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Aiming at the problems of crowd distribution, scale feature, and crowd feature extraction difficulties in exhibition centers, this
paper proposes a crowd density estimationmethod using deep learning for passenger flow detection systems in exhibition centers.
Firstly, based on the pixel difference symbol feature, the difference amplitude feature and gray feature of the central pixel are
extracted to form the CLBP feature to obtain more crowd group description information. Secondly, use the LR activation function
to add nonlinear factors to the convolution neural network (CNN) and use dense blocks derived from crowd density estimation to
train the LR-CNN crowd density estimation model. Finally, experimental results show that the mean absolute error (MAE) and
mean square error (MSE) of the proposed method in the UCF_CC_50 dataset are 325.6 and 369.4, respectively. Besides, MAE and
MSE in part_A of the Shanghai Tech dataset are 213.5 and 247.1, respectively, and they in part_B are 85.3 and 99.7, respectively.
+e proposed method effectively improves the accuracy of crowd density estimation in exhibition centers.

1. Introduction

+e foreign exhibition service industry has developed into a
relatively mature industry, and the domestic exhibition
service industry is also developing rapidly. At present, most
exhibition service companies still focus on whether the
exhibition can be successfully held and provide postshow
analysis reports for exhibition organizers. However, there is
a lack of research on realtime exhibition hall analysis ser-
vices, especially in terms of passenger flow detection [1]. +e
exhibition service industry based on location services has
gradually emerged, and various crowd density estimation
solutions have emerged [2–4].

Population counting and density estimation have great
practical significance [5–7], which can be extended to the
following three applications:

(1) Public safety supervision: in places with dense
crowds in the real scene, the staff monitors the
crowd’s dynamic information in realtime through

electronic camera equipment, analyzes potential
safety hazards, and tries to avoid them [8, 9].

(2) Intelligence collection and analysis: as far as China is
concerned, residents’ travel and tourism have be-
come normal during the annual holidays. Statistics
and analysis of crowd flow of major tourist venues in
China are beneficial to road traffic management and
arrangements. At the same time, the overall tourism
policy can be adjusted according to the travel
preferences and interests of the crowd in each time
period obtained in the past [10, 11].

(3) Virtual model construction: it provides a reliable
mathematical model for the transformation between
virtual reality and reality [12].

Crowd counting and density estimation research cannot
only provide important guarantees for the safety of people’s
lives and property but also aid in promoting the maximi-
zation of social and economic benefits. It has a wide range of
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application prospects and important practical significance
[13–15]. +erefore, crowd counting and density estimation
have gradually become a common research hotspot in ac-
ademia and industry.

In the early research, scholars used the Haar wavelet
transform, shape feature, directional gradient histogram,
and texture feature to manually extract the detection.
Counting was completed by detecting head, body, or
wholebody features in crowd images [16–18]. With the
improvement of hardware technology and the advancement
of deep learning technology, the performance of many
computer vision tasks has been greatly improved, and CNN
has played an important role in tasks such as target de-
tection, image classification, and semantic segmentation.
+erefore, CNN was widely used in counting tasks, and the
related performance was greatly improved [19, 20]. Refer-
ence [21] designed a multitask framework based on CNN to
simultaneously estimate the density level and the number of
target crowds. It used the former to provide additional
information to assist the latter to improve the counting
performance of the model. Reference [22] established a
multicolumn CNN, using different sizes of receptive fields to
obtain target features of different scales. +e crowd density
map was generated by fusion with a 1× 1 size convolution
kernel. Reference [23] used the same network to process and
generate crowd density maps for input images at different
resolutions, and at the same time, output attention maps to
supervise the generation of crowd scale predictions. How-
ever, this method needed to reason about multiple pictures
of different scales at the same time, which greatly increases
the number of network calculations. Reference [24] intro-
duced an attention mechanism to fuse features based on
detection and regression, but this method did not perform
well in high-density areas and could not achieve realtime
prediction. In order to enhance the perception of crowd
density areas, reference [25] established a series of attention
modules and regression modules. It used deformable con-
volution to establish an attention module to detect crowd
areas and improve the perception of density maps for crowds
of different densities. Reference [26] proposed a self-su-
pervised counting algorithm that uses the rule that there are
always more people in large image blocks than in small
image blocks in unlabeled data to establish a self-supervised
learning task to improve the counting performance of the
algorithm. Reference [5] proposed an end-to-end pop-
ulation density estimation network to generate a high-
quality population density map, which can obtain high-
quality map estimation. Reference [27] proposed a crowd
counting method based on crossconfrontation loss and
global features for high-density scenes of different scales.+e
cross-countermeasure loss was used to generate the residual
map, and the uniformity problem of the fusion density map
was solved through the consistency between different scales,
extracted a wide range of contextual information and fo-
cused on the key information in the global spatial features to
generate a residual map. In reference [28], a multilevel
neural network is constructed to estimate population den-
sity, and good results are achieved. Reference [29] proposed
a multiscale context learning module called the multiscale

context aggregation module. +e module first extracted
information on different scales, and then adaptively ag-
gregated it to capture the fullscale of the crowd. However,
most research is still focused on traditional shallow models.
+e fitting ability of shallow models is limited, and the effect
is better in simple image processing of crowd scenes. But
when the background is more complex, crowd density es-
timation is more difficult, and the extraction of scale features
and crowd features is not sufficient.

Based on the above analysis, this paper proposes a crowd
density estimationmethod using deep learning for passenger
flow detection systems in exhibition centers in order to solve
the problems of crowd distribution, scale feature and crowd
feature extraction difficulty in the exhibition center scene.
Firstly, extract the difference between the amplitude feature
and gray feature of the center pixel to form the CLBP feature
together to obtain more descriptive information about the
crowd density. +en use the LR activation function to add
nonlinear factors to CNN and use the dense blocks obtained
by crowd density estimation to train the LR-CNN crowd
density estimation model.

2. Proposed Model Framework

+e primary problem of crowd behavior analysis is to detect
an area where a large crowd gathers and perform corre-
sponding crowd behavior analysis in this area. Based on the
traditional algorithm, this paper uses the complete local
binary pattern (CLBP) to extract the characteristics of crowd
aggregation. On this basis, the deep learning model is used to
construct the detection of crowd gathering. CNN is applied
to crowd group detection, and the CLBP feature is trained by
operations such as convolution and pooling. After extracting
the fundamental features, the prediction result of crowd
gathering is obtained. Comparing with the prediction results
given by actual experts, five density results are obtained:
sparse, normal, low-density, medium-density, and high-
density. +e steps of the crowd density estimation algorithm
are shown in Figure 1.

3. Image Preprocessing and CLBP
Feature Extraction

+e local binary patterns (LBP) feature is one of the most
commonly used texture feature detection methods. How-
ever, the LBP feature is not compatible with the density
detection of any level of the crowd. +e real-time perfor-
mance and accuracy in complex scenes are not enough.
+us, this paper proposes a CLBP feature extraction method.
Traditional LBP features use rectangular neighborhoods,
which are not rotation invariant. In order to realize the
texture feature of rotation invariance, a circular neighbor-
hood is added. +e schematic diagram of the circular
neighborhood is shown in Figure 2.

In the circular neighborhood, the neighborhood of the
center pixel has a larger selection range. When certain values
cannot be read directly from the pixel, the bilinear inter-
polation method is used to give the calculation result and the
pixel is read. For the same radius, when there is a rotation,
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the LBP value is different. In order to obtain the same LBP
value, the smallest LBP value should be selected from all the
results after rotation as the LBP value of the neighborhood.
+at is, a result that satisfies all the rotations should be
selected. Figure 3 below shows the rotation result, where
black represents “1” and white represents “0.”+e calculated
LBP value results are given in parentheses.

+e introduction of the circle makes the calculation
object more complicated, and the “uniform mode” calcu-
lation method should be adopted at this time. +is method
only performs two change calculations of 0–1 or 1–0, and the
following formula is given to calculate the rotation-invariant
LBP of the circular neighborhood:

U LBPP,R  � 
P−1

i�0,j�0
s gi − gc(  − s gj − gc 



,

s(x) �
0, x≥ 0,

1, x< 0.


(1)

Figure 4 shows the circular neighborhood rotation-in-
variant LBPmethod for uniformmode calculation.where the
number in the center of the neighborhood represents the
uniform mode LBP value of LBP, and the neighborhood
value is the number of “1.” +e LBP value of the neigh-
borhood of nonuniform mode (U> 2) is P+ 1, and the
calculation formula is as follows:

U LBPr2
P,R  �
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(2)

Traditional LBP only extracts the difference between the
pixel value of the neighborhood and the pixel value of the
center point, and the characteristics that can describe the
crowd are limited. In order to better express the local fea-
tures of the crowd, this paper also extracts the amplitude

feature of difference and the gray feature of the center pixel
on top of the symbol feature of pixel difference, forming a
CLBP feature. +is feature can give more descriptive in-
formation about the group of people. +e extraction process
of CLBP is shown in Figure 5.

+e matrix (a) gives the center pixel and its 8 neigh-
boring pixels. First, calculate the difference between the
neighboring pixels and the center pixel to get matrix (b).
+en generate the sign of each difference to get matrix (c).
Finally, take the absolute value of all the differences of the
matrix (b), obtain the magnitude of the difference, and get
matrix (d). After the preprocessing is complete, the fol-
lowing steps are taken:

(1) +e symbol matrix (c) is binarized to obtain a matrix
composed of “0” and “1.”+en use the above formula
(2) to calculate the characteristic S of symbols de-
scribing the difference;

(2) +e global average of elements of the difference
magnitude matrix (d), denoted as mp is calculated.
All elements in the matrix (d) are used to make the
difference with the global average value. If the result
is negative, it is recorded as “0,” and if it is non-
negative, it is recorded as “1” to generate a binary
matrix. Equation (2) is used again to calculate the
characteristic M that describes the magnitude of the
difference;

(3) +e average gray value of the center pixel is calcu-
lated, denoted as cp. In the same way, cp used to
binarize the central pixel, and then equation (2) is
used to calculate and describe the grayscale char-
acteristics of the central pixel.

4. CNN Framework Construction of Crowd
Density Estimation

4.1.NetworkTrainingFramework. After extracting the stable
CLBP feature from the original crowd video sequence, it is
necessary to predict the crowd group through a classifier,
find the crowd group that exceeds the threshold range, and
define it as a large crowd gathering situation. In this link,

Crowd image CLBP feature
extraction 

Feature
training 

Density
Estimation 

Figure 1: Crowd density estimation algorithm.
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Figure 3: Calculation process of rotation invariant LBP in the
circular 8 neighborhood.
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traditional methods use shallow learning models for pre-
diction and tracking, including common BP neural networks
and SVM classifiers. +e shallow model has achieved good
results in learning and predicting a small number of samples.
However, when the scene of crowd group detection is more
complicated, and there are occlusions and overlaps, the
limited learning ability of shallow models will gradually
reduce the effect of crowd group detection, and gradually
lose a certain degree of robustness. In recent years, there
have been relatively few studies on the detection of crowd
groups in deep learning. But deep learning has made good
progress in the fields of image processing and pattern rec-
ognition. +erefore, this paper intends to use the deep
learning model to predict and track the CLBP feature to
obtain the clustering of a crowd.

CNN is a feedforward neural network. CNN is based on
the biological vision system. It simplifies the fully connected
neural network into CNN, and the connections of neurons
between the upper and lower layers of adjacent layers are no
longer all related. From a mathematical point of view, the
weight between the two fully connected network layers is
overwhelmingly zero. For example, in image processing,
each pixel is only related to the local area around it. By
simplifying the number of connections of neurons, the
neural network can be simplified without affecting the

characteristics of the image itself, reducing network com-
plexity and reducing calculation time.

When the input xt(t � 1, 2, . . . , n) and the filter ft(t �

1, 2, . . . , m) are given, the input signal length n is much
greater than the filter length m, and the output of one-di-
mensional convolution is

yt � 
n

k�1
fk · xt−k+1. (3)

One-dimensional convolution can be used in signal
processing. When the filter is ft � 1/n, the convolution is
equivalent to the moving average of the signal sequence.
Two-dimensional convolution is often used in image pro-
cessing. Given an image xij, 1≤ i≤M, 1≤ j≤N and filter
fij, 1≤ i≤m, 1≤ j≤ n, generally m≪M, n≪N. +e output
of a convolution is

yi,j � 
m

u�1


n

v�1
fuv · xi−u+1,j−v+1. (4)

Figure 6(a) is the fully connected layer of the network.
If there are n(l− 1) neurons in the l layer, there are nl

neurons in the l − 1 layer, and there are n(l) × n(l− 1)

connected edges. +at is, the weight matrix has n(l) × n(l− 1)

parameters. When the number of neurons increases, the
parameters increase, and the time complexity of calcu-
lation increases, which greatly reduces the efficiency of
training. As shown in Figure 6(b), the fully connected
layer is replaced with a convolutional connection. At this
time, each neuron in the l layer is only connected to a
neuron in a local area window of the l − 1 layer, forming a
local connection network. +e input of i neuron of l layer
is defined as

a
l
i � f 

m

j�1
w

(l)
j · a

(l−1)
i−j+m + b

(l)⎛⎝ ⎞⎠

� f w
(l)

· a
(l−1)
(i−j+m)i + bi ,

(5)

where w(l) ∈ Rm is an M-dimensional filter.
+e above formula can be simplified to:
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Figure 4: Calculation process of uniformmode circular neighborhood rotation invariant LBP; (a) uniform mode P� 8 and (b) nonuniform
mode P� 8.
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a
l

� f w
l ⊗ a

(l− 1)
+ b

(l)
 . (6)

It can be seen from formula (6) that wl is the same for
all neurons. +is reveals another extremely important
feature of CNN: weight sharing. +at is, for two adjacent
layers of networks, the weight matrix wl is the same. Only
a few parameters are needed to describe the output from
the l network to the l + 1 layer, and the number of neurons
in the l + 1 layer is determined, which is
n(l+1) � n(l) − m + 1.

When processing images, the computer cannot directly
recognize the surface features of an image, like a human
brain, and the computer can only accept and process the
data. +erefore, a digital image can be converted into a two-
dimensional matrix, and the position of each pixel is used to
describe the entire image. +e two-dimensional matrix of
image conversion is used as the input of the neural network,
and two-dimensional convolution is required at this time.
Assume that x(l) ∈ R(w1×h1) and x(l−1) ∈ R(wl− 1×hl− 1) are the
neuronal activity of l and l + 1 layers, respectively. Each
element of X(l) is

X
(l)
s,t � f 

u

i�1


v

j�1
W

(l)
i,j · X

(l−1)
s−i+u,t−j+v + b

(l)⎛⎝ ⎞⎠. (7)

After a filter is processed, the characteristics of an image
can be obtained. By increasing the number of filters used, a
number of different features can be obtained, thus enhancing
the ability of the convolutional layer to represent images.+e
filter is essentially a feature extractor. Due to the weight
sharing, each set of output uses the same filter, which is the
feature extractor. +e output of the image processed by the
filter is a feature of the image. +is process can also be called
feature mapping. Assume that the number of filters used in
the l − 1 layer is nl−1, and the size of each group of feature
maps is ml−1 � wl−1 × hl−1. +e total number of neurons in
the l − 1 layer is nl−1 × ml−1. +e number of feature mapping
groups in the l layer is nl. If it is assumed that the input of
each feature map X(l,k) of l layer is all the feature maps of
l − 1 layer,

then k feature map X(l,k) of l layer is

X
(l,k)

� f 

nl−1

p�1
W

(l,k,p) ⊗X
(l− 1,p)

+ b
(l,k)⎛⎝ ⎞⎠, (8)

where W(l, k, p) represents the filter required from the p
feature vector of l − 1 layer to the k feature vector of l layer.

It can be found from the above formula that the neurons
in the entire layer of the l layer get the input of the next layer,
the l + 1 layer, through filter convolution and bias adjust-
ment. Different filters can get different inputs. +e con-
nection relationship between feature maps can be defined as
a connection table T. +e number of features is adjusted by
setting the number of “0”s in the connection table to ensure
that the desired features can be extracted and the compu-
tational complexity is reduced.

+e convolutional layer is locally connected, which
significantly reduces the number of connections compared
to the fully connected layer, but the number of neurons does
not change much. If the output is followed by a classifier, the
input dimension of the classifier is still too high, overfitting
will still occur, and the input image cannot be accurately
classified. Pooling operation is introduced to reduce the
dimensionality of features and avoid overfitting problems.
+e feature map X(l) obtained by convolution of the upper
convolution layer through the filter can be divided into
several regions Rk, k � 1, . . . , K. To perform pooling oper-
ations on these regions, a subsampling function sub is de-
fined as

X
(l+1)
k � f w

(l+1)
· sub Rk(  + b

(l+1)
 . (9)

where (l+1)
w and b(l+1) are trainable weight and bias param-

eters, respectively.
As shown in Figure 7, the LR-CNN model designed in

this paper is

(1) Input layer: the input data is a 32∗ 32 image block.
(2) Con1 : the first convolutional layer, using 8 5∗ 5

filters, through convolution operation to obtain 8
28∗ 28 feature maps.

(3) Pool2: the first subsampling layer uses the maximum
pool sampling method, that is, one point is collected
for every adjacent 2∗ 2 pixel area. Its value is the
function value with the largest gray value among the
four pixels.

(4) Con3 : the second convolution layer, using 15 5∗ 5
filters, after convolution operation, 8∗15 10∗10
feature maps are obtained.

(5) Pool4: the second subsampling layer uses the same
subsampling as the Pool2 layer.

(6) Con5 : the last convolutional layer, using 5 5∗ 5
filters.

(a) (b)

Figure 6: Full connection layer and convolution layer. (a) Full connection layer. (b) Convolution layer.
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(7) Ful6: it is a fully connected layer that converts 600
1∗ 1 neurons in Cons into a feature vector.

(8) Output layer: input the feature vector obtained by
CNN into the activation function to obtain the
counting result. When training the model, it is also
necessary to add the counting accuracy rate to es-
timate the accuracy rate of the counting and loss
function layers.

+e LR-CNN model proposed in this paper reduces the
number of neurons when extracting features based on the
same filter in the convolutional layer. However, since each
convolutional layer requires multiple filters, different fea-
tures of the image need to be extracted. +erefore, the total
number of neurons is significantly increased after the
convolution operation of the convolutional layer, and the
purpose of convolution is to reduce the dimension of fea-
tures. However, additional burdens are generated in this
process. +e layer-by-layer increase in the number of
neurons and parameters will eventually cause the algorithm
to crash and the computer will stop working. +us, the
subsampling layer is necessary, and it is an effective means to
reduce the number of neurons and the number of param-
eters. +erefore, the subsampling layer must exist inter-
mittently or uninterruptedly throughout the entire network.
At the same time, it is considered that the influence of the
subsampling layer on the feature is negative. +erefore, the
alternate appearance of the convolutional layer and sub-
sampling layer is the best design obtained by combining
various factors.

4.2. Loss Function. +is paper uses two loss functions to
optimize the model. One is the Euclidean loss function, and
the other is the cross-entropy loss function. Let
X � X1, ..., XN  denote training samples and N denote the
total number of training samples.

Euclidean loss function is used for density estimation

Le �
1
2N



N

i�1
Fh Xi; θ(  − Di

����
���� 2
2, (10)

where Fh( ; θ) represents the estimated density map. θ is the
weight parameter of the counting model and Di represents
the true density map.

+e cross-entropy loss function is

Lc � −
1
N



N

i�1


K

j�1
y

i
� j FC Xi; θc(  . (11)

+e total loss function is a linear combination of Le and
Lc, and the formula is as follows:

L � Le + αLc, (12)

where the parameter α is a scale factor, which is used to
control the proportion of cross-entropy loss.

5. Experiment and Analysis

5.1. Dataset. +e experiment uses two commonly used
datasets, namely the Shanghai Tech dataset and the
UCF_CC_50 dataset.

+e Shanghai Tech dataset consists of two parts, par-
t_A_final and part_B_final. +e picture of part_A is a crowd
image randomly selected from the Internet, and the data
picture of part_B is taken by a camera on the streets of
Shanghai. Compared with the part_A dataset, part_B has a
sparse distribution, but the scene is relatively fixed, while the
scene of part_A changes greatly. part_A training set: 300
pictures, test set: 182 pictures. part_A training set: 400
pictures, test set: 316 pictures, a total of 1198 pictures,
330,165 annotation headers.

+e UCF_CC_50 dataset pictures are all grayscale im-
ages downloaded from the Internet. +ey have extremely
dense crowds and smallscale changes. Large amounts of data
only have head features and are severely blocked by pe-
destrians. +e sample size of this dataset is small, but the
number of people varies greatly. In the experiment, a 5-fold
crossvalidation method was used to evaluate the perfor-
mance of different counting models. +e specific method is
to randomly divide the picture into 5 parts, with 4 parts for
training and 1 part for testing. Five sets of experiments are
carried out, and the average value is taken as the final result.

5.2. Evaluation Index. +is paper uses MAE andMSE as two
indicators to evaluate the performance of the algorithm.
MAE and MSE are the most commonly used standards to
measure the performance of the algorithm. +e calculation
formula of MAE and MSE is as follows:

MAE �
1
N



N

1
yi − yi


,

MSE �

������������

1
N



N

1
yi − yi



2




,

(13)

where N represents the total number of test images, yi is the
actual number of people in the i image, and yi is the number
of people estimated by the i algorithm.

5.3.Analysis andComparison. In the use of the CLBP feature
extraction algorithm and the CNN depth model for crowd
density estimation and group detection, this paper has
carried out 2000 iterations of training. In order to visualize
the results, when the CNN network becomes stable, the 200
verified samples are extracted from the CLBP feature and
then input to the trained CNN network. Figure 8 shows the
comparison between the real predicted value and the CNN
predicted value.

Input:32*32
Con1

Pool2 Con3 Pool4 Con5
Output

Full6

Figure 7: LR-CNN counting model.
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After deep neural network training, the predicted value
of the degree of aggregation of each pixel position is ob-
tained. In the actual prediction, the mask value of prediction
results 200∗ 200 is tested in the range of 10∗10, and the
average value in the range is calculated, and the threshold
+� 0.5 is set as the criterion. When the predicted average
value of a certain detection area reaches or exceeds the set
threshold, the area is regarded as an area where people
gather. And through the inverse process of the compression
process, the position is projected into the original RGB
image, and the corresponding area is standardized in the
figure. +is paper tests CLBP+CNN and LBP+CNN. It can
be seen from the results that CNN can do most of the correct
detection of crowd gathering groups. +e comparison be-
tween the predicted value and the actual predicted value is
almost the same. In actual use, there is a strong result
presentation that can ensure the robustness and accuracy of
the data. However, the CNN network requires a lot of
training time to obtain better weights to predict complex
scenes.

+e CNN counting model was tested on the
UCF_CC_50 and Shanghai Tech datasets, and the results
obtained are shown in Figure 9.

+e method in this paper is compared with the methods
in reference [5, 27, and 29] in the UCF_CC_50 dataset and
the Shanghai Tech dataset. +e experimental results are
shown in Table 1 and Table 2. +e MAE and MSE of the
proposed method in the UCF_CC_50 dataset is 325.6 and
369.4, respectively. +e MAE and MSE in the part_A part of
the Shanghai Tech dataset are 213.5 and 247.1, respectively,
and the MAE and MSE in the part_B part are 85.3 and 99.7
respectively. +e experimental results show that the method
proposed in this paper can solve the problem of counting
dense crowds within the allowable error range. +e com-
parison results show that the proposed method is better than
the comparison method in counting accuracy under high
crowd density scenarios. +is is because the proposed model
extracts the difference between the amplitude feature and the

gray feature of the central pixel to form the CLBP feature,
which obtains more detailed information about the pop-
ulation density. However, the lack of effective feature ex-
traction methods in comparison methods makes MAE and
MSE much higher than the proposed methods. Besides,
using the dense block in the image as a training set instead of
the entire image provides a feasible method to solve the
counting problems caused by crowd image congestion and
scene distortion.

6. Conclusion

Aiming at the problems of crowd distribution, scale feature,
and crowd feature extraction difficulty in exhibition centers,
this paper proposes a crowd density estimation method
using deep learning for passenger flow detection systems in
the exhibition center. +e difference between the amplitude
feature and the gray level feature of the center pixel are
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Figure 9: Test results of counting model on each dataset.

Table 1: Comparison with other algorithms on the UCF_ CC_ 50
dataset.

Method MAE MSE
Reference [5] 456.5 489.7
Reference [29] 403.7 455.9
Reference [27] 357.4 378.1
+e proposed method 325.6 369.4

Table 2: Comparison with other algorithms on the Shanghai Tech
dataset.

Method
Part_A Part_B

MAE MSE MAE MSE
Reference [5] 335.4 387.9 157.3 187.9
Reference [29] 289.6 325.4 102.8 125.6
Reference [27] 256.3 289.7 95.4 108.5
+e proposed method 213.5 247.1 85.3 99.7
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extracted to form the CLBP feature together to obtain more
descriptive information about the crowd density. +e LR
activation function is used to add nonlinear factors to CNN
and use dense blocks obtained by crowd density estimation
to train the LR-CNN crowd density estimation model. Fi-
nally, the experimental results show that the proposed
method can achieve the lowest MAE and MSE on the tested
datasets. +is shows that by extracting the difference be-
tween the amplitude feature and the gray feature of the
center pixel, using the CLBP feature for feature extraction,
you can extract more effective information.

However, deep learning has a complex network structure
and requires a large amount of calculation, which requires
faster hardware support. In the future, GPUs can be in-
troduced to increase the speed of computer processing data,
or the concept of parallel computing can be introduced into
CNN, and the execution speed of algorithms can be
accelerated by shunting.
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