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A lot of machine learning algorithms, including clustering methods such as K-nearest neighbor (KNN), highly depend on the
distance metrics to understand the data pattern well and to make the right decision based on the data. In recent years, studies show
that distance metrics can signi�cantly improve the performance of the machine learning or deep learning model in clustering,
classi�cation, data recovery tasks, etc. In this article, we provide a survey on widely used distance metrics and the challenges
associated with this �eld. �e most current studies conducted in this area are commonly in�uenced by Siamese and triplet
networks utilized to make associations between samples while employingmutual weights in deepmetric learning (DML).�ey are
successful because of their ability to recognize the relationships among samples that show a similarity. Furthermore, the sampling
strategy, suitable distance metric, and network structure are complex and di�cult factors for researchers to improve network
model performance. So, this article is signi�cant because it is the most recent detailed survey in which these components are
comprehensively examined and valued as a whole, evidenced by assessing the numerical �ndings of the techniques.

1. Introduction

Discovering a good distance metric in feature space is
vital in the certi�able application. In recent years, dis-
tance metric learning has become apparent as a prom-
ising �eld in machine learning, with applications
including medicine [1, 2], security [3, 4], social media
mining [5, 6], information retrieval [7–9], recommender
systems [10, 11], speech recognition [12, 13] and a di-
versity of computer vision applications, such as person
re-identi�cation [14, 15], kinship veri�cation [16, 17], or
image classi�cation [18, 19]. Distance measurements are
additionally complex in the classi�cation of images [9].
For example, in the KNN classi�er, the key is to recognize
the set of labelled pictures that are nearest to a given test
picture in the space of visual highlights including the
assessment of a distance metric. Past work [20–24] has
demonstrated the way that distance measurements can
fundamentally help KNN grouping precision contrasted
with the standard ED. Mahalanobis distance [25–27] in
general is directly addressed in currently available
studies.

Increasing data volumes provide signi�cant advantages
for more accurate classi�cation, in terms of both volume and
accuracy. On the other hand, calculations are becoming ever
more complex. To meet many computing needs, it is es-
sential to perform operations separately and simultaneously.
In this sense, parallel computing allows us to come up with
quick, e¦ective machine learning solutions. In conjunction
with the rapid progress of GPU technology in current years,
deep learning with multilayer structures has become one of
the hottest topics in computer science [28]. Deep learning
aims at achieving higher abstraction levels in transforming
data since it provides a new representation of it over raw data
[29, 30]. In the architecture of deep learning, classi�cation
forms part of the compact structure.

�e notion of DML was introduced in the past few years
because of the emergence of deep learning and metric
learning [31]. �e underlying principle of DML is the
concept of sample similarity. An article by Lu et al. [31]
presented the concept of DML for tasks involving visual
comprehension in 2017. Figure 1 illustrates how the dis-
tance metric works. Our study evaluated current methods
for image, text, video, and speech tasks. An important
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factor in the success of DML is the network structure, loss
function, and sample selection, and various aspects of these
main factors have been discussed considering recent re-
search. As an additional component, we also presented a
quantitative comparison of the methods based on a general
framework.

.e rest of the article is organized as follows. Section 2
provides some background details about distance metric
learning and widely used distance metrics with their recent
improvements in DML and follows a discussion about the
relationship between deep learning and metric learning.
Section 3 explains the existing problems in DML. Section 4
presents some observations about the present and future
prospects of DML and finally Section 5 is the conclusion of
our study.

2. Metric Learning

2.1. Background of Metric Learning. As far as classification
and clustering are concerned, each dataset presents its own
set of challenges. Metrics that do not have an adequate
learning capability independent of the problem can be
viewed as unsuitable for classifying data. It is therefore
necessary to obtain positive results from the input data using
a good distance metric [32]. Several works utilizing metric
learning approaches have been conducted to address this
problem [27, 32–35]. Data-driven metric learning ap-
proaches can better distinguish between the samples of data
if they perform the learning process on the data themselves.
A key aim of metric learning is to study a new metric that
lessens the gaps among samples of a similar class and raises
the distances among samples of distinct classes [36] as
shown in Figure 2.

2.2. Definition of Distance Metric Learning. .e distance
metric is a function that specifies the distance among ele-
ments of a set as a non-negative real number and a distance
of zero indicates that both elements are equal by that metric.
Elements need not be numbers but can instead be vectors,
matrices, or arbitrary objects. In the state-space model, a
state space is the Euclidean space, but in modern mathe-
matics, the space has the Euclidean plane (a two-dimen-
sional space) in which the variables on x and y (axes) are the
state variables. If we consider x and y as members of two sets
(x1, x2, x3 · · · xn) and (y1, y2, y3 · · · yn) , then the idea of the
distance between two members of this set is termed as a
metric. .us, a metric space has the following four prop-
erties to satisfy:

(i) .e identity of indiscernible: .e distance from x to
y is zero if and only if x and y are the same.

(ii) Non-negativity: .e distance between two distinct
points is positive.

Euclidean Manhattan

ChebychevMinkowski

Jaccard
coefficient

Cosine
similarity

Original data space

Distance metrics

Transformed data space

Figure 1: General workflow of distance metrics.

Minimize the distance

Maximize the distance

Figure 2: Goal of metric learning.
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(iii) Symmetry: .e distance from x to y is the same as
the distance from y to x.

(iv) Triangle inequality: .e distance from x to y is less
than or equal to the distance from x to y via any
third point Z.

If we relax the identity of an indiscernible condition tox

is equal to y, and the distance from x to y is zero, then the
distance is called a pesudometric.

2.3. Types of DistanceMetrics. Measurements of the distance
depend on the situation in which they are performed. .e
Manhattan Euclidean distance, for example, is useful for
computing the distance in certain situations. For other
applications, such as the cosine distance, a more refined
approach is required. As there exists a wide variety of
distance measures, in the following list we present some of
the most widely used distance metrics to compute distances
between two points of data. .ey are as follows:

(i) Euclidean distance (ED)
(ii) Hamming distance (HD)
(iii) Manhattan distance (MD)
(iv) Chebyshev distance (CD)
(v) Levenshtein distance (LD)
(vi) Minkowski distance (MinD)

2.3.1. Euclidean Distance (ED). ED is calculated using the
“Pythagoras' theorem,” which states that the square of the
hypotenuse side in a right-angle triangle is equal to the sum
of squares of the other two sides:

Euclidean(A, B) �

�������������������

x2 − x1( 
2

+ y2 − y1( 
2



. (1)

.e ED between two points A (x1, y1) and B (x2, y2) as
given in equation (1) is shown in Figure 3(a). Let A and B be
two observations from our dataset, with x1 and y1 repre-
senting the two aspects of observation A, and x2 and y2
representing the two features of observation B. .e
ED should be used whenever we are comparing data that
have continuous, numeric properties, such as heights,
weights, or wages. A ED correlation-based approach is
proposed to recognize 2D human face images [37].

2.3.2. Manhattan Distance (MD). .eMDcomputes the sum
of the absolute values of the variation of the coordinates of the
two sites as shown in equation (2) rather than squaring the
coordinateoffset values and then calculating the square root of
the sum of the squares..eMD determines howmany squares
are on a grid, representing the shortest path a car could take
between two intersections from point A to point B [38]:

Manhattan(A, B) � x1 − x2


 + y1 − y2


. (2)

Figure 3(b) shows MD and ED in tandem. When the
features of our observations are whole numbers (1, 2, 3, 4,...)

with no decimal place, it becomes logical to apply the MD. A
positive integer is always returned by the MD. In [39], the
Manhattan tangent distance in outdoor fingerprint locali-
zation is proposed and lower computation complexity is
achieved using an approximate Manhattan tangent distance.

2.3.3. Chebyshev Distance (CD). CD refers to the mea-
surement of distance between two vectors when their var-
iations are the greatest adjacent to any coordinate
dimension. It is also commonly known as chessboard dis-
tance. .is is because the minimum number of moves re-
quired by a king from one square to the next on a chessboard
equals the CD between the centers of the squares, if the
squares have a side length of 1, as represented in two-di-
mensional spatial coordinates with axes aligned to the edges
of the board. An example of CD is shown in Figure 3(e). In
two dimensions, if the points A and B have Cartesian co-
ordinates (x1, y1) and (x2, y2), their CD is calculated as given
in the following equation:

Chebyshev(A, B) � max x2 − x1


 , y2 − y1


 . (3)

2.3.4. Minkowski Distance (MinD). .e MinD is essentially
a combination of both the ED and MD as shown in equation
(4). .e MD is obtained by multiplying the MinD by p� 1,
and the ED is obtained by multiplying the MinD by p� 2.
.e CD is also given by p� infinity. Figure 3(c) shows MinD
measure with MD and ED representation as well.

Minkowski(A, B) � 
n

i�1
fai − fbi

 
p



⎛⎝ ⎞⎠

1/P

. (4)

Common values of p are as follows:
p� 1—MD
p� 2—ED
p�∞—CD

In the event of a decimal number between 1 and 2 (like
1.5), p can also be given intermediate values between 1 and 2
that provides a balance between ED and MD. If we are
developing a distance metric method and are not sure which
one to use, experimenting with the MinD with a few various
values of p and seeing which one provides the best result is a
good way to optimize one's models. MinD used in Ref. [40]
along with improved fuzzy possibilistic c-means algorithm
was proven to be efficient for convex data and p-dimensional
datasets.

2.3.5. Hamming Distance (HD). .e HD is essentially a
metric for comparing binary strings. .e HD is probably the
best way to determine the similarity between two data points
if we have a dataset with “dummy” Boolean attributes. An
example of HD is shown in Figure 3(d). Only if the two
observations are from the same data collection can this
measure be calculated. We cannot compute distance metrics
across observations with different numbers of features, and it
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is pointless to do so if the number of features is the same but
the actual features are different. Adaptive HD [41] was used
in Iris codematching, thereby improving the performance of
Iris code matching.

2.3.6. Levenshtein Distance (LD). .e LD is an alignment
method for pairs of strings. When calculating the LD be-
tween two strings, the minimum number of changes in one
string to transform into another are considered. As shown in
Figure 3(f), consider two strings: A= “bitcoin” and
B= “Altcoin.” To change the letter from “s” to “t,” two
substitutions of the letters are needed, that is, “B” and “I” by
“A” and “L.” .us, Levenshtein (A, B) = 2 ∗ 2 is 4. LD is
applicable in many fields, including computational lin-
guistics, computer science, natural language processing, and
bioinformatics.

2.4. Recent Improvements in DML. .e learning perfor-
mance can be improved by linear metric learning methods,
which support more flexible data constraints and flexible
constraints in the transformed data space. In addition to
having convex formulations, these approaches tend to be
robust to overfitting [42]. Other than learning a goodmetric,
it is also likely to develop a better representation of the data
using linear approaches. To understand the data better, it is
important to understand the nature of the data. Due to their
poor ability to capture nonlinear features, linear transfor-
mations have a controlled ability to attain optimal execution
over new data point representations. To overcome this issue,
kernel-based methods are used in metric learning to carry
the problem into a nonlinear space [27]. Despite their

practicality for solving nonlinear problems, these nonlinear
approaches may also negatively affect overfitting. As DML
has become more popular, it is conceivable to suggest a
solution to overcome the problems of both approaches in a
more compact way. Currently, by leveraging neural net-
works with DML, computer vision applications have pro-
duced remarkable results. However, the current methods
aim at a single deep distance metric based on pairs or triplets
of samples. It is hard for it to handle heterogeneous data and
avoid overfitting. To solve this, a boosting-based learning
method of multiple deep distance metrics was introduced
where the model produces the final distance metric through
iterative training of weak distance metrics [43].

3. Deep Metric Learning (DML)

.e DML method effectively measures similarities between
two samples by mapping images to an embedding space
based on ED. To accomplish this, a variety of methods have
been proposed for embedding images with discriminative
constraints [44–48]. Distances of Matusita and Akaike [49],
Euclidean, Mahalanobis, Kullback–Leibler [50], and Bhat-
tacharyya [51] are generally used for data classification as
basic similarity metrics. However, these metrics have re-
stricted applicability only to data classification. A Mahala-
nobis metric-based method was therefore proposed to
address this problem by transforming the data into con-
ventional metric learning. With this method, the data are
reshaped into a new feature space with a greater distinction
power. In most cases, metric learning relies on a linear
transformation of data not including any kernel function.
Unfortunately, these methods are ineffective in revealing the
nonlinear information that is needed to overcome this
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x2 - x1
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Figure 3: Diagrammatic representation of distance metrics. (a) Euclidean distance, (b) Manhattan distance, (c) Minkowski distance,
(d) Hamming distance, (e) Chebychev distance, and and (f ) Levenshtein distance.
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problem since they do not provide any apparent success due
to issues such as scaling [52–54]. Conventional methods of
metric learning solve this issue using linear activation
functions, but deep learning uses nonlinear activation
functions. Most deep learning approaches use the deep
architectural background as the foundation rather than
calculating distance metrics in a new representation space of
the data. As a result, distance-based methods are one of the
most fascinating areas of deep learning [36, 55–60], while
DML decreases the distance between dissimilar samples.

DML increases the distance between similar samples,
which is directly correlated to the distance between samples
[61, 62]. A metric loss function has been utilized in deep
learning to perform this task. To illustrate this process, Kaya
and Bilge [63] conducted experiments on the MNISTdataset
using the Siamese network with contrastive loss and thus
proved that the goal of the above method can be used for
successful implementation.

3.1. Problems in DML. .rough deeper, nonlinear subspace
learning that acquires embedded feature similarity using
deep architectures, DML develops problem-based solutions
because of learning from raw data. Its scope ranges from
video understanding to virtually re-identifying people,
recognizing medical problems, modeling three-dimensional
(3D) images [55, 64], verifying facial features [61, 65, 66],
and verifying signatures [67]. Understanding videos involves
many different problems, such as video annotation, video
recommendation, and video search. A metric space can be
useful for figuring out solutions to such problems. To
demonstrate, Lee et al. [68] initialized their work by
extracting audio and visual properties from videos to benefit
from a useful content. In addition to feature extraction and
embedding algorithms, they showed a triplet embedding
model based on deep neural networks, which is also a
motivation for future studies. In Ref. [69], the authors prove
that deep residual network-based metric learning is an ef-
fective approach for learning a moving human localization
metric in video surveillance. When compared to popular
DML methods, the method surpassed the rest. Visual tasks
may not be well served by standard distance metrics since
objects differ significantly from one another. Accordingly,
Hu et al. [70] used deep learning based on distance metric as
a substitute for utilizing a predefined similarity metric to
increase distances between positive samples and decrease
distances between negative samples for visual tracking.

Re-identification of individuals is another important
problem in machine learning. Since deep learning methods
have been gaining traction in recent years, the effectiveness
of convolutional neural networks has been questioned [71].
An image re-identification task involves identifying the same
person in different images taken in various situations. In this
way, different distance metrics can be learned to solve these
issues [72, 73]. In the context of person re-identification,
DML provides us with the opportunity to integrate the input
image and changed feature space at end-to-end [74]. Using
this approach, a model is constructed based on tiered
convolutions and maximum pooling. .e proximity

differences between inputs are then calculated. Finally, to
decide whether the person is the same or different, patch
summation attributes, cross-patch attributes, and the soft-
max function are used. Another study was conducted by
Ding et al. [75]to increase the distance between two dis-
similar images for triplet loss. However, one image could be
incorporated into multiple triplet units, ultimately resulting
in more triplet units. Due to this reason, the researchers
optimized the gradient descent algorithm, which relies on
the number of original images rather than the number of
triplets, instead of the number of original images.

.e above study categories include deep metric learning
studies in diverse disciplines. However, it is likely to identify
experiments conducted by researchers from other fields in
which some problems regarding similarity in music [76],
regression crowdedness [77], search of similar region [78],
recognition of volumetric image [79], instance segmentation
[80], detection of edge [81], sharpening-pan [82], and so on,
were addressed. Due to its high performance in diverse areas,
DML can therefore be claimed to make a significant con-
tribution to the literature. Using a similar evaluation pro-
tocol for the benchmark datasets, Table 1 illustrates studies
that have been published in the top journals and conferences
in the past several years. Based on the outcomes presented in
Table 1, DML has been productive in many distinct disci-
plines and each discipline has its evaluation metrics. From
Table 1, we can observe that researchers have used different
evaluation metrics for different problems. For example, F1
score, normalized mutual information (NMF), rank accu-
racy (R), first tier (FT), second tier (ST), nearest neighbor
(NN), discounted cumulated gain (DCG), Emeasure (E), and
mean average precision (mAP).

3.2. Sample Selection and Loss Functions for DML.
Sample selection: .ere are three main aspects of DML:
informational input samples, structural network models,
and a metric loss function. .e selection of informative
samples is arguably as important as the selection of DML
models since both deal with metric loss functions and the
success of DML depends heavily on the availability of in-
formative samples. Initially, some articles tend to use Sia-
mese networks in embedding learning as an easy sample pair
in the beginning [89, 90]. .e authors in Ref. [91], however,
noted that as the network neared an acceptable performance
level, the learning process could be slowed or adversely
affected. With hard negative mining [91, 92], more dis-
criminative models were developed to address this problem.
Triplet networks use a positive, a negative, and an anchor
sample to train a model for classification. A study conducted
in Ref. [93] found that some simple triplets were ineffective
at updating a model due to their inadequate discriminative
power. .erefore, a very convenient and effective way to
overcome these problems is to utilize informative sample
triplets with more possible train models and an improved
sampling strategy rather than just picking random samples
[93, 94]. In Ref. [66], semi-hard negative mining was used
for the first time to identify negative samples within the
margins. But in Ref. [95], it was found that if negative
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samples are too close to the anchor, the gradient had a high
variance and a low signal-to-noise ratio. To avoid noisy
samples, distance-weighted sampling was proposed [95]. In
summary, regardless of how well we design mathematical
models and architectures, the learning ability of the network
is determined by how good the presented samples are
presented are at discriminating. .us, the network must be
presented with distinct training examples so that the net-
work can gain more representation and learn better. In this
way, progress in performance can be attained after choosing
informative samples.

Loss functions: DML models involve loss functions as
one of the primary components. To accomplish maximum
feature depiction among the various objects, DML uses
different loss functions. Studies have found that contrastive
loss can benefit a Siamese network [89, 96]. A Siamese
network, as illustrated in Figure 4, is an effective model to
increase or decrease the distance between objects to enhance
classification performance. To obtain a meaningful pattern
among images in DML, shared weights are used that pos-
itively affect the performance of a neural network, as il-
lustrated in Figure 4. Furthermore, sharing weights has
significant advantages in terms of memory and time.

Moreover, combining the Siamese network and CNN has
many benefits [97], which include learning similarity from
direct image pixels, informing color and textures at the same
time, and its flexibility. As part of the metric learning model
[98], Mahalanobis metrics and Siamese CNN were com-
bined for the re-identification of individuals, whereas
Mahalanobis metrics were used for classification. A face
recognition algorithm based on softmax and center loss was
proposed by the authors of Ref. [99]. Like the contrastive
loss, the center loss attempts to find deep features that
decrease the distances between their centers, but the softmax
loss attempts to increase the distances between classes. Using
class-based hierarchical trees, the authors proposed a new
metric loss based on triplet loss in Ref. [100]. In a similar
vein, Wang et al. [101] conceptualized a novel angular loss to
improve DML. .e authors of [102] demonstrated that they
could achieve a greater degree of closeness between objects
by using quadruple samples. Like quadruplet loss, histogram
loss [103] utilizes quadruplet samples for training. Unlike
other losses, it does not require tuning parameters since its
similarity distributions are calculated using histograms. As
compared to other losses, it achieves superior results in
experimental studies using re-identification datasets, such as
CUHK03 [104] and Market-1501 [105]. Using an SVM
learning constraint to minimize learning risk in the person a
re-identification task was proposed by Yao et al. [106]. .e
goal of part loss is to target the various parts of the body
instead of concentrating on a single point. State-of-the-art
loss metrics in the literature are encapsulated in Table 2 in
detail.

4. Discussion

A prior section of this article discussed how DML can be
applied to tasks such as face verification, recognition, and
person re-identification. Training samples for single cate-
gories are limited for these tasks with many categories. It is
possible to complicate a successful training process if there
are not enough samples for each category. A DML algorithm
can process two, three, or four samples using a network
structure, such as the Siamese network, triplet network, or
quadruple network. Using these network structures permits
significant increases in training data with greater accuracy.
.is means that even small samples in a single category can
improve the performance of the network. According to
Table 1, DML algorithms have demonstrated excellent
performance for these tasks, even when there are a lot of
categories and few samples per category.

When evaluating DML, which includes metric loss
function, sampling strategy, and network structure, all the
network components should be considered together. .e
sample to be presented to the network and its relationship
with the metric loss function is determined by the dataset.
Losses such as contrastive loss [89], triplet loss [107],
quadruple loss [102], and n-pair loss [108] are types of metric
loss functions that allow us to incorporate paired samples,
triplet samples, and quadruple samples to increase the data
sample size (n). .e network training process becomes too
time-consuming and memory-intensive when samples are

Table 1: Comparative result analysis of benchmark datasets for
various DML problems.

Clustering
image (%) Retrieval of image recall @ R (%)

[83]

NMI FI R� 1 R� 2 R� 4 R� 8
56.2 22.2 46.5 58.1 69.8 80.2
60.3 27.2 50.9 63.3 74.2 83.3
61.1 29.4 54.7 66.3 76.0 83.8
59.2 — 48.1 61.4 71.8 81.8
— — 57.1 68.8 78.6 86.5

[84]

NMI FI R� 1 R� 2 R� 4 R� 8
55.1 21.7 48.4 61.2 71.9 81.1
63.8 33.8 71.3 80.0 86.3 91.8
59.0 32.4 71.1 81.3 87.7 92.0
— — 58.2 70.8 80.1 87.6
— — 81.3 88.0 92.8 95.8

[85]

NMI FI R� 1 R� 10 R� 100 R� 1000
87.3 24.7 6 3.1 80.6 91.6 97.8
88.2 28.1 67.6 83.8 93.0 98.0
88.7 29.9 80.0 85.0 93.6 98.1
89.3 — 67.1 83.5 93.3 -
— — 84.7 88.4 94.9 98.3

Dataset Task and results
3D shape retrieval

[86]

FT ST NN DGG E MAP
64.2 72.2 66.0 77.0 35.2 67.2
72.3 77.4 73.3 82.1 37.0 74.1
79.7 85.0 76.1 85.4 40.0 81.2

[87]

FT ST NN DGG E MAP
28.2 35.1 26.9 50.0 16.9 29.2
33.2 39.2 39.9 54.1 19.9 34.1
46.2 54.2 59.0 67.3 28.0 48.2

Verification of face accuracy

[88]
91.46
95.12
92.99
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paired or tripled. Depending on the situation, training
networks become exponentially more difficult.

.e hard negative mining method [91, 92] and semi-
hard negative mining method [66, 102] provide informative
samples for training to overcome these problems. Despite
providing the desired results in specific tasks, hard mining
and semi-hard mining strategies consume a great deal of
time and memory compared to the traditional method. In
addition, the GPU memory limit makes it impossible at
times when using large batch sizes. .is can be overcomed
by clustering loss [109], which has an excellent metric
function that requires no data preparation. .e authors in
Ref. [66] used a CPU cluster to implement their mining
strategy to achieve a huge batch on CPU clusters, while deep
metric learning is typically performed on a GPU. It may not
be possible for some datasets to achieve fast convergence

with the metric loss function. To solve this problem, the
weights from pretrained network models may be used to
ensure faster convergence and better differentiation in
embedding space [108].

5. Conclusion

A field of research that researchers have taken interest in
recently is DML based on distance metrics. Several academic
papers have contributed immensely to the literature on this
topic. .is article fills the literature gap by providing a
comprehensive look at DML that considers all aspects of the
technology and the problems associated with this field. Most
current studies conducted in this area are commonly
influenced by Siamese and triplet networks in DML and
proved their higher efficiency on benchmark datasets and
specific tasks. However, studies are limited to a few areas.
.is could be fascinating for researchers given that there are
many aspects of DML that have not yet been explored, such
as the shortcomings of existing approaches. .us, DML is
still open for future research and can be improved in the long
run.
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