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*is work was aimed to establish a feature model for glioma grading and early metastasis and recurrence risk prediction based on
contrast-enhancedmagnetic resonance imaging (MRI). A total of 145 patients diagnosed with glioma by pathological examination
were selected as the research subjects (training cohort: nasty 80; validation cohort: nasty 65).*e imaging parameters T1-weighted
(CET1WI), axial T2-weighted (T2WI), and apparent diffusion coefficient (ADC) were selected for the extraction of size and shape,
intensity, histogram, and texture features. Image dimensionality reduction, feature selection, and model building were performed
using the LASSO regression method. Using imaging features as potential predictors and evaluation indicators, the accuracy,
sensitivity, and specificity of all prediction models and the area under the curve (AUC) of the receiver operating characteristic
curve were calculated. Moreover, a predictive model for glioma grading and early metastasis risk was constructed. *e results
showed that under a single imaging parameter (T1-CE, DDC, T2WI-FLAIR, ADCslow, Alpha, ADC, CBF, and ADCfast), the
diagnostic accuracy, sensitivity, specificity, AUC, and 95% confidence interval (CI) of low-grade gliomas (LGG), high-grade
gliomas (HGG), and recurrent and nonrecurrent gliomas were significantly different (P< 0.05). *e texture features, histogram
features, and mean AUC of distinguishing low-grade and high-grade gliomas were 0.958, 0.945, and 0.954, respectively. *e
texture features, histogram features, and mean AUC for distinguishing recurrent and nonrecurrent gliomas were 0.949, 0.876, and
0.900, respectively. In short, the use of enhanced MRI imaging features can realize the prediction of early grading and recurrence
of glioma and is of great significance for the early classification of benign and malignant characteristics of tumors.

1. Introduction

Glioma is the most common primary brain tumor in brain
tumors [1]. According to the disease guidance program of
theWorld Health Organization (WHO), gliomas are divided
into 4 grades (I-II, low level; III-IV level, and high grade) [2].
*e accurate grading of gliomas has important clinical
significance for the selection of treatment regimens, mon-
itoring of the efficacy of radiotherapy and chemotherapy,
postoperative management of patients, and evaluation of
prognosis [3]. In order to better individualize the treatment
of patients, it is necessary to accurately predict the prognosis
of the disease. Magnetic resonance imaging (MRI) and
apparent diffusion coefficient (ADC) can provide important
reference criteria for grading the diagnosis of gliomas [4, 5].

However, due to the overlap of many similar imaging fea-
tures of low-grade (LGG) and high-grade (HGG) gliomas on
conventional MRI, glioma grading is easily misdiagnosed
[6].

*e image group is a new field that can convert the
texture features of image data into feature values that are
easy to synthesize and quantify [7–10] through machine
learning algorithms. *e imaging group extracts many
image texture features from medical images and quantifies
the tumor comprehensively through the feature values.
Compared with conventional MRI, this technique is a
quantitative method and can quantify the phenotypic
characteristics of tumors in more detail. *e results of
radiomics are less disturbed by human factors. At present,
radiology is often used to evaluate the clinical phenotype and
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prognosis of lung cancer [11, 12]. For example, the quan-
titative features of imaging include many important prog-
nostic indicators, including molecular subtypes of tumors
[13]. Although the imaging group has great clinical appli-
cation value, the imaging technology still has many short-
comings in routine clinical practice. First, the late image
processing technology is complex and requires special
programs and software. Second, there is no unified standard
for the processing of features. Finally, ROI’s tumor sketch
requires radiologists to draw layer by layer on the image,
which is too complex and tedious for clinicians, and there
are still errors in the tumor area sketched by each doctor,
which leads to differences in feature extraction.

*ere are studies that use single sequence imaging and
single features to grade gliomas to a certain extent [14–16].
However, a single sequence with a single feature cannot
quantify all the features of gliomas [17]. However, tumor
heterogeneity is an important feature of glioma, and only
one MRI sequence cannot extract all the features of glioma.
For example, due to various pathological changes in gliomas,
such as intratumoral hemorrhage, necrosis, cystic degen-
eration, and so on, different characteristic signals will be
shown by using multisequence MR images. *erefore, the
imaging features of multisequence enhanced MR images are
helpful in the grading of gliomas as a noninvasive biomarker
for preoperative diagnosis of malignant tumors.

Studies suggest that the use of sequences or combina-
tions of multiple imaging features can provide more com-
prehensive information for glioma grading [18]. *erefore,
this work aimed to improve the predictive value of imaging
features for early metastasis and recurrence of glioma. In this
study, imaging features of multiple contrast-enhanced MRI
sequences (such as T2-FLAIR, T1WI-CE, and ADC MAP)
were selected for the evaluation of glioma grade and
prognosis. *e optimal imaging features for each sequence
parameter were first determined, and then these features
were combined to achieve the best prediction of glioma
grade and recurrence. *is study aimed to provide a ref-
erence for improving the clinical diagnosis, treatment de-
cision, and prognosis prediction value of the disease by using
the combination of imaging features.

2. Materials and Methods

2.1. Patients and Grouping. In this study, 80 patients with
glioma confirmed by pathology after operation in hospital
from January 2016 to November 2020 into the training
group of this study were included, and 65 patients who met
the same inclusion and exclusion criteria in the same period
as the verification group. A total of 145 patients were in-
cluded in this study, including 86 males and 59 females.
According to the pathological test results, the patients were
divided into high-grade and low-grade groups. Of which, the
average age of the high-grade glioma group was 52.4± 15.23
years old, and that of the low-grade glioma group was
41.0± 13.2 years old. *e magnetic resonance images of
glioma patients were collected who meet the above inclusion
and exclusion criteria and saved by the picture archiving and
communication system (PACS) of the hospital. *e study

had been approved by the ethics committee of the hospital.
*e patients and their families had a full understanding of
the content and methods of the research and had signed the
relevant informed consents.

Inclusion criteria: (1) glioma must be confirmed by
postoperative pathology. (2).*e images of the subjects were
of good quality and had no obvious artifacts. *ree con-
ventional MRI sequences (CET1WI, T2WI, and ADC) were
available, and all images were obtained within 5 days before
surgical treatment.

Exclusion criteria: (1). the patient who was treated before
the operation (radiotherapy, chemotherapy, combined ra-
diotherapy and chemotherapy, etc.); (2). without 1.5TMRI
examination, the live image quality is poor and there are
many artifacts, so it is impossible to carry out this study. All
the recurrent cases were confirmed by surgical reexamina-
tion, and all recurrent cases were reoperated within one year.
*e specific recruitment process is as follows (Figure 1).

2.2. Image Data Acquisition. *e patients with gliomas were
scanned with enhanced MR with an 8-channel phased-array
head coil on a 3.0 T high-field magnetic resonance scanner.
Continuous acquisition of conventional MR structure im-
ages, MR diffusion-weighted images, perfusion-weighted
images, and finally the T1 structure images after injection of
gadolinium contrast agent. Conventional MR images use
fast spin echo sequences (fast spin echo, FSE). (1) axis T1WI:
repetition time: 1750ms, echo time: 25ms, matrix: 512× 512,
scan field (field of view, FOV), 24× 24 cm, layer thickness:
5mm, and layer spacing: 1.5mm. (2) Axial T2WI: repetition
time: 5690ms, echo time: 93ms, matrix: 512× 512, FOV:
24× 24 cm, layer thickness: 5mm, and layer spacing: 1.5mm.
(3) After intravenous injection of gadolinium contrast agent
(0.1mmol/kg body weight), the T1WI sequence was scanned
repeatedly (the specific parameters were the same as above),
and the T1-CE sequence was obtained. *e multi-b-value
DWI sequence adopts a single-shot plane echo sequence
(echo planar sequence, EPI) using 18 b-values in the range of
0min 4500mm2/s (0min 50, 100, 150, 200, 300, 500, 800,
1000, 1300, 1500, 2000, 2500, 3000,500, 4000, 4500), NEX:
b� 0∼200 (NEX� 1), 300, 800 (NEX� 2), 1000, 1700
(NEX� 4), 2000, 4500 (NEX� 5). Repetition time: 2525ms,
echo time: 88.2ms, matrix: 256× 256, FOV:24× 24 cm, layer
thickness: 5mm, and layer spacing: 1.5mm.*e thickness of
the slices in the above sequence was 4mm, and the distance
between slices was 0. After MRI collection, the original data
generated by 3D-ASL and DWI were used to generate
dominant data such as cerebral blood flow (CBF), apparent
diffusion coefficient (ADC), and ADC coefficient (eADC)
parameter map in the workstation of the GEmedical system.

2.3. Tumor Segmentation on Image. *e MR images of
T2WI-FLAIR, T1WI-CE, and ADC diagrams are transferred
from a PACS workstation to a personal computer and then
converted into a processable DICOM format image using
the RadiAnt DICOM Viewer software (obtained by http://
www.radiantviewer.com). Because of the heterogeneity of
gliomas, the region of interest (ROI) was segmented
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manually in two-dimensional images using open ITK-SNAP
software (http://www.itksnap.org)). *ree radiologists with
experience in distinguishing neurological tumors by hospital
achieved satisfactory manual segmentation until tumors
enhanced T1W and T2W FLAIR.

2.4. Image Feature Extraction. All the features are extracted
from MATLAB 2016A (MathWorks, Natick, MA) software.
*e extracted features include Gaussian and Laplace sources
(Laplacian of Gaussian, LoG), rotation invariant local binary
patterns (rotation invariant local binary patterns, RILBP),
gray co-occurrence matrix (GLCM), intensity-based features
(IBF), directional wavelet texture feature (directional Gabor
texture features, DGTF), and rotation invariant circular
wave characteristics (rotation invariant circular Gabor
features, RICGF).

2.5. Radiological Analysis and Processing of Image Data.
It first extracts the radiological features of the enhancedMRI
original DICOM image, marks the tumor region on each
cross-sectional image of theMRI, and then forms a matrix of
all subregions. *e matrix sequence is marked with 0 and 1,
respectively, where 0 is nontumor and 1 is a tumor. *e
matrix generated on the image matrix and the selected
region matrix marked 0-1 is realized by computer program
analysis. *e program was developed by using the MATLAB
script. *e relevant radiological features were calculated and
extracted from the T2WI-FLAIR, T1WI-CE, and ADC
images, respectively. *e process of extracting radioactive
features is shown in Figure 1. Radioactivity processing
produced 152 quantitative image features, which came from
the study of three MRI sequences by imaging experts.

2.6. Statistical Processing. SPSS 22.0 was used for the sta-
tistical processing of patient information and other data.
Continuous variables were expressed as mean± standard
deviation (x± s). Differences between two groups were
compared using an independent samples t test, and differ-
ences between multiple groups were compared using one-
way analysis of variance (ANOVA). Dichotomous variables
were expressed as frequencies (%), and differences between
groups were compared using the χ2 test. *e efficiency of
each imaging feature in the diagnosis of early metastasis and
recurrence of glioma was analyzed by drawing the receiver
operating characteristic curve (ROC) and calculating the
accuracy, sensitivity, specificity, and area under the curve
(AUC). P< 0.05 was considered statistically significant.

3. Results

First, the differences in baseline data between the LGG
group, the HGG group, and the recurrent cases group were
compared. Table 1 shows that there was only a significant
difference between the average age of the patients in the LGG
andHGG groups (P< 0.05). Except for the average age, there
was no significant difference in other basic data (P> 0.05).

145 cases of gliomas were totally resected. *e surgical
specimens were soaked in 4% formalin and fixed in paraffin.
1 μm sections were prepared and stained with hematoxylin-
eosin (HE). Pathologically, gliomas are classified according
to the World Health Organization (2016) central nervous
system classification criteria. In addition to the histological
grade of the tumor, immunohistochemical (IHC) analysis
was also performed. Paraffin sections and routine water
dewaxing were performed on the tumor parenchyma, and
ABC immunohistochemical staining was performed. *e
features were sorted out from the T1-CE, DDC, T2WI-

�ere were 300 cases of glioma confirmed by postoperative 
pathology

Patients with standard MRI scan with 1.5T Siemens before operation.

145 patients with good image quality, no obvious artifacts and all 
three sequences can be used.

No recurrence in 
102 cases 39 cases of recurrence

High-grade gliomas: 
a report of 62 cases

Low grade colloid
Tumor 40 cases

High-grade glioma: 
a report of 30 cases

Low-grade gliomas: 
a report of 9 cases

Figure 1: Research process.
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FLAIR, and tumor HE staining of gliomas, and the char-
acteristics were determined by preliminary images of the
heterogeneity of tumor imaging, and the postoperative tu-
mor specimens were also attached (Figure 2).

In order to evaluate the superiority of texture features in
glioma grading, a series of comparisons were made on the
diagnostic effectiveness of texture features, histogram fea-
tures, and mean features in distinguishing LGG vs. HGG.
*e texture features, histogram features, and mean features
are listed in Figure 3–8, respectively. In the case of every
single-mode (T1-CE, DDC, T2WI-FLAIR, ADCslow, Alpha,
ADC, CBF, and ADCfast), the diagnostic accuracy, sensi-
tivity, specificity, AUC, 95% confidence interval, and cor-
responding P values of LGG vs. HGG are statistically
different. In the case of every single-mode (T1-CE, DDC,
T2WI-FLAIR, ADCslow, Alpha, ADC, CBF, ADCfast), the
diagnostic accuracy, sensitivity, specificity, AUC, 95%
confidence interval, and the corresponding P value for
distinguishing recurrent and nonrecurrent gliomas were
statistically different (P< 0.05). *ere was no significant
difference except for ADCslow, Alpha, and ADC under
histogram characteristics (P> 0.05). *e areas under the
curve of texture feature, histogram feature, and mean feature
to distinguish the total features of low-grade and high-grade
gliomas were 0.958, 0.945, and 0.954, respectively. *e areas
under the curve of texture features, histogram features, and
mean features to distinguish early recurrence of gliomas
were 0.949, 0.876, and 0.9, respectively.

4. Discussion

Glioma is the most common primary craniocerebral tumor
caused by malignant transformation of glial cells in the brain
and spinal cord. However, it is necessary to judge whether the
glioma is benign or malignant, and the final pathological
diagnosis is the gold standard. However because the biopsy is
confirmed by biopsy, it is an invasive operation, and the
intraoperative sampling can produce negative results [19].
*erefore, there are still limitations in biopsy and diagnosis of
benign and malignant tumors. With the brain-enhanced MRI
technique in glioma grading and prognosis, the preliminary

diagnosis of benign and malignant brain tumors plays a more
and more important role in neurosurgical treatment. Recent
studies have proved that magnetic resonance imaging is of
great value in the metabolic and physiological processes of
gliomas, such as DWI [20]. DTI [21], MRS [22, 23], DSCMRI
[24, 25], and DCE MRI have achieved good results in the
evaluation of glioma grading [26, 27]. In addition, the eval-
uation of tumor heterogeneity through imaging is of great
benefit to guide the clinic, especially in the individualized
treatment of gliomas. *erefore, the heterogeneity of gliomas
forms a relevant imaging parameter under MRI and can
increase the reporting accuracy at the tumor level [28]. *is
study demonstrates the potential to distinguish between LGG
and HGG by enhanced MRI imaging feature extraction
without the need for additional imaging examinations. *is is
a noninvasive and simple step that can be performed on
existing DICOM images.

Momeni et al. [29] did a study. According to the ability of
the ADC texture feature in MRI images to distinguish HGG
from LGG, it is found that the ADC feature can be used to
distinguish HGG from LGG, and the feature index of HGG
is significantly higher than that of LGG. However, in our
study, the combination of multiple features showed a high
rate of diagnosis in different grades of gliomas.*e diagnosis
of the area under the curve under each feature is different,
which may be due to the difference between the radiologist’s
algorithm for feature extraction and the tumor ROI de-
scription. In addition, it finds that the entropy of HGG is
significantly higher than that of LGG, which is consistent
with the previous research results. *e texture entropy value
of feature extraction is widely used in the index of radio-
logical analysis [30]. Imaging is to extract the relevant
imaging features by using the relevant images obtained
before the operation, which has been widely used in the
diagnosis, treatment, and prognosis of gliomas, and studies
have shown that they all have high diagnostic efficiency [31].
In this study, the AUC of the six imaging diagnostic models
was all greater than 0.8, suggesting that the diagnostic ef-
ficiency is higher, which verifies the accuracy of the imaging
model in the preoperative grading of gliomas. However, all
the models have relatively high sensitivity and low

Table 1: . Clinical baseline data table of study subjects.

LGG HGG Recurrent cases LGG VS HGG p
Patients (N/%) 36.55% (53/145) 64.45% (92/145) 26.89%(39/145) NA
Age x ± s 41.0± 13.2 52.4± 15.23 53.2± 13.78 <0.01∗
Gender Female (N/%) 52.83% (28/53) 37.0% (34/92) 35.9% (14/39) 2.363
Tumor size x ± s

Diameter (cm) 4.6± 1.69 5.3± 1.42 5.1± 1.53 2.32
Area (cm2) 15.2± 9.65 16.56± 10.43 16.21± 9.24 2.56
Volume (cm3) 36.1± 28.32 44.2± 30.03 38.7± 29.34 1.24

Does the tumor involve gray matter? 81.4% 73.7% 78.3% 0.926
Does the tumor cross the midline? 18.6% 48.2% 35.8% 2.546
Tumor location (N/%)
Frontal lobe 44.1% 50.2% 45.7% 0.545
Parietal lobe 41.7% 28.9% 33.4% 2.67
Temporal lobe 5.9% 12 .2% 11 .5% 1.65
Other location∗∗ 8.4% 8.7% 9.4% 0.54

Note. In the p-value column, ∗ indicated that the difference was statistically significant.
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specificity, which may be caused by the imbalance of data
sample size caused by the difference in the incidence of high-
and low-grade gliomas. In the future, the model can be
trained with a balanced sample size to overcome this dif-
ference. At the same time, it observes that on the basis of the
same MRI image, the diagnostic efficiency of different
machine learning models is different, and the AUC of the RF
model based on the T1CE image is the highest, reaching 0.97.

*e imaging group is currently a diagnostic method that
can quantify the imaging features of different grades of gli-
omas. Many of the features of these technologies are time-
consuming and difficult to copy. It uses the existing enhanced
MRI sequence, which is already a necessary preoperative
regimen for gliomas. *is is a single-center study that still
requires a large sample of clinical data for clinical verification.

At present, biopsy will still be the gold standard, but because
brain biopsy is invasive and related to sampling error, this
study can be used as a scheme to assist diagnosis, and the
diagnostic efficiency can be optimized as part of the imaging
contribution of multidisciplinary methods in the diagnosis of
gliomas. Further research should focus on optimizing image
processing and precise segmentation and also include ex-
ploring the characteristics of differences between glioma
subgrades because the individualized treatment of glioma
patients varies not only between high-grade and low-grade
tumors but also between different subgrades. It is believed that
the inclusion of nonhistological information, that is, clinical
radiology information, can improve clinical diagnosis and
biopsy guidance. *is means that, in addition to preliminary
diagnosis reports, radiologists can also outline the tumor areas
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Figure 3: Classification efficiency of texture features for LGG vs. HGG.

Figure 2: Case 1: a 31-year-old male patient underwent resection of the left occipital lobe tumor, and the immunohistochemical results
showed angiocentric glioma, WHO grade I; case 2: the frontal lobe tumor of a 55-year-old male patient was resected, and the immu-
nohistochemical results showed ganglion cell glioma (WHO grade II); and case 3: a 16-year-old female patient underwent resection of the
tumor in the left temporal lobe, and the immunohistochemical results showed glioblastoma, IDH wild type (WHO grade IV). *e order of
pictures from left to right was T1WI-CE, T2WI-FLAIR, DDC, T2WI-weight, HE staining, and tumor size measurement.

Scientific Programming 5



%
Accuracy Sensitivity Specificity

T1-CE
DDC

T2WI-FLAIR
ADCslow

Alpha
ADC
CBF

ADCfast
Total

0.873 0.882 0.903 
0.879 0.869 0.876 
0.841 0.838 0.872 
0.857 0.814 0.894 
0.848 0.802 0.885 
0.829 0.817 0.882 
0.833 0.801 0.879 
0.805 0.767 0.869 
0.926 0.907 0.926 

0.80

0.90

1.00

(a)

T1
-C

E

D
D

C

T2
W

I-
FL

A
IR

A
D

Cs
lo

w

A
lp

ha

A
D

C

CB
F

A
D

Cf
as

t

To
ta

l

3

2

1

0

-1

95% CI_lower limit
95% CI_upper limit
AUC

(b)

Figure 4: Predictive efficacy of texture features for recurrence and nonrecurrence of glioma.
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Figure 5: Classification effectiveness of histogram features for LGG vs HGG.
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Figure 6: *e effectiveness of texture features in predicting recurrence and nonrecurrence of gliomas.
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with the highest heterogeneity, helping neurosurgeons to
obtainmore accurate localization, thus improving the positive
rate of samples obtained. At present, MRI feature extraction
can be used as a diagnostic grade and prognosis of gliomas,
providing a more powerful noninvasive technique and pro-
viding a more accurate scientific basis for individual treat-
ment of gliomas [32]. It should be noted that in all of our
feature extraction and tumor score ROI, we must strengthen
learning so that all feature extraction is more accurate. As we
all know, texture feature extraction is often affected by
magnetic resonance imaging acquisition, especially the gain
factor and spatial resolution [33]. However, there are some
limitations to carrying out such research: first, as a pilot study
using a picture of a single largest cross section of a tumor, it is
difficult to find the precise intraoperative location of its
segmented region under a biopsy.*is limits the weighting of
this study; however, biopsies that obtain accurate localization
before tumor resection are usually unlikely. Secondly, the
features under MRI can better reflect the heterogeneity of
tumors. Even if cases that meet the criteria are selected in the
study, HGG is more likely to obtain effective texture features

than LGG, which may lead to some wrong results. It tries to
reduce the incidence of this situation by using multitexture
features. *ird, this is a retrospective study, so prospective
studies were conducted to verify these results and predict the
difference in accuracy between real results and pathology
through a large number of clinical samples.

Data Availability
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Figure 7: Classification efficiency of the mean feature for LGG vs. HGG.
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