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In safety-critical fields, architectural languages such as AADL (Architecture Analysis and Design Language) have been playing an
important role, and the analysis of the languages and systems designed by them is a challenging research topic. At present, a formal
method has become one of the main practices in software engineering for strict analysis, and it has been applied on the tools of
formalization and analysis. The formal method can be used to find and resolve the problems early by describing the system with
precise semantics and validating the system model. This article studies the comprehensive formal specification and verification of
AADL with Behavior annex by the formal method. The presentation of this specification and semantics is the aim of this article,
and the work is illustrated with an ARINC653 model case study in Isabelle/HOL.

1. Introduction

In safety-critical domains such as avionics, aerospace, au-
tomotive, and defence, a latent software error even can give
rise to catastrophic consequences. Such systems have to be
carefully designed and analyzed according to some strict
standards such as DO-178C [1], which stipulates analysis,
testing, and certification activities. Formal methods have
become the recommended practice in the safety-critical
fields. Formal methods are special techniques based on
mathematics and are suitable for the description, develop-
ment, and verification of software and hardware systems. By
applying formal methods to software and hardware designs,
it is hoped that, like other engineering disciplines, appro-
priate mathematical analysis can be used to improve the
reliability and robustness of designs. In the design of
computer software systems, formal verification means that
mathematical methods can be used to prove their correct-
ness or incorrectness according to one or some formal
specifications or attributes.

Theorem proving, program analysis, and model check-
ing are the main branches of formal verification. To be

formally verified, systems should be firstly specified with a
specific formalism. AADL (Architecture Analysis and De-
sign Language) [2] is a modeling standard used in safety-
critical software engineering to describe the structure of
systems, such as a package of software components, which is
mapped on an execution platform. AADL adopts formal
modeling concepts for the description of software and
hardware architecture, so that it is often used to design and
analyze the software and execution platform of real-time
embedded systems. The operation of these systems depends
strongly on meeting nonfunctional requirements such as
availability, reliability, responsiveness, throughput, safety,
and security. As a supplement of runtime environment in
terms of distinct components and their interactions, the
standard AADL Behavior annex [3] represents a behavioral
extension for AADL, which allows a more detailed speci-
fication of the software behavior. Using AADL with its
Behavior annex, the complete models can be designed in a
way that large information about data models, timing, and
communication behaviors is available at the modeling phase,
and it is especially effective for the model-driven design of
complex embedded real-time systems. AADL is
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standardized by the SAE, and its second version was pub-
lished in 2009 and revised in 2017; for its analyzability and
extensibility, AADL has become one of the popular lan-
guages within architectural modeling in the industry [4].
AADL has been studied in several projects for different
modeling, analysis, simulation, compilation, extension, and
formal verification. Moreover, the AADL semantic can be
extended via user-defined properties and annexes.

However, AADL cannot be directly generated into the
executable code, which is reliably used in safety-critical
systems. So how to compile AADL to the C code is our final
goal. Although there is not any comprehensive compiler or
method from AADL to C on the open-source platform so
far, there is some existing related work about the verified
compiler or transformation of model languages like Lustre
[5], CompCert [6]. As we do, proving the correctness of
general-purpose compilers is undeniably a related problem,
and fortunately, this work [7] encourages us and presents the
possibility of development based on the model-driven design
in prover tools. We aim at exploring a formal method of
compiling AADL to C-like language, so we firstly limit our
survey to work that focuses on the particularities of AADL.

The AADL provides a sufficient syntax and semantic to
describe an embedded real-time system based on software/
hardware components and their relations. Dealing with such
rich models accentuates the need for model analysis and
verification. Unfortunately, AADL is a textual and graphical
language, which means it is a semiformal modeling lan-
guage. It lacks formal specification and semantics, and this
severely limits both unambiguous communication among
model developers, and the development of simulators and
formal analysis tools, so itself cannot be directly used for
formal verification. In this work, we choose Isabelle/Isar/
HOL [8], a tool suite (within its functional language) that
gathers specification, validation, and verification of AADL
and models, and also the code generation towards AADL
runtime C-like language for the future work. The Isabelle/
Isar language provides a readable grammar and a convenient
way to produce the proofs.

In this article, we provide an approach for the formal
verification of behavioral AADL models. In detail, this ar-
ticle makes the following contributions:

(i) Different from transforming AADL into other
formal model languages, our work takes an ap-
proach by formally specifying AADLs, its corre-
sponding models of definitions, lemmas, and proof
structures necessary to verify the model, providing a
blueprint for performing similar work in any prover
tool. Also we can state and prove a correctness
relation between the source and target semantic
models, and even directly build on the compilation
project in Isabelle/HOL as our future work.

(ii) We consider the AADL focusing on safety-critical
software, so our work mostly covers the whole
AADL elements including components, commu-
nication among components, and Behavior annex
defined inside, and also supports the key features
and properties. The considered AADL subset
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consists of both software and hardware AADL
components with complex state transitions being
comprehensive and that can be used in more re-
alistic applications.

(iii) We perform formal validation and verification of
the AADL model and specify the critical properties.
Specifically, we (1) analyze and summarize the
description for the AADL standard defined by the
SAE republished in 2016 and take 47 significant
details into account as the grammar rules in Isa-
belle/HOL; (2) exploit the comprehensive semantics
including Behavior annex, Thread, Process, and
System, and then integrate them into a whole model
execution semantics; and (3) perform formal in-
stantiation, validation, and verification of three
realistic AADL models.

In this context, we aim at the comprehensive formal
specification and verification of AADL core language
(software part) with its Behavior annex. The remainder of
this article is organized as follows: in Section 2, we describe
the concept of AADL along with its Behavior annex and
Isabelle/HOL, and also present the strength of Isabelle/HOL
and its specification language to justify why we choose it to
model AADL and Isabelle/HOL to perform formal analysis;
Section 3 overviews our approach including the AADL el-
ements we selected; in Section 4, we present the syntax of our
selection and the validation rules for grammar in Isabelle/
HOL; In Section 5, we present the semantics of selection and
the verification, and in addition, we present the semantics of
Behavior annex; Section 6 then presents a case study; and
Section 7 gives the conclusions and future directions.

2. Background

2.1. AADL and Its Behavior Annex. AADL is a textual and
graphical language used to model, specify, and analyze ar-
chitectures (included software and hardware part) of safety-
critical and real-time embedded systems, and it has been
studied in several projects for different purposes analysis,
code generation, extensions, and formal verification. AADL
is based on a component-centric model, and it defines the
system architecture as a set of interconnected components
that hierarchically describes the interfaces, the imple-
mentations, the properties, and the channels among com-
ponents. It describes a system as a hierarchy of software and
hardware components and offers a set of predefined com-
ponent categories as follows:

(i) Software components: data, subprogram, subpro-
gram group, Thread, Thread group, Process, and
their types, implementations, features, connections,
properties

(ii) Execution platform components (hardware com-
ponents): processor, memory, bus, and device

(iii) System composites: they represent composite sets of
software and execution platform components

(iv) Annex subclauses: they allow annotations expressed
in a sublanguage to be attached to the component
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and contain Behavior Annex, Error Annex, Data
Annex, etc

According to the component categories, AADL software
component elements are composed and synchronized to
form the whole software system. Figure 1 gives an overview
of the AADL software components containing essential
constructions.

2.2. Isabelle/HOL Notations. Isabelle/HOL (the full name is
Isabelle/Isar/HOL, Isabelle is often for short) is a generic
interactive theorem prover for implementing logical for-
malisms of a specification and verification, and it is the
specialization of Isabelle for HOL (higher-order logic) [9].
Isabelle is implemented in ML [10]. This has influenced some
of Isabelle/HOL’s concrete syntax Isabelle/Isar [11], an ex-
tension of Isabelle, which hides the implementation lan-
guage almost completely. Based on a small (meta)-logical
inference kernel, Isabelle’s LCF-style architecture ensures
very high confidence about its soundness as a theorem
prover. Since our whole work focuses on the verification of
formalization and the output, moreover, also will invoke the
theorem prover’s code generator and run the test suite on the
C-like code generated by itself in the future, Isabelle is used
to prove the methodology in this work. This work mainly
restricts itself to the core of Isabelle (simply typed Lambda
calculus with ML-style polymorphism and inductive data-
types). The main notations used in this work are explained as
follows:

theories, working with Isabelle means creating theo-
ries. Roughly speaking, a theory is a named collection of
types, functions, and theorems, much like a module in a
programming language or a specification in a specifi-
cation language. In fact, theories in HOL can be either.
The general format of a theory T is

theory T
imports B, ... B

n

begin

Declarations, definitions, and proofs
end

where B, ... B, are the names of existing theories that T
is based on and declarations, definitions, and proofs
represent the newly introduced concepts (types,
functions, etc.) and proofs about them.

lemma, this command starts the proof and gives the
lemma a name. As a result of that final done, Isabelle/
HOL associates the lemma just proved with its name.
Lemma, theorem, and rule are used interchangeably for
propositions that have been proved.

base types, in particular bool, the type of truth values,
and nat, the type of natural numbers.

type variables, denoted by ’a, ’b, etc., like in ML.

datatypes, the general form of a datatype definition
looks like this:

datatype ('a,,...,'a)t=C, " 1,,1” .. ’1,n,”

IC ™ Tl ™ .. " Ty

It introduces the constructors Ci::71),1=
...=1,m=('a;,...,'a,)t and expresses that any
value of this type is built from these constructors in a
unique manner.

records, introduces a new record-type scheme by
specifying its fields, which are packaged internally to
hold up the perception of the record as a distinguished
entity. A record of Isabelle/HOL covers a collection of
fields, with select and update operations. Here is a
simple example:

record point = Xcoord:: int

Ycoord:: int

In this work, we choose a deep embedding method,
which does not try to directly represent elements of the
language as expressions of the target language (in this case:
Isabelle/HOL), but rather encodes them.

3. Approach Overview

The general methodology of our work is given as follows: at
first, we select a comprehensive core AADL with its Behavior
annex and a policy for modeling as 3.1.1 and 3.1.2 presented;
secondly, we define a specification from AADL in Isabelle/
HOL and model an example; next, we determine some
significant rules about AADL grammar from AADL official
standard manual and transform them into the model-
checking functions, and then, we present a validation by
using these functions; finally, we present the semantics of the
comprehensive core AADL and verify some properties
(reachability, trace refinement, etc.) by the semantics in
Isabelle/HOL. The main idea of our methodology is illus-
trated in Figure 2.

3.1. Selection of AADL

3.1.1. Selection of Core AADL in This Work. In this article,
our work focuses on the specification and analysis of the
software components of systems, and most of execution
platform components in AADL (virtual processors, mem-
ory, buses, virtual buses and devices, etc.) are not under
consideration except the processor (simply discussed).
Moreover, the group, prototype, and refinement are
regarded as a set element, and mainly for the reusability of
the AADL code, software systems can be modeled even
without these elements; therefore, they are not accounted in
this work. This selection of AADL core elements is com-
prehensive and sufficient to specify and model an embedded
system on the software side.

A component can be a subcomponent of the other
component. Thus, the following components are supported:
processor, data, subprogram, thread, process, system, and
thread’s Behavior annex. A processor component is an
abstraction of hardware and software that is responsible for
scheduling and executing threads that are bound to it. A data
component represents a data type and also static data in the
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source text. A subprogram component represents sequen-
tially executed source text that is called with parameters. A
thread component is a schedulable unit that is declared
within a process component and can be executed concur-
rently with other threads. A process component represents
its virtual address space, and a software system represents an
assembly of interacting application software.

A feature is a part of a component definition that
specifies how that component interfaces with other com-
ponents in the system. Features consisted of port, access, and
parameter in our work. In addition, features can be com-
bined with properties, and our work can support some
temporal and queuing properties, such as Dispatch_Protocol
(periodic, sporadic, timed), Period, Queue_Processing
Protocol (FIFO, LIFO), Queue_Size, Elapsed_Time, Exe-
cution_Time, and Scheduling_Protocol.

A connection is a linkage between features of two
components representing communication of data and
control between components. Our work supports connec-
tions between port connections, parameter connections,
dataaccess connections, and subprogramaccess connections.

A property provides information about model elements,
and it has a name, a type, and a value. Each property has a
value or list of values that is associated with the named
property in a given specification. Our work focuses on the
indispensable properties, which depend on the specific
components.

3.1.2. Selection of AADL Behavior annex. The Behavior
annex document provides a standard sublanguage extension
to allow behavior specifications to be attached to AADL
components. It is an important part of AADL, as it split a
whole system model into several single composable com-
ponents to make design and analysis easier. The Behavior
annex of a Behavior annex instance is defined on the vo-
cabulary consisting of its private variables behavior_variable,
its states behavior_state, and ports of its parent component.
Its transition system is the union of the transitions specified
by a behavior_transition. A Behavior Annex specification of
a thread contains variables, states, and transitions. The states
may be initial, complete, execution, or final.

Our work can support the Behavior annex with its
specification to enrich the running model. The aim of the
Behavior annex is to refine the implicit behavior specifi-
cations that are specified by the core of the language. Yet we
practically state that behavior specification subclauses can
only be added in a thread, and the behavior specification
subclauses describe the thread that the behavior specification
subclause belongs to, since the execution of the whole system
at one processor is actually the execution of one thread.

3.2. Related Work. AADL lacks formal specification and
semantics; therefore, it cannot be directly used for formal
verification and it is often transformed into several formal
model languages to be adopted with existing formal analysis
tools. We study several formal approaches on AADL.
According to the transformation method and the

consideration of the AADL model with or without Behavior
annex, these are grouped into three categories.

The first category is often based on model transforma-
tion into different languages without (or barely with) Be-
havior annex such as Petri nets [12], Timed automata [13],
TLA+ [14], Lustre [15], Fiacre [16], and CSP [17,18]. These
approaches are contented with the AADL semantic de-
scribed in its standard, which is enough to formally simulate
the system and verify a set of behavioral properties. The
second category represents work about the model trans-
formation of AADL with its Behavior annex such as BIP [19],
Signal [20], TASM [21, 22], and Ocarina [23]; for example,
Ref. [19] defines a transformation into the BIP language, and
then, the BIP model is transformed into nontimed models to
enable model checking and simulation with the BIP
framework. The third category almost only specializes in
behavior and analysis by using and mapping AADL be-
havioral models such as IF [24] and real-time Maude [25].
Such a mapping allows the analysis of the performance and
the dependability.

These AADL formal approaches mainly consider dif-
ferent AADL subsets (with or without annexes) and carry on
formal verification with existing tools such as UPPAAL,
Tina, and Polychrony. They often define a model trans-
formation to implement whole AADL model certification
instead of AADL itself. Moreover, a formal proof of the
semantics preservation of the transformation has not been
considered by them. Our work considers several resource
information in the transformation, and the theorem prover
is used to prove the methodology, that is, the correctness of
the translation. The comparisons of the above-related works
are listed in Table 1.

These works focus on a subset of the AADL, and most of
the related works only consider a small subset of Behavior
annex. For AADL elements, our work supports Behavior
annex and components, in which variables, states, state
transitions of Behavior annex and connections, features, and
software components of components are represented by a
“+”. For the aspect of verified properties, our work considers
more types of properties by Isabelle, for example, grammar,
reachability, and trace refinement.

The main goal of our work is to contribute to a better
integration of the formal techniques in a compilation pro-
cess. So this article is full of formal approaches revolving
around the AADL, and we choose Isabelle/Isar/HOL [8], a
tool suite (within its functional language) that gathers
specification, validation, and verification of AADL and
models, and also the code generation towards AADL run-
time C-like language for the future work. Besides the tool
suite that can be used as stand-alone compiler, the Isabelle/
Isar language provides a readable grammar and a convenient
way to produce the proofs.

4. Abstract Syntax and Validation

4.1. Presentation of Abstract Syntax in Isabelle/HOL. This
section describes those aspects of components that are
common to all AADL component categories. Our work
provides the abstract syntax of the considered AADL in
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TaBLE 1: Comparison of related AADL formal approaches.
£ eati fati Elements covered ; ] .
Works Specification Verification . Components Safety Support for transformation
language tool Behavior annex correctness verification
Thread Process System Others

Gina et al. Petri Nets ADAPT - ++ - - — — _
Johnsen et al. Timed Automata =~ UPPAAL + +++ + - +++ + -
Jean-Francois TLA+ TLC B N _ B B _ ~
et al.
Jahier et al. Lustre Lurette, Lesar - ++ + - - + —
Berthomieu . .

Fiacre Tina + +++ - - - + _
et al.
Yang et al. CSp FDR - ++ - - + ++ -
Chkouri et al. BIP BIP ++ ++ - - - + _

framework
Besnard et al. Signal SynDEx + + - - - - _
TASM,
Yang et al. TASM UPPAAL + +++ + - +++ + -
Mkaouar et al. LNT Ocarina - + + - +++ + -
IFx Its own
Abdoul et al. IF behavioral + - - - 4 _
framework
language

- Real-time
Olveczky et al. Maude Maude ++ ++ - - - + -
Ours Isabelle/Isar Isabelle/HOL +++ +++ + + +++ ++ +

Isabelle/HOL: an AADL model contains several software
subcomponents (like threads), several features (like ports),
and Behavior annex specification. Each Behavior annex can
belong to a thread, and each thread with its Behavior annex
belongs to a process. In this article, to keep the article
reasonably concise, some structural elements and model
attributes are expressed in a uniform abstract syntax. In
addition, at the whole system level, a system is viewed as a set
of processes, and a process is viewed as a set of threads in
communication through port and access connections.
According to the selection of AADL and its Behavior Annex,
the classification of main syntax is discussed in the following
subsections.

4.1.1. Features and Connections. Features are a part of
component type definition that specifies how that compo-
nent interfaces with other components in the system. Fea-
tures are specified as port, access, and parameter. Two
components are connected between features by a linkage
called connections, and connections can be the transmission
of control and data in components’ implementation. AADL
supports connections between port, access, and parameter
connections.

The details of Features and Connections are much more
than we have space to present here, and some of them are
defined in Figures 3 and 4, and the code snippets are shown
in Figures 5 and 6.

4.1.2. Type and Implementation Base. Components repre-
sent some hardware or software entity that is part of a system
being modeled in AADL. A component has a component
type, and zero or more component implementation, which
defines a functional interface and realization. The

feature = port | data_access

| subprogram_access | parameter

FIGURE 3: The syntax of Feature.

connection = connection_identifier

( port_connection |  ac-
cess_connection | parame-
ter_connection)

['{’ { property_association } + '}’ ]

[ in_modes_and_transitions ]

FIGURE 4: The syntax of Connection.

datatype ('Port, ' Dataaccess, 'Subpaccess, ' Parameter) Feature =
FPort ' Port | FDataaccess ' Dataaccess | FSubpaccess 'Subpaccess |

FParam ‘Parameter

FiGure 5: The code of Feature in Isabelle/HOL.

component type acts as the specification of a component that
other components can operate against, and the component
implementation specifies the realization of a component
variant. A component type and implementation instance are
presented in Figures 7 and 8.

By default, we consider one component Type has only
one component Implementation to avoid the complexity of
the actual modeling arisen from polymorphism. To reduce
code redundancy, some basic elements of Type and Imple-
mentation, like Features and Subcomponents, are declared as
the datatypes as the type_base, impl_base, and their own
Properties to add in the respective components later. Their
syntaxes in Isabelle/HOL are presented in Figures 9 and 10.
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datatype  Connection-cate =

DATA-ACCESS | SUBP-ACCESS

PORT | PARAMETER |

('Port, ' Dataaccess, ' Subpaccess, ' Parameter, ' Data,
'Subprogram, ' Thread, ' Process, 'System) conn-conf =

string

cc-cate :: Connection-cate

record
cc-name

cc-endp-src = ('Port,'Dataaccess, 'Subpaccess, ' Parameter, ' Data,
‘Subprogram, ' Thread, ' Process, ' System) Connection-ref

cc-endp-des ::
'Subprogram, ' Thread, ' Process, ' System) Connection-ref

('Port,' Dataaccess, ' Subpaccess, ' Parameter, ' Data,

cc-direction :: Connection-dir
cc-timing-type :: Timing-type option
cc-trans-type :: Transmission-type option

FiGure 6: The code of Connection in Isabelle/HOL.

type_base ::= [ type_name ]
[ features { feature } + |

FIGURE 7: The syntax of component type base.

subcomponent == basic_type | data | subprogram
| thread | process | system
impl_base = impl_name

[ connections { connection } + ]
[ subcomponents { subcomponent

F+1]

FIGURE 8: The syntax of component implementation base.

record (' Port, ' Dataaccess, 'Subpaccess, ' Parameter) type-base =
type-features :: ('Port, ' Dataaccess, 'Subpaccess, ' Parameter) Feature

set

type-name :: string

FIGURE 9: The code of component type base in Isabelle/HOL.

record  ('Connection, 'Data, 'Subprogram, ' Thread, ' Process,
'System) impl-base =

impl-subcomps :: ('Data, 'Subprogram, ' Thread, ' Process, 'System)
Subcomponent set

impl-conns :: 'Connection set

impl-name :: string

Ficure 10: The code of component implementation base in Isa-
belle/HOL.

4.1.3. Software Subcomponents. Software subcomponents
represent the components contained within another
software component. They can be the instantiations of
component implementations if they are contained in
their own subcomponents. As the statement of the core
AADL selection in Subsection 3.1.1, the software sub-
components are specified as Data, Subprogram, Thread,
Process, and System. Their instances are presented in
Figure 11.

7
data_type :: = type_base [data_properties]
data_impl :: = impl_base [data_properties]
subprogram_type :: = type_base [subpro-
gram_properties]
subprogram_impl :: = impl_base [subpro-
gram_properties]  [subprogram-

calls]
thread_type :: = type_base [thread_properties] [be-
havior_annex]
thread_impl :: = impl_base [thread_properties]
[subprogramcalls] [behav-
ior_annex]
process_type = = type_base [process_properties]
process_impl :: = impl_base [process_properties]
system_type :: = type_base [system_properties]

system_impl :: = impl_base [system_properties]

F1GUre 11: The syntax of Subcomponents.

We consider that there is only one system as a parent
component in a practically running model. This results in a
component containment hierarchy that ultimately describes
the whole actual system as a system instance. This section
defines the following categories of software subcomponents:
data subcomponent, subprogram subcomponent, thread
subcomponent, process subcomponent, and system com-
ponent. Their code snippets in Isabelle/HOL are presented
as Figures 12-16.

4.1.4. Behavior Annex. As discussed in Subsection 3.1.2, a
behavior specification subclause is a part of a thread, and it
describes the thread that the Behavior annex belongs to. The
Behavior annex is composed of variable set, state set,
transition set, and its private information (like its name and
ports of its parent component), and its elements are united
by its transitions. A behavior_annex instance is presented in
Figure 17.

The transitions can describe the behavior as a state-
transition system linked with guards by some conditions and
actions. The behavior_transition defines a relation from a
source state to a destination state and represents a sequence
of actions within a thread, which can be executed once its
condition is satisfied. A behavior_transiton consists of its
name, source state, destination state, guard condition, and
actions. The actions associated with transitions are action
block. A transition instance is presented in Figure 18.

The guards combined of conditions are in the transi-
tions, which are explicitly classified as dispatch conditions
and execution conditions. A dispatch condition is a Boolean
expression that specifies the trigger of events. An execution
condition is a logical expression on the inputs, outputs,
values, and properties, or any other execute conditions. A
transition instance is presented in Figure 19.

The actions can be classified as basic actions and action
blocks in the transitions. The basic actions can be defined as
empty (marked as NULL), assignment actions, communi-
cation actions, or timed actions. The action blocks are in the



record data-properties =
dt-access-right :: Access-right option
dt-concurrency-control-protocol :: Concurrency-Control-Protocol

option

record ('Port, ' Dataaccess, 'Subpaccess, ' Parameter) data-type =
("Port, ' Dataaccess, ' Subpaccess, ' Parameter) type-base +
dt-properties :: data-properties option

record  ('Connection, ' Data, 'Subprogram, ' Thread, ' Process,
'System) data-impl = (' Connection, ' Data, 'Subprogram, ' Thread,
'Process, ' System) impl-base +

dt-properties :: data-properties option
FiGure 12: The code of data in Isabelle/HOL.

record subprogram-properties =
sp-urgency :: int option
sp-compute-exetime :: TimeRange option
sp-compute-deadline :: Time option
sp-call-type :: Call-type option

record  ('Port, ' Dataaccess, 'Subpaccess, ' Parameter)
subprogram-type =

("Port, ' Dataaccess, ' Subpaccess, ' Parameter) type-base +

sp-properties :: subprogram-properties option

record  ('Connection, 'Subprogramcalls, ' Data, 'Subprogram,
'Thread, ' Process, ' System) subprogram-impl =

("Connection, ' Data, ' Subprogram, ' Thread, ' Process, ' System)
impl-base +
sp-spcalls ::
sp-properties ::

'Subprogramcalls set
subprogram-properties option

FIGURE 13: The code of subprogram in Isabelle/HOL.

form of sequences or sets. Every single action block is like
imperative language and can be defined as conditionals and
loops. Both assignment actions and communication actions
consist of expressions; moreover, communication actions
can reference for the events of initiating or freezing the
parameters. Timed actions are a kind of predefining com-
putation action. An action instance is presented in Figure 20.

The expressions consist of logical expressions, relational
expressions, and arithmetic expressions. The values of ex-
pressions can be variables, constants, or the result of another
expression, and the constants expression values can be
Boolean, numeric or string literals, property constants, or
property values. The presentation of this part is omitted as
they are totally the same like the expression of imperative
language.

According to all the related works above contributed to
the formal specification, we define the syntax of the Behavior
annex in Isabelle/HOL, and some parts are presented in
Figure 21.

Notice: dispatcher is a predefined type, and it describes
the hardware expression language used in the annex and is
not given here; ’s is a state set describing all possible values
stored in ports; the action language of the annex is abstracted
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record ('Port, 'Data, 'Subprogram, ' Thread, ' Process, 'System)
thread-properties = thd-stack-size :: Size option
thd-initialize-entrypoint :: ('Data, 'Subprogram, ' Thread, ' Process,
'System) Subcomponent option

thd-period :: Time option

thd-deadline :: Time option

thd-priority :: int option

thd-resumption-policy :: Resumption-policy list option
thd-deactivation-policy :: Deactivation-policy option
thd-dispatch-protocol :: Dispatch-protocol option
thd-dispatch-trigger :: ‘Port list option
thd-dispatch-deadline :: Time option
thd-dispatch-offset :: Time option

thd-schedule-policy :: Schedule-policy option
thd-initialze-deadline :: Time option
thd-activate-deadline :: Time option
thd-deactivate-deadline :: Time option
thd-compute-deadline :: Time option
thd-recover-deadline :: Time option
thd-finalize-deadline :: Time option
thd-dispatch-time :: TimeRange option
thd-compute-time :: TimeRange option
thd-recover-time :: TimeRange option

record ('Port,'Dataaccess,'Subpaccess, ' Parameter, ' Data,
'Subprogram, ' Thread, ' Process, 'System, ' BehaviorAnnex)
thread-type = ('Port, ' Dataaccess, 'Subpaccess, ' Parameter)
type-base +

thd-properties :: ('Port, 'Data, 'Subprogram, ' Thread, ' Process,
'System) thread-properties option

thd-ba :: 'BehaviorAnnex option

record ('Port, ' Connection, 'Subprogramcalls, ' Data, ' Subprogram,
"Thread, ' Process, ' System, ' BehaviorAnnex) thread-impl =

(' Connection, ' Data, ' Subprogram, ' Thread, ' Process, ' System)
impl-base +

thd-spcalls :: Subprogramcalls set

thd-properties :: ('Port, 'Data, 'Subprogram, ' Thread, ' Process,
'System) thread-properties option

thd-ba :: BehaviorAnnex option

FiGure 14: The code of Thread in Isabelle/HOL.

as a function computing outputs from the value of its input
ports. The time consumption of an action is directly modeled
as a time attribute.

4.1.5. Whole Model. In our work, we aim at a running model
for the next formal verification in a development. For this
end, we define a whole system, which is described with a set
of mapping between the datatypes and the configuration
records in practice, and the whole system model syntax is
presented in Figure 22.

4.2. Validation Rules for Grammar. AADL is a standard
defined by the SAE, and its reversion was published in 2016.
There are numerous methods and rules of description for
AADL in the new version, and they cover syntax, naming
rules, legality rules, consistency rules, and standard prop-
erties, and also several discrete and temporal semantics.
However, none of current tools have integrated these
methods and rules to check the AADL model comparatively
at present, even they do not take these rules into account,
especially the rules.
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record process-properties = pro-period :: Time option
pro-priority :: int option

pro-resumption-policy :: Resumption-policy option
pro-deactivation-policy :: Deactivation-policy option
pro-load-exe-time :: TimeRange option
pro-load-deadline :: Time option
pro-startup-exe-time :: TimeRange option
pro-startup-deadline :: Time option

record ('Port,'Dataaccess, 'Subpaccess, ' Parameter) process-type =
('Port, ' Dataaccess, ' Subpaccess, ' Parameter) type-base +
pro-properties :: process-properties option

record ('Connection, 'Data, 'Subprogram, ' Thread, ' Process,

System) process-impl = (' Connection, ' Data, 'Subprogram, ' Thread,

'Process, 'System) impl-base +
pro-properties :: process-properties option

Ficure 15: The code of process in Isabelle/HOL.

record system-properties = sys-period :: Time option

sys-priority :: int option

sys-resumption-policy :: Resumption-policy option
sys-startup-deadline :: Time option

record ("Port, ‘Dataaccess, ‘Subpaccess, Parameter) system-type =
(’Port, ‘Dataaccess, ‘Subpaccess, ‘Parameter) type-base +
sys-properties :: system-properties option

record (’Connection, ‘Data, "Subprogram, “Thread, "Process,
System) system-impl = (‘Connection, ‘Data, ‘Subprogram, ‘Thread,
‘Process, "System) impl-base +

sys-properties :: system-properties option

FIGURE 16: The code of system in Isabelle/HOL.

behavior_annex ::= [ variables { behavior_variable }+ ]
[ states { behavior_state }+ |

[ transitions { behavior_transition }+ ]

F1GURE 17: The syntax of Behavior annex.

behavior_transition ::= [ trans_identifier [ [ trans_priority ] ] : |
source_state_identifier {, source_state_identifier }+
-[ guard_condition ] >

destination_state_identifier [ action_block | ;

FIGURE 18: The syntax of Transition.

guard_condition ::= execute_condition
| dispatch_condition
execute_condition ::= logical_expression
| no_others
dispatch_condition ::= ondispatch [ trigger_condition ]

[ frozen ( frozen_ports ) ]

F1GUre 19: The syntax of guard.

action_block ::= "{" actions "}"
actions = action | action_sequence | action_set
action ::= basic_action
| if (logical_expression ) actions
[ else actions ] end if
| while (logical_expression ) "{" actions "}"
| for ( element_identifier in element_values )
H{I! actions H}H
basic_action ::= NULL
| assignment_action
| communication_action
| timed_action
action_sequence ::= action { ; action }+

action_set ::= action{ & action }+

FiGure 20: The syntax of Action.

Our work integrates the rules into the theorem prover
Isabelle/HOL, which come to having a partial mapping from
concrete syntax to abstract model. In this section, for the
next formal verification built on the firmer trust basis, our
work makes a link of the validation for the AADL model in
Isabelle/HOL. Firstly, since some of all the rules are man-
datory and others are recommended, our work determines
47 significant rules on account of AADL selection and they
are considered to be compulsive. These rules cover software
components, features, connections, and Behavior annex
from the grammar perspective. Secondly, these rules R are
specified as the definitions or functions by the functional
language Isabelle/Isar in Isabelle/HOL as the properties
needed to be validated. We specify the constraints as
properties by using the function definition aim at guaran-
teeing the correctness of the built AADL model. And then,
we abstract the element e of a realistic AADL model into
Isabelle and instantiate all elements together into a concrete
model M. It is mapped as a parameter of these rules defi-
nitions. Lastly, we identify the lemmas of these rule defi-
nitions and integrate into a comprehensive lemma about
grammar. The correctness of the validation pass hinges on a
lemma that shows the assertion:

M E grammar_validate (R e)

For the given lemma grammar_validate, the correctness
of the validation pass is simple to state. Due to the space
constraints, the segmental validation rules and definition
code for grammar are classified as syntax, naming, and
others (including legality, consistency, and stand proper-
ties), which are shown in Tables 2-4.

5. Formal Semantics and Verification

Formal semantics is a kind of mechanism based on strict and
mathematical logic, which is especially important for de-
scribing safety-critical systems. Model’s correctness and
valid execution can be guaranteed by formal semantics.
Although the AADL standard has depicted some execution
semantics by natural language, it is the absence of precise
dynamic semantics and even has no formal semantics at
present. In addition, the AADL model cannot be executed
directly because it is just an abstract description of the
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datatype Behavior-state-kind = INITIAL | COMPLETE | FINAL |

EXECUTION
type-synonym BA-state = string x ( Behavior-state-kind set )
type-synonym 's bexp = 's set

datatype (s, 'Port, ' Dataaccess, 'Subpaccess, ' Parameter, ' Data,
'Subprogram) BA-action = Skip

| Basic-Assign's = 's

| Basic-CommunSend (' Port, ' Dataaccess, ' Subpaccess, ' Parameter)
Feature 's = Data Message

| Basic-CommunRecv (' Port, ' Dataaccess, ' Subpaccess, ' Parameter)
Feature ' Data Message = 's

| Basic-CommunFreeze

| Basic-CommunlInisend

| Basic-CommunCallsp ' Subprogram 's = 's

| Segs ('s,'Port, ' Dataaccess, 'Subpaccess, ' Parameter, ' Data,
'Subprogram) BA-action ('s, ' Port, ' Dataaccess, ' Subpaccess,
'Parameter, ' Data, ' Subprogram) BA-action

| Sets (s, 'Port, ' Dataaccess, 'Subpaccess, ' Parameter, ' Data,
'Subprogram) BA-action ('s, ' Port, ' Dataaccess, 'Subpaccess,
'Parameter, ' Data, ' Subprogram) BA-action

| If 's bexp ('s,'Port,'Dataaccess, 'Subpaccess, ' Parameter,
'Data, ' Subprogram) BA-action ('s, ' Port, ' Dataaccess, 'Subpaccess,
'Parameter, ' Data, 'Subprogram) BA-action

| While 's bexp ('s,'Port, ' Dataaccess, 'Subpaccess, ' Parameter,
'Data, 'Subprogram) BA-action

datatype ('s, ' Dispatcher, ' Port, ' Subpaccess) Behavior-Condition =
DispatchCond ' Dispatcher

| DispatchCond-TriggerLogicExp (' Dispatcher option x 'Port) set

| DispatchCond-Subpaccess ' Dispatcher option x 'Subpaccess

| DispatchCond-Stop ' Dispatcher x Event

| DispatchCond-Timeout ' Dispatcher x Time option

| ExecuteCond-LogicExp s bexp

| ExecuteCond-Timeout Time option

record ('s, 'Dispatcher, ' Port, ' Dataaccess, 'Subpaccess, ' Parameter,
'Data, ' Subprogram) BA-transition = src-state :: BA-state

des-state :: BA-state

condition :: ('s, ' Dispatcher, ' Port, ' Subpaccess) Behavior-Condition
option

actions :: (s, 'Port, ' Dataaccess, ' Subpaccess, ' Parameter, ' Data,
'Subprogram) BA-action list

record ('Data, 'Subprogram, ' Thread, ' Process, 'System) BA-var =
var-name : string

FiGURE 21: The code of Behavior annex in Isabelle/HOL.

system architecture. This not only restricts the possibility of
formal analysis of AADL models, but cannot conduct model
checking and verification. It is necessary to propose a way to
specify AADL models with formal models. However, AADL
is mainly a mathematical model, which cannot be used to
automatically verify properties of a given AADL model. In
order to provide evidence of model checking and enable the
proof of semantics preservation of system running, the
informal execution semantics of AADL formalized directly
in Isabelle/HOL are considered an operational semantics.
In this article, the AADL semantics is given an opera-
tional semantics, which is delivered from the AADL

Scientific Programming

AADL_model := { features }

{ connections }

{ subprogramcalls }

{ data_type }

{ data_impl }

{ subprogram_type }
{ subprogram_impl }
{ thread_type }

{ thread_impl }

{ process_type }

{ process_impl }

{ system_type }+

{ system_impl }
{

behavior_annex }

FIGURE 22: The syntax of the model.

informal execution semantics and can be compared with the
informal one. The main benefit with operational semantics is
that it is based on a rigorous mathematical foundation and is
built on the same principles as functional programming
languages. Such benefits determined us to define an un-
derlying operational semantics for AADL and its Behavior
Annex, and consequently implement the verification in
Isabelle/HOL.

5.1. Semantics of Behavior Annex. The AADL model is
completed with behavioral descriptions using the Behavior
annex, like computation and communication for threads.
Thus, there is a relation between the AADL execution model
and the Behavior annex. The execution model specifies when
the Behavior annex is executed and on which data it is
executed, while the Behavior annex acts in a thread (or a
subprogram) and describes behaviors more precisely. For
this purpose, the semantic specifications given as above will
be enriched by the Behavior annex. Since the behavior is
explicitly expressed by atomic transitions, the operational
semantics of the Behavior annex is defined based on the
refinement of the rule of each transition in the Behavior
annex, and the execution semantics of the Transition is based
on the semantics of the Actions in itself. This section begins
by describing how to formalize the meaning of Behavior
annex using automaton. And then, the constituents of the
Behavior annex and their semantics are defined (including
transition system, action and expression language, etc.).

5.1.1. Formalization of Behavior Annex by Automaton.
We present the formalization of a Behavior annex by using
an incomplete automaton AM with several variables. The
AM is used to interpret the meaning of the whole Behavior
annex, and AM=(S, s0, V, P, B, T, C) is defined as

(i) S: the states set of AM.
(ii) sO: the initial state, sO € S.
(iii) V: the local variables set of AM.

(iv) P: the ports set of AM (including the input set IP
and the output set OP, P=1P U OP).
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and code of syntax rules.

Description

Code in Isabelle/HOL

(N1) The defining identifier for a component type must be
unique in the namespace of the package within which it is
declared.

(N1) A component implementation name consists of a
component type identifier and a component implementation
identifier separated by a dot (“.”). The first identifier of the
defining component implementation name must name a
component type that is declared in the same package as the
component implementation, or name an alias to a component
type in another package.

definition type_name_valid:: “('s, 'Dispatcher, 'Port, 'Dataaccess,
'Subpaccess, 'Parameter, 'Subprogramcall, 'Subprogramcalls,
'Connection, 'Data, 'Subprogram, 'Thread, 'Process, 'System,
'BehaviorAnnex) AADL_model = bool”

where “type_name_valid m = (Vdtl dt2. (data_tp m)#None A
dt1#dt2 — (type_name (the (data_tp m) dt1))#(type_name (the
(data_tp m) dt2)))

A (Vspl sp2. (subprogram_tp m)#None A spl#sp2 —
(type_name (the (subprogram_tp m) spl))#(type_name (the
(subprogram_tp m) sp2)))

A (Vthdl thd2. (thread_tp m)#None A thd1#thd2 —
(type_name (the (thread_tp m) thdl))#(type_name (the (thread_tp m)
thd2)))

A (Vprol pro2. (process_tp m)#None A prol#pro2—
(type_name (the (process_tp m) prol))#(type_name (the (process_tp
m) pro2)))

A (Vsysl sys2. sysl#sys2 — (type_name ((system_tp m)
sysl))#(type_name ((system_tp m) sys2)))”
definition impl2type_name_valid:: “('s, 'Dispatcher, 'Port, 'Dataaccess,
'Subpaccess, 'Parameter, 'Subprogramcall, 'Subprogramcalls,
'Connection, 'Data, 'Subprogram, "Thread, 'Process, 'System,
'BehaviorAnnex) AADL_model = bool”

where “impl2type_name_valid m = (Vdt. (data_im m)#None

A (data_tp m)#None A (the (data_im m) dt)#None —
(get_prename_impl_dt m dt)=(type_name (the (data_tp m) dt)))

A (Vsp. (subprogram_im m)#None A (subprogram_tp m)+
None A (the (subprogram_im m) sp)#None —
(get_prename_impl_sp m sp)=(type_name (the (subprogram_tp m)
sp)))

A (Vthd. (thread_im m)#None A (thread_tp m)#None A
(the (thread_im m) thd)#None — (get_prename_impl_thd m
thd)=(type_name (the (thread_tp m) thd))) A (Vpro. (process_im m)#
None A (process_tp m)#None A (the (process_im m) pro)#None —
(get_prename_impl_pro m pro)=(type_name (the (process_tp m)
pro)))

A (Vsys. (system_im m)#None A (the (system_im m) sys)#
None — (get_prename_impl_sys m sys)=(type_name ((system_tp m)
5y5))”

(v) B: the Boolean formulas set of AM (these multi-
sorted logical formulas are defined over the vo-
cabulary available in the lexical scope of a Behavior
annex: AADL value constants, port, state, and
variable names, B=S U V U P).

(vi) T: the transition function set defines the transition
system of AM, Te FxS — FxS. Each specified
transition has its quadruple (s, g, a, d) which
defines the source state s, guard formula g, action
formula a, and destination state t. includes the
guard g and the action a.

(vii) g denotes the source formula of a transition de-
fined on V and L

(vili) a represents the target formula of a transition
defined from V and P.

(ix) C: the constraint set of AM, which denotes the
invariants (properties, requirements) of the
denoted AADL object and denoted by the

multisorted logical formulas, C € B. It must always
equal 0.

If the thread is in dispatch status, the states (initial,
complete, final) of Behavior annex can be observed, as these
states are specified in a transition and they can be mapped to
the execution of the outside components. If the thread is
under execution, the detail of states cannot be observed, as
their execution states are just held in a running thread and
they are the internal states related to the processor in the
whole Behavior annex. So our work defines the formal
execution semantics of Behavior annex as two parts: one is
about transitions, and the other is about Actions in tran-
sitions. These two parts are described by big-step semantics
through a global state (shared variables), and they can be
recombined to the integrated semantics of whole Behavior
annex. Furthermore, the Action semantics can be mapped to
some imperative language in the future work, and its formal
semantics would make the preservation more clear.
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TaBLE 3: Description and code of naming rules.

Description

Code in Isabelle/HOL

(N1) The defining identifier for a component type must be
unique in the namespace of the package within which it is
declared.c

definition type_name_valid:: “('s, 'Dispatcher, 'Port, 'Dataaccess,
'Subpaccess, 'Parameter, 'Subprogramcall, 'Subprogramcalls,
'Connection, 'Data, 'Subprogram, 'Thread, 'Process, 'System,
'BehaviorAnnex) AADL_model = bool”

where “type_name_valid m = (Vdtl dt2. (data_tp m)#None A
dt1#dt2 — (type_name (the (data_tp m) dt1))#(type_name (the
(data_tp m) dt2)))

A (Vspl sp2. (subprogram_tp m)#None A spl#sp2 —
(type_name (the (subprogram_tp m) spl))#(type_name (the
(subprogram_tp m) sp2)))

A (Vthdl thd2. (thread_tp m)#None A thd1#thd2 —
(type_name (the (thread_tp m) thdl))#(type_name (the (thread_tp m)
thd2)))

A (Vprol pro2. (process_tp m)#None A prol#pro2—
(type_name (the (process_tp m) prol))#(type_name (the (process_tp
m) pro2)))

A (Vsysl sys2. sysl#sys2 — (type_name ((system_tp m)
sysl))#(type_name ((system_tp m) sys2)))”

(N1) A component implementation name consists of a
component type identifier and a component implementation
identifier separated by a dot (“.“). The first identifier of the
defining component implementation name must name a
component type that is declared in the same package as the
component implementation, or name an alias to a component
type in another package.

definition impl2type_name_valid:: “(s, 'Dispatcher, 'Port, 'Dataaccess,
'Subpaccess, 'Parameter, 'Subprogramcall, 'Subprogramcalls,
'Connection, 'Data, 'Subprogram, 'Thread, 'Process, 'System,
'BehaviorAnnex) AADL_model = bool”
where “impl2type_name_valid m = (Vdt. (data_im m)#None A

(data_tp m)#None A (the (data_im m) dt)#None —
(get_prename_impl_dt m dt)=(type_name (the (data_tp m) dt)))

A (Vsp. (subprogram_im m)#None A (subprogram_tp m)#
None A (the (subprogram_im m) sp)#None —
(get_prename_impl_sp m sp)=(type_name (the (subprogram_tp m)
sp)))

A (Vthd. (thread_im m)#None A (thread_tp m)#None A
(the (thread_im m) thd)#None — (get_prename_impl_thd m
thd)=(type_name (the (thread_tp m) thd)))

A (Vpro. (process_im m)#None A (process_tp m)#None A
(the (process_im m) pro)#None — (get_prename_impl_pro m
pro)=(type_name (the (process_tp m) pro)))

A (Vsys. (system_im m)#None A (the (system_im m) sys)#
None — (get_prename_impl_sys m sys)=(type_name ((system_tp m)
sys)))”

5.1.2. Semantics of Transition in Behavior

transition.

(1) Variables: The variables, which are temporary

Annex.
Actually, the transition system, which is described by three
sections (variable declarations, state declarations, and
transition declarations mentioned in Section 4.1.4), is a
refinement of the AADL Behavior annex, and it is created by
linking two states using a guarded automaton. A transition
(Si — [conditions] — Sj{actions}) specifies the behavior as
a state change from a source state Si to a destination state Sj,
which can be guarded by conditions (dispatch or execution).
In this section, we specify the meaning of the elements in
transition and use them to express the semantics of

queues or values read from data components in the
AADL specification.

(2) States: The states, which may be mapped to the
various thread states, are categorized as initial,
complete, final, or execution state. The initial state
means thread state halted, the complete state means
thread state awaiting for dispatch (suspend or re-
sume), the final state means thread state stopped, and
the execution state means the rest of thread states
(running) that are not be observable.

(3) Transitions: The transitions define an execution
automaton in a thread. They may be guarded by
dispatch or execute conditions, and the sequence of

through the whole Behavior annex subclause, declare
the identifiers that represent local variables and re-
cord intermediate results within the scope of the
whole Behavior annex subclause. They can be used to
hold the values of out parameters on subprogram
calls and also can hold input from incoming port

actions within each transition can be executed
atomically when their conditions are satisfied. Dis-
patch conditions explicitly specify dispatch trigger
conditions out of a complete state to another state.
Execute conditions specify transition conditions out
of an execution state. Actions can be subprogram
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TaBLE 4: Description and code of other rules.

Description

Code in Isabelle/HOL

(1) A thread models a concurrent task or an active object, that
is, a schedulable unit that can execute concurrently with other
threads. Each thread represents a sequential flow of control
that executes instructions within a binary image produced
from the source text. One or more AADL threads may be
implemented in a single operating system thread. A thread
always executes within the virtual address space of a process;
that is, the binary images making up the virtual address space
must be loaded before any thread can execute in that virtual
address space. Threads are dispatched; that is, their execution
is initiated periodically by the clock or by the arrival of data or
events on ports, or by the arrival of subprogram calls from
other threads.

definition thread_thread2system_valid:: “(s, 'Dispatcher, 'Port,
"Dataaccess, ’Subpaccess, "Parameter, Subprogramcall, ’Subprogramcalls,
'Connection, 'Data, 'Subprogram, "Thread, 'Process, 'System,
'BehaviorAnnex) AADL_model = bool”
where “thread_thread2system_valid m = Vsys. Jscl sc2. (if
((system_im m)#None A (the (system_im m) sys)#None A
(impl_subcomps (get_sysimpl m sys))#{})
then (scle(impl_subcomps (get_sysimpl m sys))
— (case scl of SCThd _ = True
| SCPro pro = (if ((process_im m)#None A (the
(process_im m) pro)#None A (impl_subcomps (get_proimpl m pro))#{})
then (sc2e(impl_subcomps (get_proimpl m pro)) —

(case sc2 of SCThd _ = True

| _ = False))

else False)

| _ = False))
else False)” definition thread_thread2process_valid:: “(s, ’Dispatcher,
"Port, 'Dataaccess, 'Subpaccess, 'Parameter, 'Subprogramcall,
'Subprogramcalls, 'Connection, 'Data, 'Subprogram, 'Thread, 'Process,
'System, 'BehaviorAnnex) AADL_model = bool”

where “thread_thread2process_valid m = Vpro. 3sc. (if ((process_im
m)#None A (the (process_im m) pro)#None A (impl_subcomps
(get_proimpl m pro))#{})
then (sce(impl_subcomps (get_proimpl m pro)) — (case sc of SCThd _
= True
| _ = False))

else False)”

calls, receiving of input and sending of output, as-
signments to variables, read/write to data compo-

nents, or other activities.

We describe a transition as a series of atomic operation in
Behavior annex, and a series of Transitions are composed into
a whole behavior. As a transition is mainly supported to
complete the thread component with behavior handling in-
puts and outputs in order to enrich the communication

Moreover, a transition is guarded by conditions, and
conditions can be either dispatch conditions or execution
conditions as shown in Figure 19. We consider a dispatch
condition g of T formed by clock c as its dispatch trigger; it
means the dispatch condition is presented as time trigger.
An execution condition g of T is considered logical value
expressions. The semantic of transition is defined inductively
by the rules in Isabelle/HOL as shown in Figure 23.

mechanism, so in some sense, talking about the semantics of

whole transitions is about Behavior annex actually. Our work
defines the semantics of Behavior annex by the operational
big-step semantics presented by the automaton AM as T=(s,

g, a, d), and they are defined inductively as follows:
T:’s BA_Transition
s, d: State

a: Actions

g: Conditions

The core state space is denoted in terms of states by the
type ’s different from the state of transitions, it is poly-
morphic, and its semantics is augmented with control flow

information in Isabelle/HOL as follows.

Where the type variable state ’s is regarded as a set of
variable states and related to the variable state in Actions
when the execution is in a normal state Normal s. Besides, ’s
can hold the value of variables on inputs or outputs, and it is
attached to the receiving or sending events as a message Msg

s as an option.

5.1.3. Semantics of Action in Behavior Annex. This section
defines the semantics of Actions by the operational big-step
semantics. Actions of the Behavior annex define actions
performed during transitions. Actions associated with
transitions are action blocks that are presented in Figure 20,
where the single action can be defined as control structures
such as basics, conditionals, and loops. The action_sequence
means it is executed in order, while action_set can be ex-
ecuted in any order.

The basic_action can be empty, assignment, commu-
nication, or time-consuming. The assignment action is
reference for the value assignment. The communicatio-
n_action is reference for receiving and sending data, event,
or event data on the inputs and outputs. The Timed_action is
predefined computation actions.

Since this section should be related to the semantics of
transitions and be a part of it, the semantics of Action is
defined as T: : {(s,a)=d, which means in the procedure
environment I' execution transforms the source state s to the
destination state d. Actually, the destination state d is the
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type-synonym  ('s, 'Dispatcher, ' Port, ' Dataaccess, 'Subpaccess,
'Parameter, ' Data, 'Subprogram, 'Thread, ' Process, 'System,
BehaviorAnnex) BA-body

= 'BehaviorAnnex = ('s, ' Dispatcher, ' Port,
'Dataaccess, 'Subpaccess, ' Parameter, ' Data, ' Subprogram, ' Thread,

'Process, 'System) behavior-annex-conf option

inductive
BA-bigstep :: [('s, ' Dispatcher, ' Port, ' Dataaccess, ' Subpaccess,
'Parameter, ' Data, 'Subprogram, "' Thread, ' Process, 'System,
'BehaviorAnnex) BA-body,
(s, 'Dispatcher, ' Port, ' Dataaccess, 'Subpaccess,
'Parameter, ' Data, ' Subprogram) BA-transition,
('s,'p, 'f, ' Dispatcher, ' Port, ' Dataaccess,
'Subpaccess, ' Parameter, ' Data, 'Subprogram, ' Thread, ' Process,
'System, ' BehaviorAnnex) AADL-state,
(s, 'p, 'f. ' Dispatcher, ' Port, ' Dataaccess,
'Subpaccess, ' Parameter, ' Data, 'Subprogram, ' Thread, ' Process,
'System, ' BehaviorAnnex) AADL-state] = bool
(-F(-,-)>-[93,92,94,94] 95)
for BA-BODY :: ('s, 'Dispatcher, ' Port,
'Dataaccess, 'Subpaccess, ' Parameter, ' Data, ' Subprogram, ' Thread,
'Process, 'System, ' BehaviorAnnex) BA-body
where
Tran-ini2com: [[BA-BODY BA = Some ba-conf;
ba-tran € (ba-trans ba-conf );
ba-var € (ba-vars ba-conf);
(snd (src-state ba-tran)) = INITIAL;
(snd (des-state ba-tran)) = COMPLETE;
(snd ((ba-st s) BA)) = INITIAL A (fst (src-state ba-tran))
= (fst ((ba-st s) BA));
(snd ((ba-st t) BA)) = COMPLETE A (fst (des-state
ba-tran)) = (fst ((ba-stt) BA));
(condition ba-tran) = None
V (the (condition ba-tran) = DispatchCond -)
V (the (condition ba-tran) = DispatchCond-TriggerLogicExp
{h
V (the (condition ba-tran) = DispatchCond-Subpaccess

V (the (condition ba-tran) = DispatchCond-Stop (-,-))
V (the (condition ba-tran) = DispatchCond-Timeout (-,-))
V ((the (condition ba-tran) = ExecuteCond-LogicExp be)
A (case s1 of Normal s' = s' € be));
acts=(actions-block ba-tran);
s1=((ba-var-st s) ba-var);
s2=((ba-var-st t) ba-var);
ACT-BODYWacts,s1) = s2]]
==BA-BODYW+{ba-tran, s) >t

FIGURE 23: Big-step semantics of transition in Isabelle/HOL.

Scientific Programming
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destination state d of its transition. To connect with the
automaton T, we refinement a in the automaton T as a new
automaton A and reconstitute the automata T°=(s, g, true, t)
U A and A=(t, true, a, d) where a in A and a in the previous
T are not same, and the former is the detailed imple-
mentation of the latter. T' and A are defined by the case on
Actions as follows:

(i) Action sequence is a list type of executions. For
example, action_sequence a=[al; a2] separates
A=(t, true, a, d) into A1=(t, true, al, t’) and A2=(t’,
true, a2, d) by introducing an intermediate state t’,
and then, T’=(s, g, true, t) U A1 U A2 by the union
of them.

(ii) Action set is a disorderly combination of execu-
tions. For instance, action_set a=[al & a2] makes
that A =(A1x A2), which the composed elements
are Al =(tl, true, al, d1), A2 =(t2, true, a2, d2),
t=(t1, t2), and d=(d1, d2).

(iii) Empty_action of basic_action NULL can be rep-
resented as an invalid operation to the states and
defined by SKIP.

(iv) Assignment action of basic_action v\coloneq e
represents a variable state transition and it is de-
fined by A =(t, true, v'=e, d) where v’ represents
the successor state of v.

(v) Communication_action of basic_action is divided
into the output port action port!(e) and the input
port action port?(v). The output can be defined by
A=(t, true, port =, d). The input can be defined by
A=(t, true, v =port, d) where v’ represents the
successor state of v.

(vi) Timed_action  of  basic_action  computa-
tion(tl. . .tN) represents the execution time of the
action block. It is specified as two ports—pb (port
begin) and pe (port end), and defined by A ={(s,
true, pb, i), (i, pe, true, d)}, where i is an inter-
mediate state as a complete state and timed con-
straint Val(pb+t1) < Val(pe +tN).

(vii) Conditional_action, for instance, if(exp) al else a2
end if can be defined by T’ ={(s, g, true, t1), (s, g
true, t2)} U Al U A2 which Al =(tl, true, al, d),
A2=(t2, true, a2, d), and the guard g is corre-
sponding to the logical expression exp in
conditional_action.

(viil) While_loop_action, for instance, while(exp) { a }
can be defined by T = {(s, g, t g, true, d), (12, g, true,
tl), (t2, g, true, d)} U A, where the guard g is
corresponding to the logical expression exp in
while_loop_action and A=(tl, true, a, t2).

(ix) For_loop_action, for instance, for(I in e) { a } can
be translated by the action sequence [al; .. .; an],
where ai results from the substitution of i by the
i_th element value of e in a.

The semantic of Action is defined inductively by the rules
in Isabelle/HOL as shown in Figure 24. The procedure
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environment act-body denotes the static procedure decla-
rations as mapping from subprogram names to actions
programs of Behavior annex and defines the execution of
command c that transforms the initial state s to the final state
t under act-body.

5.1.4. Semantics of Expressions in Behavior Annex.
Expressions consist of logical expressions, relational ex-
pressions, and arithmetic expressions like the expressions of
imperative language. Values of expressions can be variables,
constants, or the result of another expression. In AADL,
expressions are used as logical conditions of guards in
transitions or logical expressions in conditional actions, or as
values for basic actions. Values of variable expression are
evaluated from inputs, local variables, and data subcom-
ponents. Values of constant expression are Boolean, numeric
or string literals, and property values. In our work, ex-
pressions are defined by the type variables’s as a set of states
in Isabelle/HOL and related to the variable state in Actions.

5.2. Semantics of AADL Components. There are a great
number of components that can be used to build hierarchical
models in AADL, and it makes AADL have a great capacity
of expression. In our work, the AADL model is viewed as a
set of concurrent tasks scheduled by a processor and
asynchronously interacted. Generally, we consider the fol-
lowing components: data, thread, process, and processor.
These components are connected through AADL port
connections, completed with a set of standard properties,
and finally grouped in the system component. However, in a
running system model, a process component represents the
virtual address space and scheduled by the processor. In-
deed, a thread component is the minimum schedulable unit
under execution, and then, they are concepts that require
detailed attention as they include the behavior of AADL.
What’s more, our goal is to verify system behavior, so in this
section, we focus our experimentation on software com-
ponents in the software model and thread management.
Besides, the mode semantics is not yet completely stabilized
in the standard so we take no account of mode management,
and our work highlights several constructions(like Glob-
al_Timer, Dispatcher, and Scheduler) to make the AADL
system model running and also its semantics of components
more coherent.

According to the AADL standard, the running model of
software components can be described by execution au-
tomaton; the following paragraph describes that the software
components are applied to the execution automaton and the
management of communication (Figure 25).

5.2.1. Semantics of Thread Component Execution Model.
First of all, the necessary Thread execution model elements
are currently specified according to the AADL running
models by two points—dispatching and scheduling, and they
both can be expressed by an automaton as shown in
Figure 26.
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type-synonym ('s, 'Port, ' Dataaccess, 'Subpaccess, ' Parameter,

'Data, ' Subprogram) act-body ='Subprogram = ('s, ' Port,

'Dataaccess, 'Subpaccess, ' Parameter, ' Data, ' Subprogram)

BA-action option

inductive

BA-action-bigstep :: [('s, ' Port, ' Dataaccess, 'Subpaccess, ' Parameter,

'Data, ' Subprogram) act-body,

('s, 'Port, ' Dataaccess, 'Subpaccess, ' Parameter,

'Data, ' Subprogram) BA-action, 's vstate, s vstate] = bool
(-F(-,-) = -[97,96,98,98] 99)
for ACT-BODY :: ('s, 'Port, ' Dataaccess, ' Subpaccess,
'Parameter, ' Data, ' Subprogram) act-body

where

SKIP: ACT-BODY-(Skip, Normal sy = Normal s
| Assign: ACT-BODYW(Basic-Assign ba, Normal s) = Normal (ba

s)

| CommunSend: ACT-BODY(Basic-CommunSend bcs, Msg m) =

Msg (bes m)

| CommunRecv: ACT-BODY(Basic-CommunRecv ber, Normal s) =

Normal (ber s)

| CommunFreeze: ACT-BODY(Basic-CommunFreeze, Normal s) =

Normal s

| Communlnisend: ACT-BODY\(Basic-Communlnisend, Normal s) =

Normal s

| CommunCallsp: [[ACT-BODY sp=Some baact;
ACT-BODYW(Basic-CommunCallsp sp paras, Normal s) =

Normal (paras s);

ACT-BODY(baact,Normal (paras s))=t]]
== ACT-BODY(Basic-CommunCallsp sp paras, Normal

sy=t

| Segs: [[ACT-BODY(al, Normal s)=s';

ACT-BODYH{a2, s'y = t]]

== ACT-BODYF(Segs al a2, Normal s) = t
| Sets: [[ACT-BODY\(al, Normal s) = t;
ACT-BODYH{a2, Normal s) = t]]
== ACT-BODYW(Sets al a2, Normal s) = t
| IfTrue: [[sebe; ACT-BODY\(al, Normal sy = t]]
== ACT-BODYH(If be al a2, Normal s) = t
| IfFalse: [[s¢be; ACT-BODYH(a2, Normal s) = t]]
== ACT-BODYH(If be al a2, Normals)=t

| WhileTrue: [[sebe;

ACT-BODY\(a, Normal s) = s';
ACT-BODY{While be a, s’y = t]]
==ACT-BODY\(While be a, Normal s) = t

| WhileFalse: [[s¢be]]

== ACT-BODY+(While be a, Normal sy = Normal s

FIGURE 24: Big-step semantics of Action in Isabelle/HOL.

The dashed box represents Thread_Computation state,
and in the Thread_Computation of the execution automa-
ton, the Thread internal behavior is carried out according to
the behavior expression, which was described in Section 5.1.
In order to integrate all the Thread execution states in one
Thread, the other execution states are generated for each

Thread. Every Thread execution states transition is managed
by its previous states, its parent Process, and System exe-
cution state. They also are both decided by the next state of
the Transition in Behavior annex, so the semantics of
Transition are embedded in this part for connecting with
Thread_Computation. In the case of execution Initialize, the
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topped (system)
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Ficure 25: Whole execution automaton.
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FiGure 26: Thread execution automaton.
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code of state conditions management part in Isabelle/HOL is
shown in Figure 27.

In the transitions automaton, the execution time, the
elapsed time, and waiting time are controlled by the creation
of the global clock and the various Deadline (ini-
tialize_Deadline, compute_Deadline, recover_Deadline,
etc.), and they provide the possibility to manage several
kinds of Thread including periodical, aperiodic, and spo-
radic ones. In the case of execution Initialize, the code of
temporal part in Isabelle/HOL is shown in Figure 28.

To support sending and receiving messages (data, event,
and data_event) between components, the Connections
provide the communication mechanism to manage mes-
sages from the source to the destination point. They are
typed with Access_Connections and Port_Connections. The
Access_Connections type is used to model the data flow
shared by access between components like Sub-
program_Access and Data_Access, and the Port_Connec-
tions type is used to model transfer of data or events between
ports. All types also include the Parameter_Connections,
which models a data flow representing the parameter of
subprogram included in a Thread, but this type is not
managed in our transformation on account of the practical
frequency.

Now, we focus our presentation on the Port_Connection
type. It deals with the processing of the sent and received
messages and the properties describe several behavioral
features (like the Queue_Size, Queue_Processing Protocol,
and some other properties) to define a queue of messages
associated with a port. The processing of the messages re-
ceived by Thread is carried out when it is in the execution
state Thread_Computation. This state is reached after the
dispatch of Thread. Unfortunately, these necessary concepts
are not described explicitly in the AADL standard, so we
should take into account an execution model definition.

In our work, several processing conditions are added on
the Thread semantic to specify the Connection model. For
example, the port queue state is estimated and the messages
on the queue are handled by a dispatch mechanism. This
mechanism is dedicated to detach the internal behavior of a
Thread and the message consumption. In the Thread exe-
cution model, the dispatch action is performed on the
transition between the state Thread_Suspend_Wai-
ting Dispatch and Thread_Computation. Generally, the
message once arrives on the ports will be copied in variables
in the Behavior of the Thread through the dispatch. In the
execution state of Thread_Computation, the Thread handles
its behavior with data and event copies. So, we combine the
state of the Behavior and add the definitions “is_port_-
queue_empty” and “handle_port” to specify and to con-
ceptualize the Connections based on the AADL standard
properties. In the case of execution Initialize, the code in
Isabelle/HOL is presented in Figure 29. For these additions,
they are mainly used at a design level for code generation and
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they also make the semantics of Behavior add into the model
execution semantics to be a whole complete and continuous
semantics.

5.2.2. Semantics of Process Component Execution Model.
A process represents a virtual address space at runtime, so
the Process execution model is driven by the processor
mainly and it works on the state to affect its own Thread
execution model inside in effect. We consider that the
Process execution model is managed by the clock and ex-
press its parent System execution state as an automaton as
shown in Figure 30.

In the transitions automaton, the execution time, the
elapsed time, and waiting time are controlled by the creation
of the global clock and the various Deadline (load_Deadline,
startup_Deadline, etc.), and also the prestate and poststate
must be satisfied. In the case of execution Load, the code of
the process execution Load part in Isabelle/HOL is shown in
Figure 31.

5.2.3. Semantics of System Component Execution Model.
A system represents the runtime architecture of an actual
system that consists of application software components and
execution platform components, and it is the top hierarchy
of the whole execution model, so the System execution
model is only driven by the processor and it works on the
state to affect its own Process and Thread execution model
inside in effect. Same as the Process execution model, the
system execution model is managed by the clock and it is
presented as an automaton as shown in Figure 32.

In the case of execution Start_Complete, the code of the
System execution Start Complete part in Isabelle/HOL is
shown in Figure 33.

5.3. Formal Verification for AADL

5.3.1. Proof system Framework. The calculation of the AADL
execution model is actually a sequence of transitions. The
computations set for whole executions with static infor-
mation X is defined as I'(X). We use function I'(Z, p, s, €) to
present the computations of an execution system p starting
up from an initial state s and execution e. A configuration of
computation is defined as a triple § = (6,s,e) where 6 is
specified as transition rules in execution model systems,
which have the form Z-(0,,s,,e,) — (6,15 S,:1> €0e1)-

A specification in the proof system is a tuple {pre, pst),
where pre is short for the precondition, and pst stands for the
postcondition. For each computation 6 € I'(Z, p, s, e), the
configuration at index i is denoted by §;, and we use 05, s5
and e, to signify the element inside §; = (6,s,e). We use A
and C to denote assumption and commitment functions,
respectively.
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process € (get-pros-bysys m system);
thread € (get-thds-bypro m process);
port € (get-ports-bythd m thread);
subpaccess € (get-subpaccesses-bythd m thread);
dataaccess € (get-dataaccesses-bythd m thread);
ps1=((port-st s) port) A spaccs1=((spacc-st s) subpaccess);
(pr-state ((pr-st s) process))=PRO-LOADED A (pr-state ((pr-st t)
process))=PRO-LOADED;
(th-state ((th-st s) thread))=HALTED;
(th-state ((th-st t) thread))=SUSPENDED-WAITING-DISPATCH;
(snd ((ba-st s) th-ba))=INITIAL A fst ((ba-st s) th-ba) = fst
(src-state th-ba-tran);
(snd ((ba-st s) th-ba))=INITIAL A fst ((ba-st s) th-ba) = fst
(src-state th-ba-tran);
(snd ((ba-st t) th-ba))=COMPLETE A fst ((ba-st t) th-ba) = fst
(des-state th-ba-tran);
if ((is-port-queue-empty s port)=False)

then ((ps2=handle-port s port) A (spaccs2=spaccsl))

else ((spaccs2=handle-spaccess s subpaccess) A (ps2=psl));
((port-st t) port) = ps2 A ((spacc-st t) subpaccess) = spaccs2;
(BA-BODY th-ba) = Some th-ba-conf;
BA-BODY\(th-ba-tran, s) > t

FiGure 27: The state conditions management of Thread execution Initialize semantic.

gt = (cur-time s);

(begin-time ((th-st s) thread)) = (cur-time s);

(action-begin-time ((th-st s) thread)) = (cur-time s);

(elapsed-time ((th-st t) thread)) < (the (thd-initialze-deadline

(the (thread-type.thd-properties (the (thread-tp m) thread)))))+(the
(thd-recover-deadline (the (thread-type.thd-properties (the (thread-tp
m) thread)))));

(cur-time t) = (cur-time s) + (elapsed-time ((th-st t) thread));
(cur-time t) = (action-begin-time ((th-st s) thread)) + (elapsed-time
((th-st t) thread));

(exe-time ((th-st t) thread)) < (elapsed-time ((th-st t) thread));

FIGURE 28: The temporal part of Thread execution Initialize semantic.

if ((is-port-queue-empty s port)=False)

then ((ps2=handle-port s port) A (spaccs2=spaccsl))

else ((spaccs2=handle-spaccess s subpaccess) N (ps2=ps1));
((port-st t) port) = ps2 A ((spacc-st t) subpaccess) = spaccs2;

FIGURE 29: The connection part of Thread execution Initialize semantic.

A(Z, pre) = {p | s5 € pre/\(Vi<(1ength (-1 (ZF6 — d;,,) — (sgi, 55”1))},

(1)
C(z,pst) = {p | (Vi< (length(8) = 1) (Z+8 — 8i1) — (55555, )) A (Brastioy =L L] — 55 € pst)}.

We define validity of specification for executions as It represents that the set of computations w, which starts
at the configuration (6, s, e), with s € pre and a computation
0 € w. If an execution terminates, then the final states
(2)  belong to pst.

Yk psat (pre, pst) = Vs, x.I'(Z, p,s,e) N A(Z, pre) CC (Z, pst).
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process unloaded

load (process)

abort (process) t<0
abort (peocessor) L

process loading

abort (process)

abort (peocessor) complete loading

assert t<load_deadline
<0
c<0

|

process starting
0., 9,

c=1 “t=1

abort (process)
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complete starting
assert t<startup_deadline
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stopped (process)
stopped (processor)

load error detected

stopped (process)
stopped (processor)

process stopping
é,

t=1

stopped (process)
stopped (processor)

FiGure 30: Process execution automaton.

sy-state ((sy-st s) system))=SYS-OPERATIONAL;

processe (get-pros-bysys m system);

(pr-state ((pr-st s) process))=PRO-UNLOADED;

(pr-state ((pr-st t) process))=PRO-LOADING;

gt = (cur-time s);

(begin-time ((pr-st s) process)) = (cur-time s);
(action-begin-time ((pr-st s) process)) = (cur-time s);

(cur-time t) = (cur-time s) + (elapsed-time ((pr-st t) process));
(cur-time t) = (action-begin-time ((pr-st s) process)) + (elapsed-time
((pr-st t) process));

(exe-time ((pr-st t) process)) < (elapsed-time ((pr-st t) process))

FIGURE 31: The process execution Load semantic.

5.3.2. Invariant Verification. The core of the correctness
proof shows the invariance of states between components
generated from it. The proof proceeds by induction on the
former, and actually, it is long and contains many techni-
calities. In many cases, we would like to show that the AADL
execution model preserves certain data invariants. Since the

Behavior annex may not be a closed system; that is, a state
may be changed by its environment or conditions. So that
the reachable states of Behavior annex depend on both the
initial states and the environment. A Behavior annex with
static information X is defined as follows:

Vsg, %00 - 8 € T(Z, p, sp,€9) N A(Z, inits) — (Vi <length (9) - invars(s(;i)). (3)

The above formula demonstrates that it starts up from a

set of initial states init, and it will preserve an invariant inv if

its reachable states satisfy the predicate.

In this definition, § denotes an arbitrary computation of

p from a set of initial states inits and under an environment

R. It requires that all states in § satisfy the invariant invars.
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system offline stopped (system) system stopping

start (system)

abort (system) STe0
1

instance initialize execution platform
(processors , memory)

)

abort (system)

system starting
ST<startup_deadline

stop (system)
started (system)
assert ST<startup_deadline

max (startup_deadline of processors)
+max (load_deadline of processes)

+max (startup_deadline of processes)

+max (initialize_deadline of threads)

|

FIGURE 32: System execution automaton.

(processor-state s) = PCOR-STARTED;
(sy-state ((sy-st s) system))=SYS-STARTING;
(sy-state ((sy-st t) system))=SYS-OPERATIONAL;
processe(get-pros-bysys m system);
gt = (cur-time s);
(cur-time s) = 0;
(begin-time ((sy-st s) system)) = (cur-time s);
(action-begin-time ((sy-st s) system)) = (cur-time s);
(cur-time t) = (cur-time s) + (elapsed-time ((sy-st t) system));
(cur-time t) = (begin-time ((sy-st s) system)) + (elapsed-time
((sy-st t) system));
(cur-time t) = (action-begin-time ((sy-st s) system)) + (elapsed-time
((sy-st t) system));
(exe-time ((sy-st t) system)) < (elapsed-time ((sy-st t) system));
(elapsed-time ((sy-st t) system)) < (get-pro-loaddeadline-max m
(get-pros-bysys m system))

+ (get-pro-startupdeadline-max m (get-pros-bysys m system))

+ (get-thd-initialzedeadline-max m (get-thds-bypro m process));
(elapsed-time ((sy-st t) system)) < (the (sys-startup-deadline (the
(system-type.sys-properties ((system-tp m) system)))))

FIGURE 33: The System execution Start_Complete semantic.

To show that invars is preserved by a system p, and it  of initial states, and (3) each action transition as well as each
suffices to show the invariant verification theorem as follows. ~ environment transition preserves invars. Later, by the proof
This theorem indicates that (1) the system satisfies its  system, invariant verification is decomposed to the verifi-
specification (inits, post), (2) invars initially holds in the set ~ cation of individual executions.
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Theorem 1. (Invariant Verification). For formal specifica-
tion p and %, a state set inits, and invars, if

(i) Zkp sat (inits, post).
(ii) initsC{s - invars(s)},

then invars is preserved by p, inits.

6. Case Study: Formalization of an ARINC653-
Based System

Our work aims at the formal specification and verification in
a system development based on the AADL, so we apply the
proof system for the specification, the validation, and the
verification of an ARINC653-based System. In Figure 34, we
provide an example, which is based on the ARINC653 OS
platform using AADL with its Behavior Annex specification.
This example is adapted from the ARINC653 annex docu-
ment for the AADLv2 and shows a system with two par-
titions. It shows the components involved in the modeling of
the ARINC653 system and illustrates the mapping of
ARINC653 concepts to the AADL.

In fact, the architecture is described as the client thread
“a_client” for calls and communication of action: either do
not need to wait on the calculation of long distance calls and
finished to send, or due to server for HSER subroutine call
and waiting for the results to the values, send the results and
return to continue to wait for the next execution among
them, the thread a data port connection between tasks, each
thread internal use behavior to define its specific behavior,
describe the action to perform with state systems conditions
and order.

6.1. Formal Transformation of AADL into Isabelle/HOL.
We define several modeling rules of model transformation
from the AADL model into Isabelle/HOL specification for
the next step about formal validation and verification. The
model transformation rules of AADL are specified with a set
of corresponding rules between AADL and Isabelle/HOL in
a way to obtain a modular specification, and a part of the
transformation rules is described as follows.

6.1.1. Transformation of Components and Connections.
Transform components and connections to datatypes in
Isabelle/HOL.

6.1.2. Transformation of Properties and Features.
Transform properties and features of components to the
predefined records type as definitions in Isabelle/HOL.
Notice that, if there is any subcomponent as a existed
component in the other component, it is considered an
abbreviation instead of secondary definition.

6.1.3. Transformation of Behavior Annex. Transform Be-
havior annex specification comprises some sophisticated
procedures, and transformation rules are as follows:
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(i) Transform variables in a Behavior annex to the
predefined records type as definitions in Isabelle/
HOL.

(ii) Transform states in a Behavior annex corresponding
to initial, complete, and final states to denote the
current state.

(iii) Transform transitions in Behavior annex as the
predefined records type, and transform guards and
actions in a transition to conditions and actions list
as definitions. Assemble the elements representing
transitions to one compositional definition, which
comprise all the state transitions of a behavior
specification.

As depicted in Figure 35, we show the segmental
transformation code for the example thread in Figure 34.

6.2. Formal Instantiation, Validation, and Verification in
Isabelle/HOL. This section introduces the next formal steps
of the example model after transformation into Isabelle/
HOL as well as the validation and verification with its proof
system. In this section, we use the instantiation of the AADL
example to formally specify and verify the properties of the
system model.

6.2.1. Instantiation. The basic transformation rules have
been listed in Section 6.1, and we can use it to abstract an
example of AADL model (see Figure 34) in Isabelle/HOL. In
the implementation of AADL in Isabelle/HOL, we use re-
cord to create the framework, where components of AADL
are represented as parameters and assumptions of record.
Records are the Isabelle/HOL’s approach for dealing with
parametric datatype. Every component of the same type
inside the system model can be mapped and encapsulated
into an instantiation by Isabelle/HOL specification, and the
component type and implementation are instantiated. In the
last stage of modeling, we can integrate datatype to type
variable as parameter and get the concrete AADL model
code in Isabelle/HOL. For instance, the instantiation of the
process type is implemented by the mapping function as
follows:

primrec  process-type-map:  ExProcess  (ExPort;

ExDataaccess;

‘Subpaccess; ‘Parameter) process-type

where pro-tpl: process-type-map partitionl-process =
partitionl-process-type |

pro-tp2: process-type-map partition2-process =

partition2-process-type

6.2.2. Validation. The part of rules for grammar have been
listed in Section 4.2, and we rewrite the validation rules as 47
definitions in Isabelle/HOL. After the formal description of
rules, we reach the validation phase to check the grammar of
the AADL model above. In our work, we use the validation
rules code to check whether the model from the
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thread a_server
features
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long: provides subprogram access long_computation

{ Behavior_Properties :: Subprogram_Call_Protocol => LSER; };
short: provides subprogram access send_result

{ Behavior_Properties :: Subprogram_Call_Protocol => HSER; };

properties
Dispatch_Protocol => timed;
Period => 100 ms ;
enda_server;
thread implementation a_server . i
subcomponents
local_result : data result_type . i;
connections
cnxl1: data access
cnx2: data access
annex behavior_specification {**
states
s0: initial complete final state;
sl: complete state;
s2: complete state;
transitions
s0 -[ ondispatch long]->sl;
sl -[ ondispatch ]->s2

local_result -> local_result.result;
local_result -> short.result;

timeout 60ms;

sl -[ on dispatch timeout ] ->s2 {local result.status:=0};
s2 -[ ondispatch short] ->s20 { send_result! (local_result, local_result) };

**};

end a_server. i;

FIGURE 34: AADL example of the ARINC653-based system: a typical thread with Behavior annex.

transformation satisfies a given property specified with
temporal logic. Since the lemmas of validations are con-
sistent with the integrating model, the proof obligations for
the validation rule are proven immediately after unfolding
the definitions of the precondition, postcondition, and re-
lations. After applying the conditional and the grammar
rules on the components, only the proof of the verification of
each lemma body is left. Using these auxiliary lemmas, the
postcondition is proven immediately by applying the
properties over multisets. All the lemmas of validations are
similarly proven, we omit the details here and the interested
reader can refer to the Isabelle/HOL sources. We present an
example of validation 7th as follows.

6.2.3. Safety Verification. Safety represents “nothing bad will
happen,” which comprises reachability or properties
expressed in the form of finite state automata by invariance.

After transforming the AADL abstract model to a target
concrete model, we use the proof system (see Section 5.3) to
verify its trace refinement and reachability properties.

Trace refinement checks “whether the abstract behavior
trace of an implementation satisfies its abstract behavior
trace of a specification.” For instance, an assertion for trace
refinement compares the whole abstract behaviors of a given
action with another action, that is, whether there is a succeed
relationship. For one of actions, the refinement analysis of
actions is executed as follows.

Reachability refers to the ability to get from one state to
another with one or multiple events. For instance, definition
action-reach state shows the concrete state’s reachability of
the action for Behavior annex:

Only with thread inputs and outputs without interior
actions, the above definitions are used to verify whether all
abstract behaviors refine the outside abstract behaviors, and
whether the system reaches the goal of state.
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datatype ExThread = a-client | a-server
datatype ExBehaviorAnnex = ba-a-client | ba-a-server
definition long-a-server-conf :: (ExData, ExSubprogram, Ex-
Thread, ExProcess, ExSystem) subpaccess-conf
where long-a-server-conf = (|spac-name ="long",
spac-dir=PROVIDES,
spac-right =None,
spac-queueprotocol =None,
spac-queuesize =None,
spac-queue =None,
spac-obj =Some (SCSubp long-computation)|)
abbreviation local-result = result-type
definition ba-a-server-conf :: (s, ' ExDispatcher, ' Port, ExDataac-
cess, ExSubpaccess, ExParameter, ExData, ExSubprogram, Ex-
Thread, ExProcess, ExSystem) behavior-annex-conf
where ba-a-server-conf = (|ba-states={s0-ba-a-server,
sl-ba-a-server, s2-ba-a-server},
ba-trans={tranl-ba-a-server,tran2-ba-a-server,
tran3-ba-a-server,tran4-ba-a-server},
ba-vars={},
ba-name="Dispatcherehavior-specification” )
definitiona-server-impl :: (ExConnection, *Subprogramcalls, ExDa-
ta, ExSubprogram, ExThread, ExProcess, ExSystem, ExBehaviorAn-
nex) thread-impl
where a-server-impl = (|impl-subcomps= {SCData local-result},
impl-conns = {cnxI-a-server, cnx2-a-server},
impl-name =" a-server.i”,
thd-spcalls={},
thread-impl.thd-properties=None,

thread-impl.thd-ba=Some ba-a-server|)

FIGURE 35: The segmental code of Thread in Isabelle/HOL.
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7. Evaluation and Conclusion

Our work presents a method of the description of AADL and
a methodology of model transformation from a compre-
hensive subset of AADL to Isabelle/HOL. To specify this
transformation, a preliminary analysis and comprehension
of AADL and Isar/Isabelle/HOL languages are necessary and
reveal the need to take into account the various parts of the
language: structural, execution model, and its semantics
description. Then, we use Isabelle/HOL as the specification,
instantiation, validation, and verification system to conduct
proofs against the properties of grammar and semantic in
the structured proof language Isar, allowing for proof text
naturally understandable for both humans and computers.

7.1. Evaluation Results. All derivations of our proofs have
passed through the Isabelle/HOL proof kernel. The total
development of our framework has = 1280 lines of Isabelle/
HOL specification and proof (LOSP). The concrete syntax of
AADL consists of = 630 LOSP, and the semantic of AADL
consists of = 650 LOSP. The two parts of specification and

proof are completely reused in AADL . We use = 750 LOSP
to develop our validation system and = 500 LOSP to de-
velop the verification system including the formalization of
47 grammar rules. Finally, we develop = 3300 LOSP for
three case studies of AADL system model, which is
ARINC653-based. We find two grammatical mistakes in the
second case study and summarize that the instantiation in
Isabelle/HOL has = 3 times as much code as the lines of the
AADL model.

7.2. Conclusion and Future Works. Different from the ma-
jority of AADL formal approaches above, our proposition
aim at defining a formal executable semantics of a com-
prehensive AADL subset to allow the instantiation, vali-
dation, and verification of behavioral and temporal
properties. Besides, the considered AADL subset consists of
both software and hardware AADL components with a
significant set of temporal and queuing AADL properties.
The considered subset covers fundamental features that can
be used in more realistic applications rather than “without
behavior” and “model transformation into other languages”
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approaches. Our experience is encouraging, but much more
works remain ahead. First, increasingly larger AADL subsets
should be considered to face complex applications such as
shared variables by several threads with subprogram access,
complex scheduling, etc. in the future works. Second, we
need more complex industrial applications to examine our
theory and the toolset, adjust our schema, and revise the
technical architecture and implementation details, so as to
realize our object that increase the confidence of safety-
critical software. We plan to extend the AADL in Isabelle/
HOL to support more structures and stepwise refinement.
Third, we need to verify more properties like the rules of
model transformation conforms to semantics equivalence,
the satisfaction of the noninfluence, etc. And the following
important perspective concerns are compilation aspect from
AADL to C language as our next step.
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