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*is paper presents a settlement prediction method based on PSO optimized SVM for improving the accuracy of foundation pit
settlement prediction. Firstly, the method uses the SA algorithm to improve the traditional PSO algorithm, and thus, the overall
optimization-seeking ability of the PSO algorithm is improved. Secondly, the improved PSO algorithm is used to train the SVM
algorithm. Finally, the optimal SVMmodel is obtained, and the trained model is used in foundation pit settlement prediction.*e
results suggest that the settling results obtained from the optimized model are closer to the actual values and also more ad-
vantageous in indicators such as RMSE. *e fitting value R2 � 0.9641, which is greater, indicates a better fitting effect. *us, it is
indicated that the improvement method is feasible.

1. Introduction

In recent years, with the continuous improvement of China’s
economic level, technology, and urbanization, a variety of
high-rise buildings have been erected. During construction,
foundation pit construction is an essential part, which di-
rectly affects the quality of the whole architecture. If the
foundation pit settlement is not predicted and monitored in
time, architecture is at very high risk of tilting and col-
lapsing, thus causing serious safety accidents and endan-
gering people’s personal and property safety. *erefore, the
use of current information technology for the prediction and
real-time monitoring of foundation settlement changes is an
inevitable choice in the field of building construction, which
greatly improves the service life and stability of buildings. At
present, the method of predicting foundation settlement has
changed from traditional artificial prediction to prediction
by various neural network algorithms of machine learning,
such as BP neural network, CNN, and Gray theory, which
are more applied.*e above algorithms have achieved better
application results in the fields of image classification rec-
ognition and fault diagnosis prediction. With the wide

application and popularization of machine learning, more
and more intelligent algorithms are proposed and applied to
subsidence deformation monitoring, such as particle swarm
optimization (PSO) algorithm, and support vector machine
(SVM) is also utilized. In terms of specific research, Yan Lv
et al. proposed and constructed a settlement prediction
model by combining Gray theory and BP neural network.
*e experimental results indicate that the accuracy rate of
prediction of the model stands at 75%, and it can be applied
in the prediction of foundation pit settlement engineering,
which has a certain reference value [1]; Zhang et al. collected
a large amount of foundation settlement data from several
projects and summarized 17 main factors affecting ground
settlement, which provided a strong database for settlement
prediction [2]; for genetic optimization of extreme-value
learning machine, Yang proposed three different activation
functions for the extreme learning machine (ELM) model
based on a genetic algorithm. *e test results show that the
constructed Ga-ELMsin model has high prediction accu-
racy. *e computational accuracy of the ELM model can be
effectively improved with the addition of a genetic algorithm
[3]. Wei Jiameng et al. proposed to apply the Newton–Cotes
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quadrature formula to the nonisometric GM(1, 1) modeling
and applied it to the prediction and real-time monitoring of
building settlement and deformation. *e analysis reveals
that the proposed prediction method can be monitored and
analyzed in the building settlement changes. *e fit is im-
proved by about 30%, and the prediction accuracy of the new
model is significantly better than that of the traditional
model [4]. Shi-fan et al. proposed a GWO-ELM model to
enable training and prediction of ground subsidence. *e
optimized GWO-ELM model has significantly improved
prediction ability and better prediction effect [5]. Zhan et al.
proposed an Elman network-based surface settlement pre-
diction method to predict the surface settlement of deep
foundation pits in oceanic lots and then correct the predicted
values by the Markov chain model, thus further improving
the accurate prediction of deep foundation pits in deep
marine areas. *ey also found that this method has a good
denoising effect and is practical through practice [6]. Liu
et al. constructed a tunnel settlement prediction model
represented by Zhengzhou based on the currently available
monitoring data. By using this model, the Zhengzhou tunnel
can be monitored and predicted in real time, and the specific
location and orientation of settlement can be discovered in
time so that timely maintenance can be carried out to ensure
the normal operation of the subway [7].

*e above study shows that combining machine learning
and neural networks for settlement prediction has become
the mainstream of current thinking. In this study, two
typical algorithms, PSO and SVM, are combined to make
predictions regarding the settlement of foundation pits.

2. Basic Methods

2.1. Support VectorMachineModel. Support vector machine
(SVM), a newmachine learning method, is often industrially
used as a classifier and contributes to the development and
application of deep learning algorithms as well. It was
invented by Vapnik’s team on the basis of statistical learning
theory [8–11]. Currently, SVM is gaining momentum in a
number of research fields, including image recognition and
classification, face recognition and classification, and time
series prediction [12–15]. As a typical binary classification
model, SVM, by separating positive and negative planes
through the hyperplane and introducing a linear classifi-
cation criterion with a maximum interval, empowers the
linearizer with nonlinear capability with the help of kernel
tricks (nonlinear mapping). Compared with traditional
machine learning algorithms, SVM features with adapt-
ability, generalization, a short period needed for training,
and a minor chance of being trapped in local search, etc.
*erefore, SVM is applied in many fields as a way of solving
complex real-life problems [16, 17].

2.1.1. (e Basic Idea of the SVM Algorithm. As an effective
supervised learning method, SVM includes interval, dyadic,
and kernel tricks. From a mathematical point of view, SVM
provides the optimal algorithm for convex quadratic

programming [18–20]. *e classification algorithms of SVM
are shown in Figure 1.

In Figure 1, the black and white dots denote two types of
samples, and the sample dots distributed on the separating
plane are the support vectors. *en, “2” denotes the optimal
separating hyperplane found by SVM, and “1” and “3”
denote the separating hyperplane nearest to the optimal
separating hyperplane. *e distance between “1” and “3” is
the margin, and when the margin reaches the maximum, it is
the optimal hyperplane. With the help of the discriminant
function of f(x) � ωφ(x) + b, which is also called the
separating hyperplane, SVM finds the optimal separating
plane.

(1) Linearly Separable SVM. It is assumed that the training
sample set (xi, yi), i � 1, 2, . . . n􏼈 􏼉 includes 2 classes, where
the first class is labeled as yi � 1 and the second class is
labeled as yi � −1. When the samples are sorted out by using
the separating hyperplane ωx + b � 0, the constraint con-
dition is as follows [21]:

yi ω · xi + b( 􏼁 − 1≥ 0i � 1, 2, . . . n. (1)

*e distance between point x and separating hyperplane
is given by

d(ω, b, x) �
ω · xi + b

􏼌􏼌􏼌􏼌
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‖ω‖
. (2)

*e distance between the two separating hyperplanes is
given by

min
ω · xi + b
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According to the above analysis, SVM is optimized to
find optimal hyperplane, i.e., the optimal hyperplane is
obtained by solving min 1/2‖ω‖2 which can be expressed by
the following equation:

min
1
2
, ‖ω‖

2
,

s.tyi ω · xi + b( 􏼁≥ 1, i � 1, 2, . . . n.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

As convex quadratic programming can only be solved by
a global optimal solution, which makes the process of so-
lution simple, the global optimal solution can be derived by
calculating the extrema. In solving convex quadratic pro-
gramming, a combination of structural and empirical risk
needs to be considered, and we can get the following
equation after the Lagrangian function is introduced into
equations (3)–(4) based on the Lagrangian duality [22]:

L(ω, b, a) �
1
2
‖ω‖

2
− 􏽘

n

i�1
ai yi ω · xi + b( 􏼁 − 1􏼂 􏼃, (5)

where ai > 0(i � 1, 2, . . . , n) denotes the Lagrangian
coefficients.

Find the partial derivatives of ω and b, respectively, and
make them equal to zero as follows:
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After collation, we can get

ω � 􏽘
n
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ai yixi( 􏼁,

􏽘

n

l�1
aiyi � o.

(7)

Substituting the above results into equations (3)–(5), we
can get

L(ω, b, a) � −
1
2

􏽘

n

i�1
􏽘

n

j�1
aiajyiyj xi · xj􏼐 􏼑 + 􏽘

n

i�1
ai. (8)

*erefore, the original problem of optimization can be
transformed into the Lagrangian dual problem as the fol-
lowing equation:

max: L(a) � 􏽘
n
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As a• � (a•
1, a•

2, . . . a•
n)T denotes the optimal solution of

the Lagrangian dual problem, the solution of the original
optimization problem can be expressed as follows:
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where xi and xj denote any pair of support vectors in the two
categories. With the above derivation process, the classifi-
cation function identifying the final optimal hyperplane is
expressed as follows:

f(x) � sgn 􏽘
n

i�1
a

•
i yi x · xi( 􏼁 + b⎡⎣ ⎤⎦. (11)

(2) Nonlinear SVM. On the basis of nonlinear mapping
functions, achieving the mapping of sample data from low-
dimensional space to feature space (high-dimensional
space), nonlinear problems are converted into linear ones.
*e training efficiency of SVM can be significantly improved
by choosing appropriate kernel functions to perform inner
product operations in the initial space or the high-dimen-
sional space, provided that the Mercer condition is met.

2.2. (e Principle of Particle Swarm Optimization.
Particle swarm optimization (PSO) is an iteration-based
evolutionary algorithm, which was developed by Eberhart
et al. *e foraging behavior in birds is observed, and the
algorithm has been widely applied in artificial intelligence.

*e foraging behavior in birds is analyzed by describing
each bird in the flock as a particle. Each particle represents a
potential solution to an optimization problem. However, the
particle is a two-dimensional optimization vector in a two-
dimensional optimization problem. In addition, the particle
is a multibit optimization vector in a multidimensional
optimization problem.*erefore, the bird flock is a swarm of
particles. Assuming that there are m particles in the D-di-
mensional target search space, if the optimization objective
function value is used to characterize the particle merit
where the position of any particle is Xi � (x1

i , x2
i , . . . xD

i ) and
velocity is Vi � (v1i , v2i , . . . vD

i ), the smaller the objective
function value, the nearer the particle tends to the extreme
position and the better the particle quality is. After a limited
search of optimization, the optimal position of a single
particle is Pi � (p1

i , p2
i , . . . pD

i ) and the optimal position in
the swarm of particles is Pg � (p1

g, p2
g, . . . pD

g ).
After a round of particle position iteration, the fitness

values should be updated simultaneously. Comparing the
fitness values of new particles with those of personal best
values and group best values, we shall update the Pbest
position of the personal best values and Gbest position of the
group best values with the following equation:

V
k+1
i d � ωV

k
i d + c1r1 P

k
i d − X

k
i d􏼐 􏼑 + c2r2 P

k
g d − X

k
i d􏼐 􏼑,

X
k+1
i d � X

k
i d + V

k+1
i d ,

(12)

where c1 and c2 are the learning factors and ω represents the
weight. *en, r1 and r2 denote the random number in the

1
2

3

d

maximize interval (Margin)

Classified hyperplane equation :
ω · x + b = 0

Figure 1: Classification diagram.
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interval [0, 1]. Vk+1
i d together with Vk

i d and Xk+1
i d together

with Xk
i d are the particle velocity and particle displacement

at the next moment and the current moment, respectively.

2.2.1. (e Flow of PSO. PSO is used to update particle
positions and velocities in the solution space and continues
to find the best particles in the process, which can be il-
lustrated in Figure 2.

(1) Initialize the particle swarm: randomly select the
initial particles in the solution space and set the
velocity and motion direction of the initial particles
as well as the learning factors, inertia weights, and
other parameters.

(2) Calculate the fitness value: the fitness value of the
current particle is solved to determine the personal
best value. *en the group best value is determined
by comparison.

(3) Update the velocity and position of particles: regulate
particle velocity by comprehensively considering
personal best value and group best value, and guide
the particles to move at this velocity.

(4) Output the optimal solution: after a round of iter-
ations, if meeting termination condition, the optimal
solution can be obtained; if not meeting termination
condition, skip to step 2 until the termination
condition is met or the number of iterations is
reached.

3. The Construction of a Settlement Prediction
Model of Foundation Pit Based on the
Improved PSO-SVM Model

3.1. SA Algorithm. Simulated annealing (SA) algorithm,
proposed by Metropolis as a heuristic algorithm through
simulating the annealing process, is often used to solve some
solutions that are difficult to denote in theoretical and
mathematical derivations.While themolecularmotion within
a solid at high temperature is fast and the molecule energy is
high, as the temperature decreases, the molecular motion
tends to slow down and transits from the disordered state to
the ordered state. During the annealing process, the solid
matter can reach thermal equilibrium at any temperature, and
the thermal equilibrium at this time is equivalent to the local
optimal solution. *en, as the thermal energy of the solid
matter is the lowest and a new thermal equilibrium appears
when cooling down to the lowest temperature, the thermal
equilibrium at this time is equivalent to the global optimal
solution. Compared with the PSO algorithm, the SA algo-
rithm features with a remarkable advantage in global search
and therefore is suitable for solving large-scale combinatorial
optimization problems [23].

3.2. (e Principle and Flow of the SA-PSO Algorithm

3.2.1. (e Principle of the SA-PSO Algorithm. *e SA-PSO
algorithm improves the overall application by using the SA
algorithm to compensate for its shortcomings on the basis of

the PSO algorithm. As the receive state is determined based
on a probability formula in the SA algorithm, if
f(x(k + 1))<f(x(k)), receive state is x(k + 1); otherwise,
x(k + 1) will be received based on the probability
p � exp(f(x(k + 1)) − f(x(k))/T). Since the setting situ-
ation of the initial value has little effect on the probability
value of the SA algorithm, the optimal solution can be
calculated according to the probability formula. *e SA
algorithm changes the annealing temperature through the
adjustment function, which means the difference in the
particle fitness values is apparent if the temperature at the
initial stage is high. As the particle search range expands
simultaneously in the process of cooling down, the fitness of
the particles is close to the optimal solution when the
annealing temperature tends to zero. In addition to the more
optimal solutions in the current state, the SA algorithm,
when receiving new solutions with a certain probability to
receive solutions that do not fully satisfy the conditions,
strengthens its global search capability consequently. Ap-
parently, the combination of the two algorithms enables
better application performance as the SA algorithm com-
pensates for the shortcomings of the PSO algorithm [24, 25].

3.2.2. Flow of the SA-PSO Algorithm. Combined with the
previous discussion, the SA-PSO algorithm features with the
advantages of fast convergence and strong global search
capability, etc. *e implementation procedures are shown as
follows [26]:

(1) Perform initialization of particle position and ve-
locity based on the PSO algorithm.

(2) Select an appropriate fitness function to obtain the
personal best fitness value Pi as well as the group best
fitness value Pg.

(3) Set the initial temperature to � fitness(pg)/log5.
fitness(pg) denotes the fitness value of the optimal
particle.

(4) Introduce the SA algorithm to obtain the fitness
value of each particle at the initial temperature.

TF pi( 􏼁 �
e

− f pi( )− f pg( 􏼁( 􏼁/t

􏽐
N
i�1 e

− f pi( )−f pg( 􏼁( 􏼁/t
. (13)

(5) Update particle position and particle velocity based
on the PSO algorithm.

(6) Solve for the updated particle fitness values.
(7) Perform annealing treatment.
(8) If the termination condition is met, stop iteration

and output the result. Otherwise, skip to step 4, and
repeat the steps above until the termination condi-
tion is met.

3.3. (e Construction of the Settlement Prediction Model of
Foundation Pit of Improved SVM on the Basis of SA-PSO.
To improve the accuracy of foundation pit settlement pre-
diction, firstly this paper uses the PSO algorithm to optimize
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the covariates (g, C) in the SVMmodel. Optimization search,
however, may be trapped in the circle of local optimization
search. In this regard, by invoking the SA algorithm to
improve the PSO algorithm, this paper developed a better-
performing SA-PSO algorithm, which can determine the
optimal solution of parameters in a more efficient and ac-
curate manner. *erefore, the SVM model based on the SA-
PSO algorithm can strongly back the settlement prediction
of the foundation pit.

*e flowchart of the SA-PSO algorithm for SVM model
parameter optimization is shown in Figure 3.

(1) Data acquisition and collation: the raw data of set-
tlement are preprocessed, and then phase space is
reconstructed to establish a time series of phase
space. Next, put the collated data into the prediction
set and training set, respectively, and thus, by
comprehensively applying the Cao method and
mutual information, the optimal embedding di-
mension m and time delay r are determined.

(2) Processing by normalization method: the data in the
prediction set and training set need to be normalized
by the following equation for the purpose of avoiding
data redundancy:

y �
2x − xmax − xmin

xmax − xmin
, (14)

where xmin and xmax denote the minimum and
maximum values in the original data, respectively.
Here, x denotes the observed data and y denotes the
normalized data.

(3) Set the velocity of the initial particle and apply the
fitness function f(x) � 1/n􏽐

n
j�1(yi − 􏽢yi)

2, so as to
solve the personal best fitness value pi and the group
best fitness value pg.

(4) Simulate annealing initialization on the basis of the
SA algorithm. By setting the initial temperature

to � fitness(pg)/log 5, solve for the initial solution S
and the current fitness values, and then update pi

and pg.
(5) Calculate the updated solution S1, and update the

particle position and velocity through the PSO al-
gorithm. In the meantime, solve for the new fitness
value.

(6) Follow the rules in the simulated annealing. If
f(S1)<f(S), so S1 � S at this point, i.e., receive
state S1; if f(S1)<f(S), then S remains unchanged
at this point.

(7) Update pi and pg based on the new fitness values.
(8) If the termination condition is met, you can stop the

iteration and output the result; otherwise, skip to
step 1, and repeat steps above until the termination
condition is met.

4. The EngineeringApplication of the Improved
PSO-SVM Model

4.1. SA-PSO-SVM Model Training Results. Data from a
monitoring point, which represents the maximum settle-
ment, were selected as the base data, and the data were
normalized where the slack variable is 0.02 and other pa-
rameters are set. *en, the predictions of data from the test
set were simulated on the MATLAB, a software platform, by
optimizing the model, and quantitative analysis was con-
ducted by combining the application of four indicators,
which are goodness of fit R2 � [􏽐

n
i�1(􏽢y(i) − f)

(y(i) − yt)]
2/􏽐

n
i�1 (􏽢y(i) − f)2 􏽐

n
i�1 (y(i) − yt)

2, root mean

square relative error RMSE �

���������������

1/n 􏽐
n
i�1 (yi − 􏽢yt)

2
􏽱

, mean
absolute error MAE � (1/n) 􏽐

n
i�1 |yi − 􏽢y|, and residual sum

of squares SSE � 􏽐
n
i�1(yi − 􏽢yi)

2. In this case, goodness of fit
R2 characterizes the degree of influence of the independent
variables in the model on the joint process of the dependent

Start

Initialize the particle swarm 

Calculate the fitness
value of the particle 

Calculate the personal
best value and the
group best value 

Update the
velocity and

position 

Update the
fitness

function

The
termination
condition is

met

Output the
optimal solution 

No

Yes

Figure 2: Flowchart of particle swarm optimization parameter optimization.
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variable, where tending to 1 implies that the model has a
good fitness degree.*en the root mean square relative error
RMSE means the dispersion of the prediction results, and
the mean absolute error MAE represents the prediction
accuracy of the model.

*e prediction results are displayed in Figure 4.
According to the analysis in Figure 4, the SA-PSO-SVM

model to train and predict has a good fitting degree. *e
change curve of settlement predicted by the model basically
fits the change curve of the settlement obtained from actual
observation. Relevant data and ratings are shown in Table 1.

When analyzed in conjunction with Table 1, the
prediction accuracy of the SA-PSO-SVM model is better
than that of the PSO-SVM model. *e relative error of the
root mean square is 0.2134. In addition, the prediction

curve of the SA-PSO-SVMmodel has a good fitting degree
with the actual curve, and its goodness of fit is 0.9962,
which is higher than that of the PSO-SVM model.
Moreover, when the SA-PSO-SVM model has lower re-
quirements for data, it has better robust performance;
besides, the SA-PSO-SVM model can produce prediction
results that are closer to the actual values since it is less
likely to fall into the defect of local extremes; furthermore,
the SA-PSO-SVM model can effectively handle nonlinear
data and maintain a high convergence rate in the search
process.

*e SA-PSO-SVM model was used to predict the set-
tlement at the JC15 monitoring point for Period 32 with the
input values (−18.04, −18.36, and −18.72). *en, the output
values from Period 32 were reinput into the model and used

Start

Initialize the position and speed of particles (c and g)

Simulate annealing initialization

New S1 created

Update the position and speed of particles based on S1

Calculate the fitness value

Accept S1 or not

If S=S1, The temperature drops

Update the value of pi and pj

Conditions are met

Get chest and ghest

Get the best model of SVM

S remain
unchanged 

No

Yes

No

Yes

Figure 3: Flowchart of the SA-PSO algorithm for SVM model parameter optimization.
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to predict the settlement for Period 33, and the results
obtained are listed in Table 2.

According to the predicted results, the settlement of
monitoring points for Periods 32 and 33 is −18.83mm and
−18.91mm, respectively, both of which are below the
warning value (Hprediction ≤ 25mm), and therefore, the
current foundation pit works are judged to be safe in terms
of construction.

4.2. Comparison andAnalysis of the(reeModels. To test the
prediction accuracy of the SVM regression prediction
model, the PSO-SVM prediction model and the SA-PSO-
SVM prediction model are used in this section. Under the
three models, data are predicted from the training set and
test set at JC15 monitoring points, and we obtained the
results presented in Table 3 and Figure 5.

*e best fitness of the SA-PSO-SVMmodel outperforms
that of the PSO-SVM model and consistently outperforms
the fitness value of the SVM regression prediction model
throughout the iterations. As the best fitness value of the SA-
PSO-SVM model converges to 2.31 × 10− 4, the corre-
sponding optimal covariate is the kernel function g � 0.0572
and the optimal penalty parameter is C� 65.0981, which is
shown in Table 4.

As the curves of fitting predictions of the three pre-
diction models have a good fitness degree to the curves from
actual observation, all three prediction models can provide
assistance to the settlement prediction.

2 4 6 8 100
-19

-18

-17

-16

-15

-14

-13

-12

Original value
SAPSO-SVM Model prediction

Figure 4: SA-PSO-SVM model training and prediction result graph.

Table 1: Comparison of results of model processing.

Model index PSO-SVM SA-PSO-SVM
RMSE 0.3135 0.2134
SSE 3.0477 1.4121
MAE 0.2719 0.1706
R2(goodness of fit) 0.9685 0.9962

Table 2: Simulation results of support vector machine
optimization.

Cycle Input value SA-PSO-SVM
32 −18.04 −18.36 −18.72 −18.83
33 −18.36 −18.72 −18.83 −18.91

Table 3: Comparison of the accuracy of the three model treatments
(unit: mm).

SVM PSO-SVM SA-PSO-SVM
RMSE 0.6038 03135 0.2134
SSE 11.3001 3.0477 1.4121
MAE 0.4583 0.2719 0.1706
R2 0.9241 0.9685 0.9962

3 5 7 9 11 13 15 17 19 21 23 25 270
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Figure 5: Comparison of the predicted and actual values of the
three models.
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In addition, the root mean square relative errors are
0.6038mm, 0.3135mm, and 0.2134mm, respectively. Be-
sides, the MAE and SSE values of the SA-PSO-SVM model
are the smallest among the three models, which are 0.1706
and 1.41221, respectively.*en, the goodness of fit of the SA-
PSO-SVM model, which is equal to 0.996172, is higher than
those of the other two models.

4.3. Validation and Analysis of Prediction Models.
According to the engineering application results of the three
models, the SA-PSO-SVM model is superior to the
remaining two models in terms of overall performance. To
further verify the reliability of the above conclusion, in this
section, we combined the data from the JC30 monitoring
point, the submaximum settlement, for analysis and
verification.

For the cumulative settlement data at the JC30 moni-
toring point, settlement predictions were made by applying
the SVM regression prediction model, PSO-SVM prediction
model, and SA-PSO-SVM prediction model. *e results are
presented in Figure 6.

It can be seen that the maximum residual values cor-
responding to the SVM regression model, the PSO-SVM
model, and the SA-PSO-SVM model are −1.97mm,
−0.63mm, and 0.35mm, respectively, and it therefore in-
dicates that the settlement prediction curves of all three
models basically match the original data curves. Further-
more, the SA-PSO-SVMmodel presents better fitting results
than the other two models, with a goodness of fit of 0.9641.

*e accuracy of data processing of the three models is
listed in Table 5.

It can be seen that the root mean square relative error of
the SA-PSO-SVM model, which is only 0.1889, is signifi-
cantly smaller than those of the SVM regression model and
the PSO-SVMmodel. *en, the SSE value and MAE value of
the SA-PSO-SVM model, which are 1.1067 and 0.1693,
respectively, are also the smallest among the three models.
*erefore, it confirms that the proposed SA-PSO-SVM
model has better robust performance in data processing and
can search for global optimal solution efficiently. Further-
more, the PSO-SVM model also shows good adaptability to
nonlinear time-series settlement data and can finally achieve
the expected prediction accuracy.

*e three models were used to predict the settlement at
the JC30 monitoring point for Periods 32 and 33, respec-
tively, and the results obtained are listed in Table 6.

According to Table 6, based on the SVM regression
model, PSO-SVM model, and SA-PSO-SVM model, the
cumulative settlement at the JC30 monitoring point for
Period 32 and 33 is all below the warning value

(Hprediction ≤ 25mm). *erefore, the current foundation
pit project can be judged as safe in terms of construction.

5. Conclusion

Based on the analysis and validation above, the SA algorithm
is used to improve the PSO algorithm, so as to optimize the
parameters of the SVMmodel. *us, the needs of settlement
prediction of the foundation pit are met.
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*e experimental data used to support the findings of this
study are available from the corresponding author upon
request.
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Table 4: Optimization results of SVM parameters.

Model C G
SVM 87.6513 0.0633
PSO-SVM 86.6892 0.0617
SA-PSO-SVM 65.0981 0.0572
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Figure 6: Prediction results of JC30 monitoring points.

Table 5: Processing accuracy of the three models (unit: mm).

SVM PSO-SVM SAPSO-SVM
RMSE 0.6791 0.3208 0.1889
SSE 14.2956 3.1912 1.1067
MAE 0.4426 0.2909 0.1693
R2(goodness of fit) 0.8924 0.9285 0.9641

Table 6: Numerical prediction results of three models for JC30
monitoring points.

Cycle SVM PSO-SVM SA-PSO-SVM
32 −18.02 −17.73 −17.86
33 −18.21 −17.84 −17.75
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