3 S4

Rebalance 5 bikes

Rebalance 5 bikes

Rebalance 5 bikes

Strategy 1 Strategy 2 

30 (25) -10 30 (20) 3

25 (15) 10 40 (5) 15 25 (15) 10 40 (5) 15

30 (25) -10 30 (20) 3

Figure 2: Comparison of different rebalancing strategies on rebalancing amount.
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Based on demand gap periods, an optimization method
determining the initial number of bikes for each station is
first proposed in this section. *en, the research periods are
divided into multiple subcycles and a multicycle rebalancing
strategy (MCRS) is presented, in which a single-cycle
rebalancing strategy (SCRS) is introduced to rebalance in
each subcycle and an additional subcycle rebalancing
method (ACRM) is also developed to amend the rebalancing
amount between subcycles.

3.1. A Fleet Allocation Method considering Demand Gap
(FAMDG). We propose a method to determine the initial
number of bikes at each station using demand gap periods,
referred to as FAMDG, which can reflect changes in cus-
tomer demand of each station in future periods. Start with
determining the basic number of bikes at station i referring
to the percentage capacity [17]; α is the percentage of ca-
pacity ci, as shown in the following equation:

bi1 � α × ci. (12)

*e demand gap of station i is the difference between the
rental amount and returning amount, as shown in the
following equation:

Git � fit − git. (13)

*en, the initial number of bikes at station i in the first
period bi1 is calculated by the basic number of bikes at
station i plus the demand gap of station i in the first period,
as shown in (14). If bi1 is still within the capacity of station i,
it means that bi1 determined in this way can meet the
customer demand and station i without requiring
rebalancing.

bi1 � α × ci + fi1 − gi1( . (14)

By the same token, the initial number of bikes of station i
in multiple periods is still within the station capacity, that
denotes bi1 determined in this way can meet the multiperiod
customer demands without having to rebalance, as seen in
equation (2). However, the multiperiod demand gaps at a

station change over time and they either exceed the station
capacity or are negative. So, it is not the more the demand
gap periods, the more optimal the initial number of bikes.
*erefore, the number of demand gap periods should be
optimized. At the same time, in order to prevent the initial
number of bikes from exceeding the station capacity,
equation (3) is used to correct it, i.e., if the initial number of
bikes obtained by equation (2) exceeds the station capacity, it
will be set to the station capacity, and if it is less than 0, to
zero.

3.2. Cycle Rebalancing Strategy

3.2.1. 1e Single-Cycle Rebalancing Strategy. We treat the
research periods as one cycle and propose the single-cycle
rebalancing strategy (SCRS). In SCRS, the rebalancing is
conducted at the end of each period except for the last, and
the number of rebalancing operations is the periods minus 1.

Now let bit’ represent the number of bikes at the end of
period t, which equals the number of bikes bit at the be-
ginning of period t plus the demand gap Git of period t, seen
in equation (15), and Gi(t + 1) represents the demand gap of
period t+ 1; then Zit represents station classification value
which equals bit’ plus Gi(t+ 1), as can be seen in equation (16).
According to Zit, all stations can be divided into problem
stations and normal stations, and problem stations can also
be further divided into loading and unloading stations. If
Zit< 0, it means that bikes need to be loaded to station i in
period t to meet its customer rental demand, which is de-
fined as loading station, and the number of bikes to be
loaded is referred to as loading amount; if 0 <Zit< ci, it
means that bikes or empty docks of station i in period t can
meet its customer rental and returning demand, which is
defined as normal station; if Zit> ci, it means that station i
does not have enough empty docks to meet its customer
returning demand; thus, bikes need to be unloaded from it,
which is referred to as unloading station and the number of
bikes to be unloaded is defined as unloading amount, as
shown in the following equation:

bit′ � bit + Git, (15)

Zit � bit′ + Gi(t+1), (16)

if Zit < 0, then station i ∈ the set of loading stations I,

if Zit > ci, then station i ∈ the set of unloading stationsE,

if 0<Zit < ci, then station i ∈ the set of normal stationsN.

⎧⎪⎪⎨

⎪⎪⎩
(17)

*en calculate the rebalancing amount eit of problem
station i in period t. If station i is a loading station, its
rebalancing amount is 0 minus Zit, and if station i is an
unloading station, its rebalancing amount is Zit minus Ci,
seen in (18). Moreover, according to eit of each station, the
rebalancing between loading and unloading stations is

carried out in order from near to far, mainly according to the
actual distance to judge.

eit �
0 − Zit, if i ∈ I,

Zit − ci, if i ∈ E.

⎧⎨

⎩ (18)
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At the end of the rebalancing between problem stations,
once the bi(t+ 1) of problem station i is within its capacity, it
becomes a normal station. If there still are problem stations,
rebalancing is done between problem stations and normal
stations until all stations become normal stations.

*e pseudocode of SCRS during period t is shown as
Algorithm 1.

3.2.2. 1e Multicycle Rebalancing Strategy. In this section,
the research periods are divided into multiple subcycles and
a multicycle rebalancing strategy (MCRS) is proposed. Note
that, in each subcycle, the initial number of bikes is cal-
culated by FAMDG and SCRS is conducted. *e main
purpose of dividing subcycle is to make full use of FAMDG
in each subcycle. However, the initial number of bikes at
stations in each subcycle is determined based on the cu-
mulative demand gaps of all periods in the subcycle, and the
number of bikes at the end of the subcycle is obtained
through SCRS. Obviously, the numbers of bikes at the end of
one subcycle and the beginning of the next are determined in
different ways, so the two numbers are usually not equal. If
the former is adjusted to the latter between the two sub-
cycles, the effect of the fleet allocation on rebalancing can be
applied to each subcycle. *erefore, this paper proposes an
additional subcycle rebalancing method (ACRM) to reba-
lance between subcycles.

*e ACRM begins with the loading and unloading
stations being redefined at the end of each subcycle. If the
number of bikes of a station at the end of a subcycle is less
than the number of bikes calculated based on demand gap
periods for the next subcycle, it is redefined as an unloading
station; otherwise, it is redefined as a loading station. *e
number of bikes calculated based on demand gap periods in
the next subcycle is then used as a reference value, and then
rebalancing is conducted between loading and unloading
stations in order to bring the number of bikes at the end of
the previous subcycle close to the reference value until one of
the sets of loading and unloading stations is empty.

Algorithm 2 is a pseudocode flowchart of MCRS.

3.3. Algorithm Flow. Compared with traditional optimiza-
tion algorithms, genetic algorithm starts from the string set
of the solution rather than from a single solution, which has
a large coverage and is advantageous to global optimization.
In order to reduce the complexity of the problem, a single-
cycle rebalancing strategy and a multicycle rebalancing
strategy are embedded in the single-cycle and multicycle
rebalancing problem, and a fleet allocation method taking
into account demand gap is proposed that can further
improve the search speed of the algorithm and find better
solutions.

3.3.1. Encoding. In this paper, each cell on a chromosome
represents the cumulative demand gap periods at a station.
Figure 3 is an example of a chromosome structure consisting
of six stations, each location representing a station and the
figure denoting the cumulative demand gap periods at the

station.*erefore, the cumulative demand gap periods of the
six stations are 3, 4, 2, 7, 5, and 3, respectively. For instance, 3
is the cumulative demand gap periods of the first station,
similarly as 4, 2, 7, 5, and 3.

3.3.2. Initialization. Initialization is the first step in genetic
algorithm [19] and the first population is generated during
initialization. *e value of each cell in the chromosome is
randomly generated within the range [1, m], of which m is
the maximum value of periods. When M chromosomes are
generated, the initialization ends.

3.3.3. Function Fitness. According to equations (2) and (3),
the initial number of bikes is calculated by the demand gap
periods optimization (DGPO). *en, perform rebalancing
by SCRS or MCRS. Once the SCRS or MCRS is executed, the
total cumulative rebalance amount can be obtained. At the
same time, the minimum rebalancing amount is regarded as
the objective function; see equation (1); therefore, the re-
ciprocal of the objective function is selected as the adaptive
evaluation function fi.

3.3.4. Selection. *is section uses roulette wheel strategy for
selection, and the general steps of the strategy are as follows:

(1) *e fitness value fi of an individual in population is
superimposed to obtain the total fitness value
F � 

N
i�1 fi, where N is the number of individuals in

the population.
(2) *e fitness value of each individual is divided by the

total fitness value to determine the probability of the
individual being selected pi � fi/F.

(3) Calculate the cumulative probability of individuals to
construct a roulette wheel.

(4) Roulette selection: generate a random number at
intervals of [0,1]. If the random number is less than
or equal to the cumulative probability of an indi-
vidual i and is greater than the cumulative proba-
bility of individual i-1, the individual is selected to
enter the next offspring population.

3.3.5. Crossover. *is section uses a unified crossover
strategy which exchanges the intersection point on the
patrilineal individual based on probability to generate two
new individuals. *e general steps of this strategy are as
follows:

(1) Two individuals are randomly chosen from parents
(2) Crossover points are swapped according to

probability

*e process of unified crossover is shown in Figure 4.

3.3.6. Mutation. *e strategy has two purposes: one is to
make the genetic algorithm have the ability of local sto-
chastic searching and the other is to make the genetic al-
gorithm maintain the diversity of the population to prevent
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Input: *e number of bikes at the end of period t of station i bit
′ 

n

i�1, Demand gap of period t + 1 of station i Gi(t+1) 
n

i�1, Station
capacity ci 

n

i�1
Output: Rebalancing amount i∈Sj∈Srijt

for i � 1 to n do
station classification Zit � bit

′ + Gi(t+1)

if Zit > ci then
the unloading amount at station i is eit � Zit − ci, station i belongs to the set of unloading stations E

else if Zit < 0 then
the loading amount at station i is eit � 0 − Zit, station i belongs to the set of loading stations I

else
station i belongs to the set of normal stations N

end
Conduct rebalancing amount rijt between problem stations in sequence from near to far;
for i � 1 to n do
if 0≤Zit + j∈Irjit − j∈Erijt ≤ ci then

station i belongs to the set of normal stations N

end
while E or I is not empty set do
Conduct rebalancing amount rijt between problem stations and normal stations in sequence from near to far

end
return i∈Sj∈Srijt

ALGORITHM 1: *e single-cycle rebalancing strategy.

Input: Number of data periods l, Number of bikes at station i at the beginning of a cycle c b8ic 
n

i�1, Rental demand of period t fit 
n
i�1,

Returning demand of period t git 
n

i�1, Station capacity ci 
n

i�1
Output: Rebalancing amount 

m
t�1 

n
i�1 

n
j�1 rijt + 

q−1
c�1 

n
i�1 

n
j�1 re

ijc Divide l periods into q subcycles, each cycle has z � l/q periods;
for c � 1 to q do
for d � 1 to z do

Implement SCRS
end
if c≠ q then

get the number of bikes of station i at the end of cycle c be
ic;

if be
ic > b8i(c+1) then
the unloading amount at the station i is eic � be

ic − b8i(c+1); station i belongs to the set of unloading stations E

else if be
ic < b8i(c+1) then

the unloading amount at station i is eic � b8i(c+1) − be
ic; station i belong to the set of normal stations I

else
station i belongs to the set of normal stations N

Conduct rebalancing amount re
ijt between problem stations in sequence from near to far;

if be
ic + j∈Ir

e
jic − j∈Ere

ijc � b8i(c+1) then
station i belongs to the set of normal stations N

end
while E or I is not empty set do
Conduct rebalancing amount rijc between problem stations and normal stations in sequence fron near to far

end
end

end
return 

m
t�1 

n
i�1 

n
j�1 rijt + 

q−1
c�1 

n
i�1 

n
j�1 re

ijc

ALGORITHM 2: *e multicycle rebalancing strategy.

3 4 2 7 5 3

Figure 3: An example of a chromosome structure.
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immature convergence. In this paper, a unified variation
method is used to replace each gene value in an individual
with a lower probability of random numbers within the
range of [1, m].

4. Computational Experiment and Analysis

4.1. Data Source and Data Setting. *e case data used in this
paper are obtained from https://s3.amazonaws.com/
tripdata/201903-citibike-tripdata.csv.zip, which is the Citi
Bike System data in March 2019, and the system is the first
bike-sharing project in New York, USA. Due to its low data
missing and good universality after preprocessing, the
system data is favored by many experts and scholars and

used in the research of bike-sharing. Citi Bike System adopts
the mode of docking stations, with an initial launch of 6,000
bikes and 300 stations. It then expanded rapidly, with 12,000
bikes and 770 stations by March 2019. All experiments are
performed with Python 3.6 and implemented on an Intel(R)
Core(TM) i7-7700HQ CPU @2.80GHz, 8GB computer
equipped with Windows10 system.

To visually describe data, we used ArcGIS 12.0 to vi-
sualize station information, as shown in Figure 5, which
shows the distribution of Cite Bike stations in New York,
with each blue triangle indicating the location of a station. At
the same time, we obtain partial travel data of Citi Bike
System, each row of which is a piece of customer travel data
including the time, the id, latitude, and longitude of

3 4 2 7 5 3

2 3 1 5 6 7

3 3 1 5 5 7

3 4 2 7 5 3

parent1

parent2

offspring1

offspring2

Figure 4: *e process of uniform crossing.

Figure 5: *e distribution of Cite Bike stations in New York City.
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departure and terminal stations, as shown in Table 1. Based
on these data, it is possible to calculate the rental and
returning amount of each station at any given period.

*e experimental data are the travel data of Citi Bike in
March 2019 with a total of 1,327,960 travel records, of which
769 stations are processed for travel data. To further clarify
the format and structure of the data, we choose the station of
id 72 and give its rental and returning amount of March 1 to
7, as shown in Table 2.

4.2. Single-Cycle Experiment Results. *e validities of DGPO
and SCRS in the 7-day cycle are verified by comparing with
the methods commonly used in existing literatures. First, the
initial number of bikes calculated based on DGPO is
compared with the other three methods, namely, station
capacity percentage, ratio of rental demand to returning

demand, and uniform demand gap period which is defined
as using the same demand gap periods. Secondly, SCRS is
compared with traditional strategies, which tends to reba-
lance between problem stations preferentially, while the
latter tends to rebalance station to station depending on the
distance.

*e experimental results show the total accumulative
rebalancing amounts fromMarch 1 to 7, which are obtained
through eight experiments using four methods determining
the initial number of bikes and two rebalancing strategies, as
shown in Table 3.

Start with the traditional strategies, the initial numbers
of bikes are calculated using the four methods, and the
corresponding total accumulative rebalancing amounts are
2646, 2487, 996, and 980, respectively. Clearly, with an
approach considering the demand gap, either the uniform
demand gap period or DGPO is preferable to the other

Table 1: *e partial travel data of Citi Bike System.

Start time End time Start station
id

Start station
latitude

Start station
longitude

End station
id

End station
latitude

End station
longitude

2019/3/1 0:
00

2019/3/1 0:
24 319 40.711066 −74.009447 347 40.728846 −74.008591

2019/3/1 0:
00

2019/3/1 0:
05 439 40.726280 −73.989780 150 40.720873 −73.980857

2019/3/1 0:
00

2019/3/1 0:
12 526 40.747659 −73.984907 3474 40.725255 −74.004120

Table 2: *e rental and returning amount of station id 72 from March 1 to 7.

Station id Date Rental amount Returning amount
72 3.1 56 62
72 3.2 34 32
72 3.3 29 32
72 3.4 64 41
72 3.5 68 66
72 3.6 94 116
72 3.7 107 109
Note that, under different parameters, convergence of genetic algorithm is different, as shown in Figure 6. Under the conditions of the crossover rate pr � 0.8,
mutation rate pm � 0.01, a relatively best result can be obtained, which may be used in experiments of this paper.
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Figure 6: *e convergence of genetic algorithm with different parameters.
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Table 3: *e experiment results of single cycle from March 1 to 7.

*e traditional strategy SCRS
*e station capacity percentage (50%) 2646 1468
Ratio of rental demand to returning demand 2487 1346
Uniform demand gap period (6 days) 996 520
ODGP 980 470

Table 4: Daily cumulative rebalancing amount and station number of participating in rebalancing under different methods.

Periods *e station capacity percentage
(50%)

*e ratio of rental demand to returning
demand

*e uniform demand gap period (6
days) ODGP

Day 1 32 (6) 23 (5) 24 (11) 19 (6)
Day 2 69 (15) 55 (11) 41 (21) 30 (16)
Day 3 148 (46) 122 (30) 70 (29) 60 (26)
Day 4 291 (124) 240 (98) 102 (35) 92 (32)
Day 5 590 (247) 513 (191) 172 (45) 162 (42)
Day 6 969 (464) 869 (392) 303 (75) 292 (70)

Day 7 1468 (686) 1346 (625) 520 (129) 492
(125)

Problem station (unloading station)
Problem station (loading station)
Normal station

Figure 7: Distribution of problem and normal stations at the end of the 20th day.
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methods, and the latter is superior.*en, SCRS still uses four
methods to determine the initial number of bikes, with a
cumulative rebalancing of 1,468, 1,346, 520, and 470. Ob-
viously, SCRS has done better than the traditional strategy in
decreasing the total accumulative rebalancing amount. *e
effectiveness of the proposed DGPO and SCRS has been fully
demonstrated and they are highly competitive compared
with other methods.

To further illustrate this point, a comparative experiment
is conducted, in which 7 periods are selected as a cycle and
SCRS is used to calculate the total cumulative rebalancing
amount under the four different methods to determine the
initial number of bikes, as shown in Table 4. Note that the
figure in brackets is the number of stations participating in
rebalancing. Obviously, both the uniform demand gap

period and DGPO have been effective in reducing reba-
lancing amount, as well as the number of stations involved in
rebalancing, especially as periods increase, compared to the
other two methods. In particular, DGPO is more superior to
the uniform demand gap period.

4.3. Multicycle Experiment Results. Select the data from
March 1 to 28 for multicycle experiment, and the distri-
bution of problem and normal stations at the end of the 20th
period is shown in Figure 7.

Assuming 7 or 14 days as a subcycle, 28 days can be
correspondingly divided into four or two subcycles to ex-
ecute MCRS, and in particular 28 days are also regarded as a
single cycle to execute SCRS. *e initial number of bikes of

Table 5: Comparison of experimental results of different rebalancing strategies.

Rebalancing strategy Total rebalancing amount
Citi Bike official data 22280
SCRS, 28 days as single cycle 16743
MCRS, 7 days as subcycle 16732
MCRS, 14 days as subcycle 15463

Table 6: *e results of MMCRS, MCRS and SCRS.

Cycle Period

MMCRS MCRS SCRS
Cumulative
rebalancing
amount

Daily
rebalancing
amount

Cumulative
rebalancing
amount

Daily
rebalancing
amount

Cumulative
rebalancing
amount

Daily
rebalancing
amount

First
subcycle

Day 1 19 19 19 19 211 211
Day 2 30 11 30 11 371 160
Day 3 60 30 60 30 513 142
Day 4 92 32 92 32 642 129
Day 5 162 70 162 70 743 101
Day 6 292 130 292 130 930 187
Day 7 492 200 492 200 1171 241
ACRM 2358 1866 4326 3834

Second
subcycle

Day 8 2469 111 4350 24 1580 409
Day 9 2675 206 4437 87 1954 374
Day 10 2765 90 4454 17 2120 166
Day 11 2944 179 4560 106 2447 327
Day 12 3238 294 4766 206 2956 509
Day 13 3575 337 4978 212 3522 566
Day 14 4078 503 5380 1054 4309 787
ACRM 6947 2869 9595 4215

*ird
subcycle

Day 15 7225 278 9660 65 5223 914
Day 16 7611 386 9753 93 6297 1074
Day 17 7883 272 9813 60 7016 719
Day 18 8098 215 9946 133 7739 723
Day 19 8439 341 10214 268 8473 734
Day 20 9031 592 10650 436 9381 908
Day 21 9534 503 11036 386 10191 810
ACRM 12266 2732 15147 4111

Fourth
subcycle

Day 22 12481 215 15249 102 10870 679
Day 23 12688 207 15291 42 11705 835
Day 24 12953 265 15362 71 12534 829
Day 25 13175 222 15461 99 13504 970
Day 26 13505 330 15688 227 14317 813
Day 27 14045 540 16109 421 15473 1156
Day 28 14800 755 16732 623 16743 1270
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each cycle is still determined based on DGPO. *e Citi Bike
official data comes from Citibank Monthly Bike Report of
March 2019, with a rebalancing amount of 22280. *en,
comparative experiments in the four cases mentioned above
are carried out, and the results are shown in Table 5.

Obviously, compared with Citi Bike official data, the
rebalancing strategies we have proposed are very helpful in
reducing the total rebalancing amount. Of these results,
regarding 14 days as a subcycle and performing MCRS yield
the best result. Notably, both SCRS and MCRS have sig-
nificantly reduced the rebalancing amount and the latter is
superior in situation of excessive periods.

Another issue deserving special attention is that ACRM
is modified to rebalance targeting only those stations with a
rebalancing amount greater than the threshold value 40,
namely, MMCRS.*e validity of MMCRS and MCRS is also
verified by experiments. *e data of 28 days are still selected
as experiment data, which is divided into four cycles with
7 days for each subcycle, and the initial number of bikes of
each subcycle is calculated based on DGPO. *e compared
experiment results are shown in Table 6 and Figure 8.

*e experimental results show that MMCRS is superior
to MCRS in reducing the rebalancing amount. At the end of
the first subcycle, the cumulative rebalancing amount using
the two methods is the same as 492, as ACRM has not yet
been applied. Starting with the second cycle, the cumulative
repositioning amount of each subcycle calculated by
MMCRS is lower than that calculated by MCRS in subse-
quent subcycles, as only problem stations with reposition
amount greater than 40 need rebalancing in MMCRS, unlike
the case of MCRS, in which all problem stations require
rebalancing.

In addition, compared with SCRS, since ACRM is first
carried out between the first and second subcycles, MMCRS
and MCRS generate more cumulative rebalancing amount
than SCRS at the end of the first subcycle; however, both of
them declined significantly the daily rebalancing amount
within subcycles. As periods increase, the advantages of
MRCS and ACRM become more apparent, especially for
MMCRS, where the rebalancing amount of each period is
lower than that of the SCRS.

5. Conclusions and Future Work

Aiming at the problems of the fleet allocation determining
and the research periods division, this paper proposes a
fleet allocation method based on demand gap and a cycle
division method which can give full play to the effect of the
fleet allocation method in reducing the rebalancing amount.
*e initial number of bikes is calculated by the demand gap
periods optimization (DGPO). Based on cycle division, a
multicycle rebalancing strategy (MCRS) is presented, in-
cluding a sing-cycle rebalancing strategy (SCRS) and an
additional subcycle rebalancing method (ACRM). *e
fleet allocation optimization algorithm embedded in de-
mand gap and cycle rebalance strategy is designed to solve
the problem. *e effectiveness of DGPO and SCRS has been
fully demonstrated and they are highly competitive com-
pared with other methods. Both of MCRS and ACRM de-
cline significantly the daily rebalancing amount within
subcycles, and with periods increasing, the advantages of
MRCS and ACRM become more apparent.

*e proposed methods are available for the planning and
configuration at stations and the repositioning problem of
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Figure 8: *e results of MMCRS, MCRS, and SCRS.
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BSS for operators, meanwhile enriching the literature and
providing references for researchers in related field. How-
ever, this paper assumes that customer demand is known
and, in fact, tends to fluctuate over time, so we will rea-
sonably predict the future customer demand with more
accurate time granularity. In addition, the rebalancing ob-
jective in this paper is only one, but the multiobjective model
is more adaptable. *erefore, we can establish the multi-
objective function to further research.
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