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Human Learning Optimization (HLO) is a simple yet highly e�cient metaheuristic developed based on a simpli�ed human
learning model. To further extend the research of HLO, the social reasoning learning operator (SRLO) is introduced. However, the
learning ability of social imitating learning operator (SILO) and SRLO is constant in the process of iterations, which is not true in a
real human population as humans often adopt dynamic learning strategies to solve the problem. Inspired by this fact, an improved
adaptive human learning optimization algorithm with reasoning learning (AHLORL) is proposed to enhance the global search
ability, in which an adaptive ps strategy is carefully designed to su�ciently motivate the roles of SILO and SRLO and dynamically
adjust the learning e�ciency of the algorithm at di�erent stages of iterations.�en, a comprehensive parameter study is performed
to explain why the proposed adaptive strategy can exploit the optimization ability of SILO and SRLO e�ectively. Finally, the
AHLORL is applied to solve the CEC 15 benchmark functions as well as multidimensional knapsack problems (MKPs), and its
performance is compared with the previous HLO variants as well as the other recent metaheuristics. �e experimental results
show that the proposed AHLORL outperforms the other algorithms in terms of search accuracy and scalability.

1. Introduction

With the increasing complexity of industrial production,
traditional optimization algorithms cannot e�ectively solve
the optimal solution of the problem. To break through the
limitations of traditional optimization algorithms, some new
metaheuristics, i.e., Particle Swarm Optimization (PSO) [1],
Ant Colony Optimization (ACO) [2], Arti�cial Bee Colony
(ABC) [3], Monarch Butter�y Optimization (MBO) [4],
Moth Search Algorithm (MSA) [5], Harris Hawk Optimi-
zation (HHO) [6], and Slime Mould Algorithm (SMA) [7],
have emerged in the �eld of intelligent optimization to solve
the complex optimization problems, such as medical anal-
ysis [8], fault diagnosis [9], and model design [10]. Com-
pared with other mechanisms in nature, humans have a
higher level of intelligence and strong learning ability, which
can solve complex problems that other creatures cannot.

Inspired by this fact, Wang et al. proposed a new Human
Learning Optimization Algorithm (HLO) [11] by employing
the learning ability of human beings. �e HLO [11] algo-
rithm is a highly e�ective metaheuristic algorithm trans-
forming the accumulated knowledge into computational
intelligence, in which three learning operators, i.e., the
random learning operator (RLO), the individual learning
operator (ILO), and the social learning operator (SLO), are
developed to yield new candidates to search for the optimal
solution.

To further improve the performance of HLO, a few
enhanced variants have been subsequently developed. In
2015, an adaptive simpli�ed human learning optimization
algorithm (ASHLO) [12] is proposed to achieve a better
trade-o� between exploration and exploitation, in which the
pr and pi, which are two control parameters determining the
probabilities of performing RLO, ILO, and SLO, adopt the

Hindawi
Scientific Programming
Volume 2022, Article ID 2272672, 27 pages
https://doi.org/10.1155/2022/2272672

mailto:zhangpinggai@shu.edu.cn
mailto:hubaoling_chu@yeah.net
https://orcid.org/0000-0002-3184-6186
https://orcid.org/0000-0003-3413-9572
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/2272672


linearly decreasing adaptive strategy and linearly increasing
adaptive strategy during the whole search process to
strengthen the search efficiency of the algorithm and relieve
the effort of parameter setting. Later, to dynamically switch
the ability between the global search and local search, a sine-
cosine adaptive human learning optimization algorithm
(SCHLO) [13] is developed in which the pr and pi are ad-
justed by the sine and cosine functions to help SCHLO
escape from the local optimal and get better results. Recently,
an improved adaptive human learning optimization algo-
rithm (IAHLO) [14] is presented to further take an insight
into the role of RLO, in which the control parameter pr is
precisely tuned so that IAHLO can efficiently explore the
interesting solution areas at the early stages of iterations and
perform the local search at the later stages of the search
process. Inspired by the IQ scores of humans, a diverse
human learning optimization algorithm (DHLO) [15] is
proposed in which the values of control parameter pi are
randomly initiated by a Gaussian distribution and dy-
namically updated based on the pi value of the best indi-
vidual over the course of the search process.

,e adaptive strategies of pr and pi provide a significant
improvement in HLO. However, the problem of trapping in
the local optimum remains. So, the re-learning operation
[16] is introduced to help HLO escape from the local optima
and acquire better performance if its fitness is not renewed in
a certain number of iterations. To further extendHLO, a new
hybrid-coded human learning optimization algorithm
(HcHLO) [17] is presented to efficiently tackle mixed-var-
iable optimization problems, in which a continuous human
learning optimization (CHLO) is proposed to solve real-
coded parameters while other variables are optimized by the
standard HLO. Besides, a novel discrete human learning
optimization algorithm is presented to tackle the scheduling
problem [18]. Until now, the HLO algorithms have been
successfully applied to tackle the different types of problems,
such as financial markets forecasting [19], engineering op-
timization problems [14], knapsack problems [16], optimal
power flow calculation [20, 21], extractive text summari-
zation [22], furnace flame recognition [23], scheduling
problems [24], intelligent control [25, 26], and image seg-
mentation [27]. Especially, HLO achieved the best-so-far
results on two well-studied sets of multidimensional
knapsack problems, i.e., 5.100 and 10.100 [16], as well as the
set of mixed-variable optimization problems [17] compared
to the other publicly reported metaheuristics, which proves
that the HLO algorithm is a promising metaheuristic op-
timization algorithm and has important research
significance.

To further improve the global search ability of HLO, a
novel social reasoning learning operator (SRLO) is devel-
oped and human learning optimization with reasoning
learning (HLORL) [28] is presented. In HLORL, the SILO
(original SLO) and SRLO are inspired by social imitating
learning strategy and social reasoning learning strategy,
respectively. Among them, social imitating learning is an
efficient learning strategy [29], which can efficiently accu-
mulate knowledge by copying optimal individuals in a
certain environment. For example, students generally

imitate the thinking of their teachers to build a new
knowledge framework efficiently [30], and preschool chil-
dren usually imitate the behavior of their parents to solve
problems effectively [31]. Compared with the social imi-
tating learning strategy, social reasoning learning is a
powerful learning strategy with logical thinking [32], which
can excavate some deeper common characteristics by using
surface-related information in an uncertain environment.
For instance, economists usually use reasoning ability to
predict economic changes [33], and police often adopt the
found evidence to reason the truth effectively when they are
analyzing the criminal case [34]. Based on the different
characteristics between social imitating learning and social
reasoning learning, these two learning strategies can effec-
tively play different roles at different stages of human
learning.

Although the learning efficiency of SILO and SRLO will
change with the environment of human learning, it is not
considered in the standard HLORL, which uses two fixed
learning probabilities to perform SILO and SRLO over the
course of the search process. Now cultural evolution re-
searchers [35, 36] believe that humans often reasonably
choose the corresponding learning strategy and perform the
optimal behaviors in different learning environments,
which is better for human beings to further improve the
learning efficiency and obtain better learning results.
,erefore, an improved adaptive human learning optimi-
zation algorithm with reasoning learning (AHLORL) is
proposed in this paper, in which the adaptive learning
probabilities of SILO and SRLO are introduced to dy-
namically adjust the learning efficiency. And a thorough
analysis and comparison are performed to explain why the
proposed adaptive strategy can effectively exploit the op-
timization ability of SILO and SRLO and further enhance
the global search ability of the algorithm. ,is paper makes
the following contributions:

(1) ,is paper proposes an improved adaptive human
learning optimization algorithm with reasoning
learning (AHLORL)

(2) An adaptive learning probability of SILO and SRLO
is introduced to dynamically adjust the learning
efficiency of the algorithm during the iterative search

(3) A thorough analysis and comparison are performed
to explain why the proposed adaptive strategy can
effectively exploit the optimization ability of SILO
and SRLO and further enhance the global search
ability of the algorithm

(4) ,e results demonstrate that the proposed AHLORL
has significant advantages over the previous HLO
variants

,e rest of this paper is organized as follows: Section 2
proposes the proposed AHLORL algorithm in detail. A
comprehensive parameter learning is performed in Section 3
to analyze and explain the superiority of the proposed
AHLORL algorithm. After that, we describe the experiment
with settings, CEC 15 benchmark functions, and MKPs and
analyze the results in Section 4. Finally, the conclusion is
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given with the overall result of this proposed AHLORL
algorithm.

2. AdaptiveHumanLearningOptimizationwith
Reasoning Learning

2.1. Initialization. Like the HLORL, all computations in
AHLORL are also a discrete process and the binary-coding
framework is adopted to denote the population. At the
initialization stage, the individual xi is initialized as a binary
string of length M with “0” or “1” stochastically as the
following equation:

xi � xi1xi2 . . . xij . . . xiM􏽨 􏽩, xij ∈ 0, 1{ }, 1≤ i≤N, 1≤ j≤M,

(1)

where xi denotes the i-th individual, xij indicates the j-th bit
of the i-th individual, and N and M are the number of
individuals and the dimension of solutions, respectively.

2.2. Learning Operators

2.2.1. Random Learning Operator. Random learning [37]
always occurs at the early stages of human learning be-
cause of the lack of prior knowledge of new problems.
With the progress of the search, this random learning
strategy also remains, which can help AHLORL keep the
exploration ability to obtain new strategies. And there-
fore, AHLORL adopts the random learning operator as
equation (2) to imitate these phenomena of human
random learning:

xij � RE(0, 1) �
0, 0≤ r1 ≤ 0.5,

1, else,
􏼨 (2)

where r1 is a stochastic number between 0 and 1.

2.2.2. Individual Learning Operator. Individual learning
[38] is an important learning ability in the process of human
evolution, which can build an individual’s knowledge da-
tabase to help humans avoid the same mistakes and improve
learning efficiency more effectively. Inspired by this learning
mechanism, the best individual solutions are saved in the
individual knowledge database (IKD) as

IKD �

ikd1

ikd2

⋮

ikdi

⋮

ikdN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1≤ i≤N, (3)

ikdi �

ikdi1

ikdi2

⋮
ikdip

⋮
ikdiL

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

iki1,1 iki1,2 · · · iki1,j · · · iki1,M

iki2,1 iki2,2 · · · iki2,j · · · iki2,M

⋮ ⋮ ⋮ ⋮
ikip,1 ikip,2 · · · ikip,j · · · ikip,M

⋮ ⋮ ⋮ ⋮
ikiL,1 ikiL,2 · · · ikiL,j · · · ikiL,M

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1≤p≤L,

(4)

where ikdi stands for the IKD of individual i; N and L are the
size of IKD and ikdi, respectively; and ikdip denotes the p-th
best solution of the individual i. When AHLORL performs
the individual learning operator (ILO), a new candidate
solution is generated from the IKD as the following
equation:

xij � ikip,j. (5)

2.2.3. Social Imitating Learning Operator. Social imitating
learning [39] is a potentially cheap way of acquiring valuable
information and plays a fundamental role in development,
communication, interaction, learning, and culture, which
can greatly hasten the process of independent learning by
enabling the subject to perform the correct response sooner
than others. And human beings usually use the social im-
itating learning strategy to learn from others’ better expe-
riences and improve learning efficiency. To simulate this
advanced learning strategy, the social knowledge data (SKD)
is adopted to reserve the best social solution as follows:
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SKD �

skd1

skd2

⋮

skdq

⋮

skdH

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

sk11 sk12 · · · sk1j · · · sk1M

sk21 sk22 · · · sk2j · · · sk2M

⋮ ⋮ ⋮ ⋮

skq1 skq2 · · · skqj · · · skqM

⋮ ⋮ ⋮ ⋮

skH1 skH2 · · · skHj · · · skHM

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1≤ q≤H,

(6)

where skdq means the q-th solution in the SKD, H is the size
of SKD, and skdq stands for the j-th dimension of the q-th
solution in the SKD. ,e social imitating learning operator
(SILO) is performed to generate a new candidate solution as
follows:

xij � skqj. (7)

2.2.4. Social Reasoning Learning Operator. Social reasoning
learning is a hallmark of human intelligence [40], which
allows humans to attempt powerful generalizations from
sparse data when learning about unobserved properties and
causal relationships. Demetriou and Kazi [41] point out that
logic in the mind is the culmination of a long developmental
process, extending into adolescence, and Cesana-Arlotti
et al. [42] discover that infants can also use elementary
logical representations to frame and prune hypotheses.
Modern psychologists are in reasonable agreement [43] that
humans usually adopt the predictable methods of social
reasoning learning to get deeper characteristic information.
Inspired by the social reasoning learning strategy, a social
reasoning learning operator (SRLO) is designed to generate
a new candidate solution as the following equations:

xij � SRLO(0, 1), (8)

SRLO(0, 1) �
1, ifr2 ≤f srlij􏼐 􏼑,

0, otherwise,
􏼨 (9)

f srlij􏼐 􏼑 �

0.0005, ifc � 0,

0.6633, ifc � 1,

0.3367, ifc � 2,

0.9995, ifc � 3,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(10)

c � iki1,j + iki2,j + iki3,j, (11)

where SRLO(0, 1) stands for the social reasoning learning
operation; r2 is a stochastic number between 0 and 1;
f(srlij) means the social reasoning learning probability

model; iki1,j, iki2,j, and iki3,j are the j-th dimension the best
knowledge saved in the IKD of three randomly chosen
individuals, i.e., individuals i1, i2, and i3, and i1 ≠ i2 ≠ i3 ≠ i.

In summary, AHLORL adopts the random learning
operator, individual learning operator, social imitating
learning operator, and social reasoning learning operator to
yield new candidate solutions and searches for the optimal,
which are presented as follows:

xij �

RE(0, 1), 0≤ r≤pr,

ikip,j, pr< r≤pi,

skqj, pi< r≤ps,

SRLO(0, 1), else,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(12)

where r means a stochastic number between 0 and 1 and pr,
(pi− pr), (ps− pi), and (1− ps) are the probabilities of per-
forming RLO, ILO, SILO, and SRLO, respectively.

2.3. Adaptive Strategy of SILO and SRLO. In HLORL, the
SILO and SRLO are simultaneously adopted to accumulate
useful information in social groups more effectively. Among
them, the SILO can quickly accumulate knowledge by im-
itating the current global optimal [44, 45]. However, copying
comes with pitfalls in SILO that the acquired knowledge may
be outdated [46], misleading or inappropriate if the
knowledge of the learned individual is inaccurate. ,e
imitated individual is important in the progress of the
search, which can directly militate the learning result.
,erefore, the SILO can play an accurate and efficient
learning role in a certainty environment. On the other hand,
the SRLO is also an efficient learning strategy for the ac-
cumulation of human culture, especially in an uncertain
environment [47], which can stimulate the learning ability of
human beings to dig out some deeper common character-
istics by using surface-related knowledge [48, 49]. And
reasoning learning [31] is generally used to avoid the in-
feriority of imitating learning and further exploit the un-
limited potential ability learning of human beings. Due to
the different learning mechanisms between the SILO and the
SRLO, they can play different learning roles at different
stages of iterations.

Based on the insight of the roles of SILO and SRLO, we
argue that an adaptive strategy for the SILO and SRLO to
enhance the optimization ability of AHLORL needs to meet
the requirements as follows:

(1) As the initial population is randomly generated, the
global optimal solution has the largest uncertainty at
the beginning. ,erefore, the value of ps should be
small so that the individuals can efficiently use the
SRLO to find the optimal solutions.

(2) With the progress of the search, more and more
optimal solutions are found by SRLO and the un-
certainty of population gradually decreases. ,ere-
fore, the value of ps should be increased so that the
SILO can accumulate the found optimal solutions
effectively and further guide the whole population to
learn the global optimal information better.
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(3) As the learning efficiency of SILO and SRLO is
closely related to the reliability of the population, the
adaptive strategy of control parameter ps should be
nonlinear so that SILO quickly accumulates the
found optimal solutions more, which can further
help AHLORL maximize the learning ability of SILO
and SRLO more effectively.

(4) At the later stage of iterations, the risk of trapping in
the local optimum remains because the greedy
strategy is adopted in the SILO. ,erefore, the value
of ps should remain constant so that AHLORL can
keep the exploration ability to explore the interesting
solution areas more efficiently.

As analyzed above, a novel adaptive strategy is proposed
to dynamically adjust the control parameter ps between
SILO and SRLO as follows:

ps �

psmin + psmax − psmin( 􏼁 ×
t

Tp × itermax
􏼠 􏼡

k

, 0< t≤Tp × itermax,

psmax, x>Tp × itermax,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(13)

where t and itermax denote the current iteration and the
maximum number of iterations, respectively. Tp is a pre-
defined turning point, and psmin and psmax are the minimum
value and the maximum value in the whole process,
respectively.

For the proposed adaptive strategy, psmin should be small
to meet the requirements in Point (1). Tp should be set
greater than 0.5 so that AHLORL effectively maximizes the
learning ability of SILO and SRLO, which satisfies the de-
mands in Points (2), (3), and (4). Finally, k should be less
than 1 to meet the requirements in Point (3). With the
introduction of adaptive strategy, AHLORL can achieve a
better trade-off between exploration and exploitation. Fig-
ure 1 draws an example of the proposed adaptive strategy.

2.4. Updating the IKD and the SKD. For AHLORL, the IKD
and the SKD are updated like the HLORL. After the new

candidate solutions of all individuals are generated, the
fitness of all individuals is calculated by the predefined
fitness function. If the new fitness value is superior to the old
one, the new candidate solutions will be adopted to update
the old one in the IKDs. Otherwise, the individual’s solution
in the IKDs will not be updated. And the SKD is updated
according to the same way. Since AHLORL is not a Pareto
algorithm, the sizes of the IKD and the SKD are both set to 1.

2.5. Algorithm Complexity. Like the standard HLO, the
AHLORL also has two phases, i.e., the population initiali-
zation and the iterative search. ,e running time of gener-
ating the initial population X, individual knowledge database
(IKD), and social knowledge database (SKD) are N × M, N ×

M and (M + log N), respectively, where M and N are the
dimension of solutions and number of individuals, respec-
tively. So, the total running time of the population initiali-
zation is ((2N + 1) × M + log N). During the iterative search
of AHLORL, generating new individuals costs time N × M,
and updating the IKD and SKD costs time N × (M + log L)

and (log N + log H + M), respectively, where L is the size of
ikdi and H denotes the size of SKD. ,erefore, the running
time of each iterative is ((2N + 1) × M + log(N × H × LN)).
Assume that the maximum generation of AHLORL is G,
so the iterative search phase takes time
G × ((2N + 1) × M + log(N × H × LN)). In general, the
maximum generationG is much greater thanN, L, andH, and
therefore the time complexity of AHLORL is
O((2N + 1) × G × M).

A flowchart illustrating the implementation of AHLORL
is presented in Figure 2.

ps

tGmaxTp×Gmax

psmin

psmax

k<1

Figure 1: Example of the proposed adaptive strategy.

Begin

Set the control parameters of AHLORL and 
initialize the population randomly

Calculate the fitness of individuals and 
initialize the IKD and SKD

Terminate
the iteration ?

Re-learning?

Reinitialize IKD

Output the 
results

End

Yes

Yes

No
Calculate the control parameter ps

Yield new candidate solutions through
performing four learning operators as Eq.(13)

Calculate the fitness of new solutions

Update the IKD and the SKD

No

Figure 2: ,e flowchart of AHLORL.
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3. Parameter Study of AHLORL

3.1. Analysis of the Control Parameters. To evaluate the
proposed adaptive strategy, a parameter study was per-
formed in this section, which mainly considers psmin, psmax,
Tp, and k. For simplicity, the values of pr and pi remain
unchanged in AHLORL, i.e., pr� 5/M and pi� 0.82, because
the role of the RLO and the ILO in AHLORL is as same as
that in HLORL. ,e orthogonal experimental design
method was used, and all the combinations of control pa-
rameters are given in Table 1. It should be noted that k is
recommended to be less than 1 in the last section. However,
for a throughout parameter study, the cases that k is equal to
or more than 1 are also considered. ,e two functions, i.e.,
F1 and F5 chosen from the CEC 15 benchmark functions
[50], were adopted to test the influence of those four pa-
rameters on the performance of AHLORL. And the char-
acteristics of selected functions as well as the other 13
functions were used as benchmarks to verify the superiority
of the AHLORL in the next section, which is listed in Table 2.
,e number of populations and the maximum number of
iterations for the 10-dimensional/30-dimensional were set
as 50/100 and 3000/5000, respectively. Each decision vari-
able was coded by 30 bits and the times of each testing were
set to 100 independently. ,e result of the mean value
(mean) was used to evaluate the optimization ability, which
is given in Table 3 where the best values have been high-
lighted in bold.

As mentioned above, psmin, psmax, Tp, and k jointly
decide the probabilities of SILO and SRLO over the course of
the search process, which are dependent on problems and

these also interact with each other, and therefore AHLORL
needs a set of suitable values to obtain a better the opti-
mization search ability. Table 3 shows that AHLORL obtains
the best comprehensive results on the F1 and F5 of CEC 15
benchmark functions when psmin, psmax, Tp, and k are set to
0.85, 0.98, 0.7, and 2/3, which are chosen as the default values
in this work. And the influences of the four control pa-
rameters can be concluded as follows:

(1) ,e value of psmin is of great importance for the
AHLORL, and it should be small so that AHLORL
can efficiently utilize the reasoning ability of SRLO to
find the optimal solutions at the beginning of the
search, which boost the effectiveness and confidence
of the following learning operation and consequently
enhance the exploitation ability of AHLORL.
However, too small psmin still causes lower conver-
gence speed and spoils the performance of the al-
gorithm. According to Table 3, the value of psmin
should be no less than 0.84.

(2) ,e larger the psmax is, the more accurate search the
AHLORL performs at the later stage of the search.
However, the results show that psmax should be more
than level 7, i.e., 0.98, which indicates that a too big
psmax would greatly reduce the efficiency of search,
and consequently the performance of the algorithm
is worsened.

(3) It is suggested that Tp should be big enough and do
not exceed 0.8 so that enough generations can be
guaranteed for the AHLORL to switch between SILO
and SRLO search abilities more efficiently.

Table 1: Factor levels in AHLORL.

Parameters
Factor level

1 2 3 4 5 6 7 8 9
psmin 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.90
psmax 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00
Tp 0.4 0.5 0.6 0.65 0.7 0.75 0.8 0.9 1.0
k 1/5 1/3 1/2 2/3 1 1.5 2.0 3.0 5.0

Table 2: ,e CEC 15 benchmark functions.

Type No. Functions name Dimension F∗i � Fi(x∗)

Unimodal functions F1 Rotated high conditioned elliptic function 10/30 100
F2 Rotated cigar function 10/30 200

Simple multimodal functions
F3 Shifted and rotated Ackley’s function 10/30 300
F4 Shifted and rotated Rastrigin’s function 10/30 400
F5 Shifted and rotated Schwefel’s function 10/30 500

Hybrid functions
F6 Hybrid function 1 (N� 3) 10/30 600
F7 Hybrid function 2 (N� 4) 10/30 700
F8 Hybrid function 3 (N� 5) 10/30 800

Composition functions

F9 Composition function 1 (N� 3) 10/30 900
F10 Composition function 2 (N� 3) 10/30 1000
F11 Composition function 3 (N� 5) 10/30 1100
F12 Composition function 4 (N� 5) 10/30 1200
F13 Composition function 5 (N� 5) 10/30 1300
F14 Composition function 6 (N� 7) 10/30 1400
F15 Composition function 7 (N� 10) 10/30 1500
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Table 3: ,e results of the parameter study.

Trail Parameter factors 10D-F1 10D-F5 30D-F1 30D-F5 Rankspsmin psmax Tp k Mean Rank Mean Rank Mean Rank Mean Rank
1 0.85 0.92 0.65 0.67 2.266E+ 05 65 7.836E+ 01 55 3.907E+ 06 58 2.203E+ 03 70 67
2 0.87 0.97 1 0.2 1.775E+ 05 26 6.801E+ 01 30 4.050E+ 06 65 1.469E+ 03 17 34
3 0.87 0.93 0.9 1 2.185E+ 05 59 8.375E+ 01 62 4.062E+ 06 67 2.326E+ 03 71 70
4 0.86 0.98 1 3 2.362E+ 05 73 8.600E+ 01 65 4.510E+ 06 72 2.482E+ 03 73 73
5 0.85 1 0.75 3 2.036E+ 05 51 6.730E+ 01 26 3.612E+ 06 42 1.714E+ 03 55 48
6 0.85 0.97 0.8 0.33 1.741E+ 05 23 5.990E+ 01 8 3.370E+ 06 20 1.462E+ 03 13 7
7 0.89 0.94 0.75 5 1.855E+ 05 34 7.275E+ 01 41 3.887E+ 06 56 1.864E+ 03 64 53
8 0.88 0.98 0.5 0.2 2.345E+ 05 72 7.492E+ 01 47 4.301E+ 06 69 1.563E+ 03 37 61
9 0.83 0.93 0.65 0.2 1.829E+ 05 32 7.081E+ 01 37 3.086E+ 06 4 1.540E+ 03 34 21
10 0.89 0.93 0.4 2 1.693E+ 05 20 6.481E+ 01 18 4.068E+ 06 68 1.503E+ 03 27 30
11 0.9 0.98 0.4 0.5 1.877E+ 05 39 6.475E+ 01 17 4.547E+ 06 73 1.520E+ 03 31 44
12 0.9 0.94 0.65 2 1.653E+ 05 15 7.067E+ 01 35 3.837E+ 06 54 1.444E+ 03 10 24
13 0.82 0.95 1 2 4.025E+ 05 81 1.813E+ 02 81 8.272E+ 06 81 4.377E+ 03 81 81
14 0.82 0.98 0.7 0.67 1.618E+ 05 13 6.346E+ 01 13 3.455E+ 06 27 1.495E+ 03 26 15
15 0.87 1 0.7 2 1.772E+ 05 24 7.243E+ 01 39 3.279E+ 06 10 1.516E+ 03 30 20
16 0.85 0.95 0.6 0.2 1.719E+ 05 21 6.663E+ 01 22 3.432E+ 06 24 1.458E+ 03 12 16
17 0.84 0.96 0.4 3 1.619E+ 05 14 6.686E+ 01 23 3.063E+ 06 3 1.595E+ 03 47 18
18 0.84 0.94 0.8 0.2 1.568E+ 05 8 7.245E+ 01 40 3.531E+ 06 34 1.414E+ 03 5 19
19 0.83 0.99 0.9 0.67 1.655E+ 05 16 5.968E+ 01 7 3.478E+ 06 30 1.491E+ 03 24 13
20 0.84 0.93 0.7 0.33 1.774E+ 05 25 7.699E+ 01 50 3.622E+ 06 43 1.572E+ 03 40 43
21 0.87 0.94 0.4 0.67 1.852E+ 05 33 8.852E+ 01 67 3.047E+ 06 2 1.430E+ 03 8 23
22 0.87 0.95 0.5 0.5 1.403E+ 05 1 6.015E+ 01 9 3.518E+ 06 33 1.414E+ 03 6 5
23 0.85 0.93 1 1.5 3.310E+ 05 79 1.336E+ 02 79 6.816E+ 06 79 4.050E+ 03 79 79
24 0.9 0.92 1 5 2.207E+ 05 61 9.464E+ 01 73 4.896E+ 06 78 2.664E+ 03 75 75
25 0.82 0.99 0.8 1.5 2.336E+ 05 71 8.953E+ 01 68 3.487E+ 06 31 1.681E+ 03 53 59
26 0.83 1 0.4 1.5 1.913E+ 05 44 7.572E+ 01 48 3.565E+ 06 38 1.594E+ 03 46 50
27 0.82 0.97 0.65 3 2.249E+ 05 63 8.010E+ 01 58 3.990E+ 06 61 1.744E+ 03 58 65
28 0.9 0.97 0.6 0.67 1.525E+ 05 6 8.295E+ 01 60 3.544E+ 06 36 1.472E+ 03 19 26
29 0.84 0.99 1 1 1.823E+ 05 31 7.399E+ 01 44 3.344E+ 06 17 1.570E+ 03 39 28
30 0.85 0.96 0.7 0.5 1.454E+ 05 2 5.766E+ 01 4 2.989E+ 06 1 1.395E+ 03 3 1
31 0.88 0.99 0.65 0.5 2.109E+ 05 57 5.862E+ 01 5 3.844E+ 06 55 1.477E+ 03 20 33
32 0.89 0.95 0.65 1 1.516E+ 05 4 5.895E+ 01 6 3.747E+ 06 48 1.438E+ 03 9 8
33 0.85 0.98 0.9 2 2.315E+ 05 68 8.426E+ 01 63 3.594E+ 06 41 1.753E+ 03 59 63
34 0.82 0.94 0.9 0.33 1.882E+ 05 40 7.457E+ 01 45 3.507E+ 06 32 1.583E+ 03 43 45
35 0.84 0.92 0.6 0.5 2.090E+ 05 54 9.579E+ 01 75 3.902E+ 06 57 2.046E+ 03 68 69
36 0.86 0.97 0.9 0.5 1.490E+ 05 3 7.306E+ 01 42 3.338E+ 06 15 1.463E+ 03 14 11
37 0.87 0.98 0.8 5 2.083E+ 05 53 7.755E+ 01 53 3.588E+ 06 40 1.714E+ 03 56 56
38 0.89 0.99 0.7 0.2 2.228E+ 05 62 8.200E+ 01 59 4.670E+ 06 75 1.580E+ 03 41 64
39 0.89 0.96 1 0.67 1.576E+ 05 10 6.463E+ 01 16 3.191E+ 06 6 1.456E+ 03 11 4
40 0.9 0.93 0.5 3 2.383E+ 05 74 6.726E+ 01 25 3.757E+ 06 49 1.598E+ 03 48 54
41 0.9 1 0.9 0.2 2.102E+ 05 56 7.959E+ 01 57 4.895E+ 06 77 1.524E+ 03 32 58
42 0.86 0.93 0.8 0.67 2.202E+ 05 60 6.847E+ 01 31 3.307E+ 06 12 1.877E+ 03 66 46
43 0.84 0.95 0.9 5 3.889E+ 05 80 1.716E+ 02 80 7.184E+ 06 80 4.052E+ 03 80 80
44 0.88 0.96 0.9 1.5 2.100E+ 05 55 7.471E+ 01 46 3.340E+ 06 16 1.568E+ 03 38 41
45 0.87 0.96 0.65 0.33 1.524E+ 05 5 6.373E+ 01 14 3.383E+ 06 21 1.465E+ 03 15 6
46 0.85 0.94 0.5 1 1.795E+ 05 29 6.021E+ 01 10 3.324E+ 06 13 1.472E+ 03 18 9
47 0.88 1 1 0.33 1.693E+ 05 19 9.225E+ 01 69 4.051E+ 06 66 1.508E+ 03 28 51
48 0.89 0.92 0.9 3 2.460E+ 05 76 1.033E+ 02 77 4.631E+ 06 74 2.977E+ 03 78 77
49 0.88 0.97 0.4 1 1.788E+ 05 28 5.469E+ 01 2 3.463E+ 06 29 1.487E+ 03 23 17
50 0.82 0.96 0.5 5 2.559E+ 05 77 9.382E+ 01 72 3.454E+ 06 26 1.667E+ 03 52 62
51 0.88 0.93 0.6 5 1.905E+ 05 41 7.847E+ 01 56 3.534E+ 06 35 1.865E+ 03 65 55
52 0.83 0.96 0.6 2 2.014E+ 05 49 6.739E+ 01 28 3.276E+ 06 9 1.588E+ 03 44 27
53 0.88 0.92 0.8 2 2.285E+ 05 66 9.350E+ 01 71 4.508E+ 06 71 2.868E+ 03 77 74
54 0.82 0.92 0.4 0.2 1.997E+ 05 47 7.724E+ 01 52 3.925E+ 06 59 1.713E+ 03 54 57
55 0.83 0.94 1 0.5 2.331E+ 05 69 9.867E+ 01 76 4.017E+ 06 64 1.997E+ 03 67 72
56 0.85 0.99 0.4 5 1.905E+ 05 42 7.070E+ 01 36 3.653E+ 06 44 1.616E+ 03 49 47
57 0.83 0.95 0.8 3 2.752E+ 05 78 1.232E+ 02 78 4.752E+ 06 76 2.615E+ 03 74 78
58 0.87 0.99 0.6 3 1.858E+ 05 36 6.903E+ 01 33 3.361E+ 06 19 1.635E+ 03 51 38
59 0.84 0.97 0.75 2 1.858E+ 05 35 7.807E+ 01 54 3.275E+ 06 8 1.776E+ 03 60 42
60 0.84 1 0.5 0.67 1.905E+ 05 43 6.625E+ 01 20 3.462E+ 06 28 1.630E+ 03 50 39
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(4) ,e value of k is also important for the AHLORL,
and it should be smaller than 1 so that AHLORL can
efficiently utilize the imitating ability of SILO to
quickly accumulate the found optimal solutions,

which boost the effectiveness and confidence of the
following learning operation and consequently en-
hance the exploitation ability of AHLORL. However,
too small k still weakens the reasoning ability of

Table 3: Continued.
61 0.86 0.94 0.6 1.5 1.866E+ 05 38 6.999E+ 01 34 3.349E+ 06 18 1.589E+ 03 45 31
62 0.88 0.95 0.75 0.67 2.014E+ 05 50 6.709E+ 01 24 3.581E+ 06 39 1.492E+ 03 25 35
63 0.86 0.99 0.5 2 1.957E+ 05 45 7.365E+ 01 43 3.201E+ 06 7 1.553E+ 03 36 29
64 0.86 0.92 0.7 1 2.254E+ 05 64 8.737E+ 01 66 4.009E+ 06 63 2.434E+ 03 72 71
65 0.86 1 0.65 5 1.861E+ 05 37 7.087E+ 01 38 3.776E+ 06 51 1.810E+ 03 62 52
66 0.86 0.95 0.4 0.33 1.528E+ 05 7 5.601E+ 01 3 3.442E+ 06 25 1.367E+ 03 2 2
67 0.89 0.98 0.6 0.33 2.010E+ 05 48 5.444E+ 01 1 3.945E+ 06 60 1.508E+ 03 29 36
68 0.82 0.93 0.75 0.5 2.179E+ 05 58 9.267E+ 01 70 3.828E+ 06 53 2.067E+ 03 69 68
69 0.89 0.97 0.5 1.5 1.600E+ 05 11 6.644E+ 01 21 3.393E+ 06 22 1.483E+ 03 21 12
70 0.9 0.99 0.75 0.33 1.573E+ 05 9 6.870E+ 01 32 3.994E+ 06 62 1.527E+ 03 33 32
71 0.84 0.98 0.65 1.5 1.679E+ 05 18 7.616E+ 01 49 3.159E+ 06 5 1.547E+ 03 35 22
72 0.89 1 0.8 0.5 2.293E+ 05 67 6.501E+ 01 19 3.764E+ 06 50 1.466E+ 03 16 40
73 0.9 0.96 0.8 1 1.785E+ 05 27 6.797E+ 01 29 3.334E+ 06 14 1.336E+ 03 1 10
74 0.88 0.94 0.7 3 2.060E+ 05 52 8.327E+ 01 61 3.718E+ 06 47 1.822E+ 03 63 60
75 0.83 0.97 0.7 5 2.401E+ 05 75 8.498E+ 01 64 3.705E+ 06 45 1.781E+ 03 61 66
76 0.86 0.96 0.75 0.2 1.973E+ 05 46 6.462E+ 01 15 3.706E+ 06 46 1.420E+ 03 7 25
77 0.83 0.98 0.75 1 1.737E+ 05 22 6.108E+ 01 11 3.426E+ 06 23 1.485E+ 03 22 14
78 0.83 0.92 0.5 0.33 1.823E+ 05 30 7.700E+ 01 51 3.544E+ 06 37 1.732E+ 03 57 49
79 0.9 0.95 0.7 1.5 1.603E+ 05 12 6.336E+ 01 12 3.282E+ 06 11 1.408E+ 03 4 3
80 0.82 1 0.6 1 1.673E+ 05 17 6.736E+ 01 27 3.820E+ 06 52 1.582E+ 03 42 37
81 0.87 0.92 0.75 1.5 2.335E+ 05 70 9.523E+ 01 74 4.330E+ 06 70 2.747E+ 03 76 76
Note. 10D-F1 is the 10-dimension of F1 function.

Table 4: Parameter settings of five AHLORLs.

Algorithm Parameters
AHLORL pr� 5/M, pi� 0.82, psmin � 0.85, psmax � 0.96, Tp� 0.7, k� 1/2
AHLORL2 pr� 5/M, pi� 0.82, psmin � 0.85, psmax � 0.96
AHLORL3 pr� 5/M, pi� 0.82, psmin � 0.82, psmax � 0.96, Tp1 � 0.3, Tp2 � 0.7, k� 1/2
AHLORL4 pr� 5/M, pi� 0.82, psmin � 0.85, psmax � 1.00, Tp� 0.7, k� 1/2
AHLORL5 pr� 5/M, pi� 0.82, psmin � 0.85, psmax � 0.96, Tp� 0.7, k� 2.0
Note. M is the dimension of solutions.
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Figure 3: ,e ps curves of AHLORL, AHLORL2, AHLORL3, AHLORL4, and AHLORL5.
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Table 5: ,e results of five AHLORLs on the 10-dimensional CEC 15 benchmarks.

Fun Metric AHLORL AHLORL2 AHLORL3 AHLORL4 AHLORL5

F1

Best 7.0185E+ 03 1.6356E+ 04 1.6287E+ 04 7.4843E+ 03 5.0977E+ 03
Mean 1.4321E+ 05 3.1414E+ 05 1.7902E+ 05 1.7662E+ 05 1.9387E+ 05
Std 1.3145E+ 05 2.7232E+ 05 1.3685E+ 05 1.7698E+ 05 1.5487E+ 05
t-Test — 1 1 0 1
W-test — 1 1 1 1

F2

Best 1.4326E+ 03 6.8963E+ 03 1.3610E+ 03 2.2374E+ 03 1.3546E+ 03
Mean 8.4642E+ 05 5.9482E+ 06 1.0999E+ 06 1.6162E+ 06 7.0918E+ 05
Std 1.9368E+ 06 7.3543E+ 06 2.5008E+ 06 3.3453E+ 06 8.7764E+ 05
t-Test — 1 0 1 0
W-test — 1 0 0 0

F3

Best 2.5798E+ 00 2.9440E+ 00 2.0660E + 00 8.2877E+ 00 3.4195E+ 00
Mean 1.8580E+ 01 1.8803E+ 01 1.8114E + 01 1.9799E+ 01 1.8904E+ 01
Std 4.3836E+ 00 4.1082E+ 00 5.0023E + 00 1.4746E+ 00 3.7793E+ 00
t-Test — 0 0 1 0
W-test — 1 0 1 1

F4

Best 5.5808E − 01 3.0217E+ 00 2.0195E+ 00 1.1184E+ 00 1.3070E+ 00
Mean 4.4647E+ 00 5.8591E+ 00 4.8625E+ 00 4.7293E+ 00 5.1812E+ 00
Std 1.4911E+ 00 1.5632E+ 00 1.6063E+ 00 1.3735E+ 00 1.7328E+ 00
t-Test — 1 0 0 1
W-test — 1 0 0 1

F5

Best 2.5876E+ 00 5.5531E+ 00 6.7090E − 01 1.7313E+ 00 8.0449E+ 00
Mean 5.7225E + 01 8.2763E+ 01 6.4581E+ 01 6.5224E+ 01 7.6558E+ 01
Std 5.0841E+ 01 6.9845E+ 01 6.2850E+ 01 6.1357E+ 01 7.1917E+ 01
t-Test — 1 0 0 1
W-test — 1 0 0 1

F6

Best 4.5969E+ 01 5.9686E+ 01 6.2284E+ 01 3.2633E + 01 6.7267E+ 01
Mean 1.3756E+ 03 2.5942E+ 03 1.2486E + 03 1.9808E+ 03 1.6455E+ 03
Std 1.3486E+ 03 6.5814E+ 03 1.2807E + 03 1.9696E+ 03 1.4654E+ 03
t-Test — 0 0 1 0
W-test — 1 0 1 0

F7

Best 1.5272E− 01 2.9158E− 01 1.7449E− 01 1.5402E− 01 1.0669E − 01
Mean 9.1146E− 01 1.0890E+ 00 9.2265E− 01 1.0449E+ 00 9.2102E− 01
Std 3.6188E− 01 4.0394E− 01 3.2331E− 01 3.7025E− 01 3.5455E− 01
t-Test — 1 0 1 0
W-test — 1 0 1 0

F8

Best 2.8786E+ 00 5.5281E+ 00 2.1503E + 00 8.0870E+ 00 1.4100E+ 01
Mean 3.3990E+ 02 5.2568E+ 02 3.1279E + 02 4.6150E+ 02 3.2763E+ 02
Std 3.3356E+ 02 7.6387E+ 02 3.4204E + 02 5.1608E+ 02 2.5034E+ 02
t-Test — 1 0 0 0
W-test — 0 0 0 0

F9

Best 1.0009E+ 02 1.0014E+ 02 1.0007E+ 02 1.0006E + 02 1.0008E+ 02
Mean 1.0017E+ 02 1.0025E+ 02 1.0019E+ 02 1.0017E + 02 1.0019E+ 02
Std 3.2463E− 02 5.7059E− 02 3.4712E− 02 3.7246E − 02 3.7393E− 02
t-Test — 1 1 0 1
W-test — 1 1 0 1

F10

Best 2.2384E+ 02 2.5789E+ 02 2.2198E + 02 2.2334E+ 02 2.3119E+ 02
Mean 3.5107E+ 02 4.2840E+ 02 3.5086E + 02 3.6722E+ 02 3.6328E+ 02
Std 6.6269E+ 01 1.3156E+ 02 7.1596E + 01 6.4233E+ 01 6.1590E+ 01
t-Test — 1 0 0 0
W-test — 1 0 1 0

F11

Best 2.7164E+ 00 3.2384E+ 00 2.0988E + 00 2.1370E+ 00 3.0977E+ 00
Mean 2.1417E+ 01 1.2580E+ 02 2.2096E+ 01 2.7560E+ 01 9.9780E+ 00
Std 6.4015E+ 01 1.4263E+ 02 6.3877E+ 01 7.4865E+ 01 2.9252E + 01
t-Test — 1 0 0 0
W-test — 1 0 0 0
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SRLO and spoils the performance of the algorithm.
According to Table 3, the value of k should be no less
than 1/3.

3.2. Influences of the Adaptive Strategies on SILO and SRLO.
With the deep analysis of the control parameters of
AHLORL, the influences of the adaptive strategies on SILO
and SRLO are further investigated. ,e AHLORL with the
default values and the other four versions with modified
parameters, i.e., AHLORL2, AHLORL3, AHLORL4, and
AHLORL5, are compared with each other to testify the
characteristics of different adaptive strategies. ,e pa-
rameter settings of AHLORL, AHLORL2, AHLORL3,
AHLORL4, and AHLORL5 are given in Table 4, and the
corresponding ps curves are drawn in Figure 3. All the
algorithms were used to solve the 10-dimensional and 30-
dimensional CEC 15 functions, and the numerical results,
including mean, the best value (Best), and the standard
deviation (Std), are listed in Table 5, where the best results
are marked in bold. And the Student’s t-test (t-test) and
Wilcoxon signed-rank test (W-test) [51] are performed and
the corresponding results are also shown in Table 6, in
which “1/0/−1” indicates that the numerical result of
AHLORL is obviously better than, similar to, or worse than
the compared algorithm in the 95% confidence, respec-
tively. ,e t-test is a parameter test that needs to fulfill the
normality and homogeneity of variance, while theW-test is
a nonparametric test that does not need to satisfy the above
characteristics [12]. For convenience, the results of the t-
test and W-test are summarized in Tables 7 and 8. Besides,
to deeply inspect the influence of the adaptive strategies on
SILO and SRLO, two evaluating indicators were used as
follows:

Definition 1: Index 1 is the percent of the same bit
values obtained by SILO and SRLO in a generation.
Definition 2: average distance (AD) is the average
Hamming distance between the global optimal solution
and the other individual optimal solutions in a
generation.

Tables 5–8 clearly show that AHLORL outperforms
AHLORL2, AHLORL3, AHLORL4, and AHLORL5. Espe-
cially 30-dimensional functions achieve a better optimiza-
tion performance. Specifically, the proposed AHLORL
obtains the best numerical results on 12 out of fifteen 30-
dimensional functions. Besides, the summary of t-test and
W-test results on the 30-dimensional CEC 15 functions in
Table 8 indicates that the proposed AHLORL surpasses
AHLORL2, AHLORL3, AHLORL4, and AHLORL5 on 15, 5,
8, and 7 out of 15 functions. And the W-test results support
that AHLORL outperforms these variants on 15, 6, 7, and 8
out of 15 functions. By systematically analyzing the differ-
ences between AHLORL and the other four versions, it will
be easier to understand the influences of various adaptive
strategies on the performance and learn about how to meet
the requirements of the ideal balance between exploration
and exploitation.

To analyze the superiority of the proposed AHLORL
algorithm more clearly, the Index 1 curves of AHLORL and
AHLORL2 on F1 and F5 over 100 independent runs are
drawn in Figure 4, and the AD curves and corresponding
fitness values of AHLORL, AHLORL2, AHLORL3,
AHLORL4, and AHLORL5 are drawn in Figure 5, respec-
tively. Figures 3–6 clearly show that the relationship between
AHLORL, AHLORL2, AHLORL3, AHLORL4, and
AHLORL5 and the evaluating indicators result was caused
by the change of ps.

Table 5: Continued.

Fun Metric AHLORL AHLORL2 AHLORL3 AHLORL4 AHLORL5

F12

Best 1.0052E+ 02 1.0140E+ 02 1.0102E+ 02 1.0076E+ 02 1.0091E+ 02
Mean 1.0155E+ 02 1.0249E+ 02 1.0166E+ 02 1.0155E + 02 1.0168E+ 02
Std 4.3034E− 01 5.9355E− 01 3.6841E− 01 4.3902E − 01 3.5919E− 01
t-Test — 1 0 0 1
W-test — 1 0 0 1

F13

Best 2.1308E+ 01 2.2542E+ 01 2.2485E+ 01 2.1947E+ 01 2.2726E+ 01
Mean 2.5728E + 01 2.7713E+ 01 2.6419E+ 01 2.6109E+ 01 2.6735E+ 01
Std 1.8822E+ 00 2.0439E+ 00 1.7183E+ 00 1.9366E+ 00 1.7349E+ 00
t-Test — 1 1 0 1
W-test — 1 1 0 1

F14

Best 3.3572E+ 02 5.1767E+ 02 1.7705E + 02 3.4012E+ 02 3.3437E+ 02
Mean 2.7176E+ 03 4.1555E+ 03 2.6734E+ 03 2.9169E+ 03 2.5102E+ 03
Std 9.2981E+ 02 1.9663E+ 03 7.3991E+ 02 8.8523E+ 02 8.2462E+ 02
t-Test — 1 0 0 0
W-test — 1 0 0 0

F15

Best 1.0002E+ 02 1.0002E+ 02 1.0010E+ 02 1.0015E+ 02 1.0002E+ 02
Mean 1.0234E+ 02 1.0622E+ 02 1.0268E+ 02 1.0293E+ 02 1.0253E+ 02
Std 1.9637E+ 00 4.3625E+ 00 2.1304E+ 00 2.6496E+ 00 1.3014E+ 00
t-Test — 1 0 0 0
W-test — 1 0 0 0
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Table 6: ,e results of five AHLORLs on the 10-dimensional CEC 15 benchmarks.

Fun Metric AHLORL AHLORL2 AHLORL3 AHLORL4 AHLORL5

F1

Best 3.5098E + 05 1.4133E+ 06 1.0411E+ 06 8.4655E+ 05 7.4393E+ 05
Mean 2.9313E+ 06 6.1536E+ 06 3.4012E+ 06 3.4200E+ 06 3.0466E+ 06
Std 1.5240E + 06 4.0321E+ 06 1.7932E+ 06 2.5401E+ 06 1.2297E+ 06
t-Test — 1 0 0 0
W-test — 1 0 0 0

F2

Best 1.0894E+ 06 1.2545E+ 07 7.6671E+ 05 3.3620E + 05 2.1615E+ 06
Mean 2.5609E+ 07 2.7935E+ 08 2.0945E + 07 3.7516E+ 07 3.0009E+ 07
Std 2.0518E+ 07 3.2278E+ 08 1.6985E + 07 2.8472E+ 07 2.1323E+ 07
t-Test — 1 0 1 0
W-test — 1 0 1 0

F3

Best 2.0015E+ 01 2.0480E+ 01 2.0051E+ 01 2.0032E+ 01 2.0095E+ 01
Mean 2.0088E + 01 2.0736E+ 01 2.0194E+ 01 2.0099E+ 01 2.0248E+ 01
Std 4.4153E− 02 8.1513E− 02 8.3327E− 02 4.1915E− 02 9.7447E− 02
t-Test — 1 1 0 1
W-test — 1 1 1 1

F4

Best 1.6636E + 01 2.5367E+ 01 1.7398E+ 01 2.0935E+ 01 1.9020E+ 01
Mean 3.5857E + 01 4.6908E+ 01 3.7162E+ 01 3.8234E+ 01 3.7059E+ 01
Std 7.3883E + 00 1.0394E+ 01 7.4725E+ 00 7.8884E+ 00 8.2516E+ 00
t-Test — 1 0 1 0
W-test — 1 0 0 0

F5

Best 3.1978E+ 02 7.7955E+ 02 5.7000E+ 02 4.4575E+ 02 6.0766E+ 02
Mean 1.3751E+ 03 1.8290E+ 03 1.6460E+ 03 1.5358E+ 03 1.6217E+ 03
Std 4.0458E + 02 4.7633E+ 02 3.7057E+ 02 4.0991E+ 02 3.7949E+ 02
t-Test — 1 1 1 1
W-test — 1 1 1 1

F6

Best 5.9882E+ 04 7.2691E+ 04 6.3261E+ 04 1.1807E+ 05 3.9817E+ 04
Mean 4.0067E + 05 5.3018E+ 05 4.5017E+ 05 5.2750E+ 05 4.9655E+ 05
Std 2.2508E + 05 4.4915E+ 05 2.5779E+ 05 3.9484E+ 05 3.0791E+ 05
t-Test — 1 0 1 1
W-test — 1 0 1 1

F7

Best 6.4758E + 00 6.9204E+ 00 7.4183E+ 00 7.5758E+ 00 7.8512E+ 00
Mean 1.0124E+ 01 1.2739E+ 01 1.0199E+ 01 1.0704E+ 01 1.0105E+ 01
Std 1.3229E+ 00 2.0361E+ 00 1.1682E+ 00 1.2033E+ 00 1.1061E+ 00
t-Test — 1 0 1 0
W-test — 1 0 1 0

F8

Best 9.5273E+ 03 1.5489E+ 04 1.7583E+ 04 1.7795E+ 04 6.1712E+ 03
Mean 1.0991E+ 05 1.6202E+ 05 1.1810E+ 05 1.5987E+ 05 1.1532E+ 05
Std 6.0527E + 04 9.5848E+ 04 6.8404E+ 04 8.8975E+ 04 6.4274E+ 04
t-Test — 1 0 1 0
W-test — 1 0 1 0

F9

Best 1.0244E+ 02 1.0297E+ 02 1.0250E+ 02 1.0249E+ 02 1.0237E+ 02
Mean 1.0288E + 02 1.0432E+ 02 1.0295E+ 02 1.0293E+ 02 1.0294E+ 02
Std 2.1536E− 01 1.4430E+ 00 1.9787E− 01 2.4404E− 01 2.0690E− 01
t-Test — 1 1 0 1
W-test — 1 1 0 1

F10

Best 8.0989E + 03 3.1026E+ 04 2.3093E+ 04 1.4837E+ 04 1.6642E+ 04
Mean 1.5791E+ 05 2.2310E+ 05 1.8441E+ 05 2.3865E+ 05 1.6185E+ 05
Std 9.7338E + 04 1.5798E+ 05 9.7905E+ 04 1.4587E+ 05 9.0725E+ 04
t-Test — 1 0 1 0
W-test — 1 0 1 0

F11

Best 3.0624E+ 02 3.0737E+ 02 3.1190E+ 02 3.0621E+ 02 3.0970E+ 02
Mean 3.2617E+ 02 6.0056E+ 02 3.3005E+ 02 3.5009E+ 02 3.3688E+ 02
Std 3.8006E + 01 1.6202E+ 02 2.5714E+ 01 8.5204E+ 01 3.6888E+ 01
t-Test — 1 0 1 0
W-test — 1 1 0 1
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Based on the above experiments, the characteristics of
AHLORL and the influences of the adaptive strategies can be
concluded as follows:

(1) ,e Index 1 curves of AHLORL in Figure 4 increase
gradually. ,is character indicates that AHLORL
needs to use a large probability of SRLO to find the
optimal bit values at the beginning of the search,
which can effectively reduce the uncertainty impact
of the randomly initialized population. With the
progress of the search, the learning probability of
SILO is increased to accumulate the found optimal

bit values, which further boosts the effectiveness and
confidence of the following learning operation. Be-
sides, the Index 1 curves of AHLORL2 have a sig-
nificant drop at the later stage of iteration, which
does not meet the characteristics of knowledge
changes of the population. And therefore, the in-
creasing strategy of control parameter ps can utilize
the learning ability between SILO and SRLO more
effectively and efficiently.

(2) Figure 5 shows that the AD curves of AHLORL2
represent converging fast and then performing the

Table 6: Continued.

Fun Metric AHLORL AHLORL2 AHLORL3 AHLORL4 AHLORL5

F12

Best 1.0417E+ 02 1.0500E+ 02 1.0407E + 02 1.0426E+ 02 1.0442E+ 02
Mean 1.0555E + 02 1.0679E+ 02 1.0578E+ 02 1.0556E+ 02 1.0578E+ 02
Std 5.3918E− 01 7.4995E− 01 5.4516E− 01 5.2658E− 01 5.5395E− 01
t-Test — 1 1 0 1
W-test — 1 1 0 1

F13

Best 7.5673E + 01 8.4114E+ 01 7.8988E+ 01 7.9979E+ 01 8.0951E+ 01
Mean 9.1145E+ 01 9.9983E+ 01 9.3561E+ 01 9.1643E+ 01 9.5014E+ 01
Std 6.8232E + 00 5.5460E+ 00 5.6323E+ 00 5.3644E+ 00 4.8753E+ 00
t-Test — 1 1 0 1
W-test — 1 1 0 1

F14

Best 3.1272E+ 04 3.1326E+ 04 3.1176E + 04 3.1297E+ 04 3.1460E+ 04
Mean 3.2927E + 04 3.3531E+ 04 3.2934E+ 04 3.2993E+ 04 3.2947E+ 04
Std 8.3761E+ 02 1.1279E+ 03 8.0199E+ 02 7.9269E+ 02 7.1843E+ 02
t-Test — 1 0 0 0
W-test — 1 0 0 0

F15

Best 1.0182E+ 02 1.0434E+ 02 1.0234E+ 02 1.0121E+ 02 1.0222E+ 02
Mean 1.0562E + 02 1.1068E+ 02 1.0591E+ 02 1.0579E+ 02 1.0615E+ 02
Std 1.3104E+ 00 4.2595E+ 00 1.3376E+ 00 1.6978E+ 00 1.4430E+ 00
t-Test — 1 0 0 1
W-test — 1 0 0 1

Table 7: Summary of the t-test and W-test results on the 10-dimensional CEC 15 functions.

Metric AHLORL AHLORL2 AHLORL3 AHLORL4 AHLORL5

t-Test
1 13 3 4 6
0 2 12 11 9

−1 0 0 0 0

W-test
1 14 3 5 7
0 1 12 10 8

−1 0 0 0 0

Table 8: Summary of the t-test and W-test results on the 30-dimensional CEC 15 functions.

Metric AHLORL AHLORL2 AHLORL3 AHLORL4 AHLORL5

t-Test
1 15 5 8 7
0 0 10 7 8

−1 0 0 0 0

W-test
1 15 6 7 8
0 0 9 8 7

−1 0 0 0 0
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accurate search at the beginning. Although
AHLORL2 converges fastest, Figure 6 displays that
AHLORL2 likely stucks in the local optima because it
cannot widely explore the interesting solution areas
and sufficiently perform the accurate search at the
later stages of iterations, and consequently its results
are the worst among all the algorithms.

(3) Figure 3 shows that the ps curves of AHLORL3 can
maintain diversity during a long period to suffi-
ciently explore the interesting solution areas and
quickly enhance the local search ability in the middle
of the searching process. From Figures 5 and 6, it
reveals that the values of AD are almost unchanged
in the first Gmax×Tp1 generations because the
found useful knowledge cannot be effectively accu-
mulated by SILO, and the functions fitness is not
improved. Besides, the ps value of AHLORL3 quickly
rises in the middle of the searching process, and
AHLORL3 performs efficient accurate search
promptly. Correspondingly, the fitness of AHLORL3
is greatly improved; meanwhile, the value of AD
curves obviously changes. However, the final results

of AHLORL3 are not good enough due to the limited
resources.

(4) AHLORL4 has a similar problem with AHLORL3,
and it also cannot effectively accumulate the found
useful knowledge. Compared with AHLORL3,
AHLORL4 obtains a better result before the
Gmax×Tp1 generations because it can perform SILO
with a certain probability. However, the final results
of AHLORL4 are worse than AHLORL3 because the
AHLORL4 is relatively slow to enhance the learning
ability of SILO.

(5) Figures 5 and 6 clearly show that the AD curves of
AHLORL5 drop quickly, and it obtains a better result
before the Gmax×Tp generations. Although the AD
curve of AHLORL5 continues to drop after the
Gmax×Tp generations, the fitness values are almost
unchanged, which displays that AHLORL5 is likely
stuck in the local optima. As the greedy strategy is
adopted for updating IKDs and SKD, the ILO and
SILO perform copy strategy to get the same bit value
from the IKDs and the SKD. ,erefore, if the
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Figure 4: ,e Index 1 curves of AHLORL and AHLORL2.
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corresponding bit value from the IKDs and SKD is
the same, for example, being “1” but the optimal
value being “0,” AHLORL5 cannot efficiently regain
“0” by the ILO and SILO, and the only chance of the
algorithm to obtain “0” depends on the RLO.
However, the rate of performing the RLO is 5/M; that
is, the probability of generating “0” for a certain bit
on the 30-dimensional functions is 0.0028, which is
quite inefficient.

(6) Compared with AHLORL2, AHLORL3, AHLORL4,
and AHLORL5, it is fair to declare that AHLORL can
effectively utilize the learning ability of SILO and
SRLO and significantly improve the search results
because the proposed adaptive strategy is carefully
designed according to the different requirements at
different search stages. Figures 5 and 6 indicate that
the proposed adaptive strategy brings about no-
ticeable improvements in search performance. ,e
reason is that AHLORL achieves a practically perfect
trade-off between exploration and exploitation
through the proposed adaptive strategy. Specifically,

at the beginning of the search, the efficiency and
reliability of SILO are low due to the random ini-
tialization of the population. At this time, the SRLO
can efficiently find the optimal bit values by rea-
soning. With the progress of the search, the learning
probability of SILO is quickly increased to efficiently
accumulate found the optimal bit values, which
further enhance the effectiveness of the following
learning operation and consequently boost the ex-
ploitation ability of AHLORL. At the later stage of
iterations, the risk of trapping in the local optimum
remains because the greedy strategy is adopted in the
SILO and ILO, and the SRLO efficiently retrieves the
optimal bit values lost by the SILO and ILO.
,erefore, the global search ability is significantly
enhanced.

4. Inherent Search Mechanisms of AHLORL

To further understand the inherent search mechanisms of
AHLORL, the structural similarities and differences between
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Figure 5: ,e AD curves of AHLORL, AHLORL2, AHLORL3, AHLORL4, and AHLORL5.
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AHLORL and two mainstream metaheuristic algorithms,
i.e., Genetic Algorithms (GAs) and Particle Swarm Opti-
mization (PSO), are compared and discussed in this section.

In Genetic Algorithms (GAs), the mutation operator has
a similar effect on the RLO of AHLORL. However, there are
still differences in the execution strategy of the operator. In
AHLORL, each bit of an individual has an independent

mutation probability pr/2. In binary GAs, the mutation of all
bits of an individual will not occur for the simple mutation
operator or the boundary mutation operator. Besides, the
combination of the ILO, SILO, and SRLO of AHLORL can
be seen as a complicated variable multipoint crossover
operator in GAs. However, there are still significant dif-
ferences between the combination of ILO, SILO, and SRLO
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Figure 6: ,e fitness curves of AHLORL, AHLORL2, AHLORL3, AHLORL4, and AHLORL5.

Table 9: Parameter settings of AHLORL, HLORL, IAHLO, SCHLO, SFPSO, BGWO, BAAA, and IBDE.

Algorithms Parameter settings
AHLORL pr� 5/M, pi� 0.82, psmin � 0.85, psmax � 0.96, Tp� 0.7, k� 0.5
HLORL [18] pr� 5/M, pi� 0.82, ps� 0.92
IAHLO [4] prmin1 � 0.02, prmin2 � 0.05, prmax � 0.15, pi� 0.85 + 2/M, Sp� 0.2×Gmax
SCHLO [3] prmid � 0.1, pimid � 0.9
SFPSO [43] ωmin� 0.95, ωmax� 0.99, c1� c2� 2.05, vmax� 6, vmin� −6
BGWO [44] a� 2− t× 2/T, A� 2a× r1− a, C� 2× r2
BAAA [45] β� 0.5, UMSP� 0.5, Ap� 0.5, DSP� 0.66
IBDE [46] δ � 0.05, a� 1.0, psm � 0.008, b� 5
Note. M is the dimension of solutions.
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Table 10: ,e results of all the algorithms on the 10-dimensional benchmark functions.

Fun Metric AHLORL HLORL IAHLO SCHLO SFPSO BGWO BAAA IBDE

F1

Best 7.0185E + 03 1.3446E+ 04 9.3633E+ 03 4.7152E+ 04 3.3678E+ 04 1.2398E+ 05 6.8415E+ 04 5.1655E+ 05
Mean 1.4321E + 05 1.9159E+ 05 2.1120E+ 05 4.0181E+ 05 2.4912E+ 06 1.4807E+ 07 6.7169E+ 06 8.8931E+ 06
Std 1.3145E + 05 1.9685E+ 05 1.9791E+ 05 3.6145E+ 05 4.2897E+ 06 1.7463E+ 07 1.2579E+ 07 6.0931E+ 06
t-test — 1 1 1 1 1 1 1
W-test — 1 1 1 1 1 1 1

F2

Best 1.4326E + 03 1.4944E+ 03 4.2125E+ 03 1.0268E+ 04 2.7518E+ 05 4.2573E+ 05 2.1975E+ 05 4.3900E+ 05
Mean 8.4642E + 05 3.2602E+ 06 2.9041E+ 06 3.0073E+ 06 1.9300E+ 07 1.2978E+ 08 2.5241E+ 07 1.2781E+ 08
Std 1.9368E + 06 5.2737E+ 06 3.3760E+ 06 3.3770E+ 06 1.6533E+ 07 1.9796E+ 08 2.6981E+ 07 1.8336E+ 08
t-test — 1 1 1 1 1 1 1
W-test — 1 1 1 1 1 1 1

F3

Best 2.5798E+ 00 3.7595E+ 00 1.3525E+ 00 1.8761E+ 01 6.0587E+ 00 2.0000E+ 01 1.0695E+ 01 1.9732E+ 01
Mean 1.8580E + 01 1.9164E+ 01 1.8836E+ 01 2.0013E+ 01 1.9777E+ 01 2.0019E+ 01 1.9919E+ 01 2.0010E+ 01
Std 4.3836E + 00 3.3914E+ 00 4.2628E+ 00 1.3203E− 01 1.7255E+ 00 1.9284E− 02 9.2719E− 01 2.9474E− 02
t-test — 0 0 1 1 1 1 1
W-test — 1 1 1 0 0 1 0

F4

Best 5.5808E− 01 1.2431E − 01 1.4518E+ 00 3.6097E+ 00 3.2684E+ 00 7.1134E+ 00 6.3039E+ 00 8.9835E+ 00
Mean 4.4647E + 00 4.6057E+ 00 6.0314E+ 00 9.1071E+ 00 1.1282E+ 01 2.3981E+ 01 1.5214E+ 01 2.5032E+ 01
Std 1.4911E + 00 1.8133E+ 00 2.2456E+ 00 2.2050E+ 00 3.9832E+ 00 1.0248E+ 01 6.0930E+ 00 7.2519E+ 00
t-test — 0 1 1 1 1 1 1
W-test — 0 1 1 1 1 1 1

F5

Best 2.5876E+ 00 1.7577E + 00 3.1217E+ 00 2.1931E+ 01 1.4759E+ 01 1.4030E+ 02 1.6839E+ 01 1.1878E+ 02
Mean 5.7225E + 01 6.3487E+ 01 1.0786E+ 02 2.3633E+ 02 3.1082E+ 02 5.5590E+ 02 3.6302E+ 02 6.2041E+ 02
Std 5.0841E + 01 6.8584E+ 01 8.0639E+ 01 1.0189E+ 02 1.5763E+ 02 2.1552E+ 02 1.6622E+ 02 1.8303E+ 02
t-test — 0 1 1 1 1 1 1
W-test — 0 1 1 1 1 1 1

F6

Best 4.5969E+ 01 4.7732E+ 01 4.2252E + 01 8.0843E+ 01 9.5246E+ 01 1.4213E+ 03 2.2540E+ 02 1.2421E+ 03
Mean 1.3756E+ 03 1.1842E+ 03 1.0852E+ 03 2.0278E+ 03 5.3354E+ 04 4.7971E+ 05 7.2668E+ 04 1.4828E+ 05
Std 1.3486E+ 03 1.3757E+ 03 8.8106E+ 02 1.8091E+ 03 6.7434E+ 04 7.8036E+ 05 7.0640E+ 04 1.6664E+ 05
t-test — 0 0 1 1 1 1 1
W-test — 0 0 1 1 1 1 1

F7

Best 1.5272E− 01 6.6477E − 02 2.2471E− 01 4.7651E− 01 4.2832E− 01 6.1152E− 01 8.7150E− 01 2.9339E− 01
Mean 9.1146E − 01 9.4744E− 01 1.0279E+ 00 1.2819E+ 00 1.8793E+ 00 3.1382E+ 00 2.2034E+ 00 3.1227E+ 00
Std 3.6188E − 01 4.3133E− 01 3.7009E− 01 3.1360E− 01 5.9668E− 01 1.4746E+ 00 7.2780E− 01 1.2871E+ 00
t-test — 0 1 1 1 1 1 1
W-test — 0 1 1 1 1 1 1

F8

Best 2.8786E + 00 7.9561E+ 00 3.1862E+ 00 5.9463E+ 00 1.1982E+ 02 3.2531E+ 02 4.0006E+ 01 4.7011E+ 02
Mean 3.3990E + 02 3.8820E+ 02 4.0453E+ 02 4.5745E+ 02 1.0047E+ 04 3.3140E+ 05 8.5433E+ 03 6.4974E+ 04
Std 3.3356E + 02 4.6690E+ 02 5.2586E+ 02 4.5645E+ 02 1.9573E+ 04 6.6362E+ 05 1.0979E+ 04 1.7631E+ 05
t-test — 1 0 1 1 1 1 1
W-test — 1 0 1 1 1 1 1

F9

Best 1.0009E + 02 1.0010E+ 02 1.0012E+ 02 1.0014E+ 02 1.0020E+ 02 1.0033E+ 02 1.0018E+ 02 1.0021E+ 02
Mean 1.0017E + 02 1.0020E+ 02 1.0026E+ 02 1.0028E+ 02 1.0043E+ 02 1.0082E+ 02 1.0057E+ 02 1.0073E+ 02
Std 3.2463E − 02 5.0998E− 02 5.9280E− 02 6.4821E− 02 1.5868E− 01 4.5483E− 01 2.1405E− 01 7.4180E− 01
t-test — 1 1 1 1 1 1 1
W-test — 1 1 1 1 1 1 1

F10

Best 2.2384 E+ 02 2.5058E+ 02 2.3869E+ 02 2.5461E+ 02 2.7677E+ 02 3.3769E+ 02 3.3496E+ 02 5.0671E+ 02
Mean 3.5107E + 02 3.5465E+ 02 4.1261E+ 02 4.1754E+ 02 2.5943E+ 03 3.8343E+ 04 4.0855E+ 03 1.7553E+ 04
Std 6.6269E + 01 6.8455E+ 01 1.9901E+ 02 1.2079E+ 02 2.8501E+ 03 8.4870E+ 04 5.4270E+ 03 3.2145E+ 04
t-test — 0 1 1 1 1 1 1
W-test — 0 1 1 1 1 1 1

F11

Best 2.7164E+ 00 2.3079E + 00 2.6666E+ 00 4.0966E+ 00 5.2569E+ 00 1.2480E+ 01 7.4946E+ 00 1.3264E+ 01
Mean 2.1417E + 01 7.1509E+ 01 6.5715E+ 01 3.9942E+ 01 2.4030E+ 02 3.3103E+ 02 2.7509E+ 02 2.5003E+ 02
Std 6.4015E + 01 1.2156E+ 02 1.1735E+ 02 8.7214E+ 01 1.1758E+ 02 1.0919E+ 02 8.2864E+ 01 1.0680E+ 02
t-test — 1 1 0 1 1 1 1
W-test — 1 1 1 1 1 1 1

16 Scientific Programming



and the crossover operator. In AHLORL, the ILO and SILO
yield a new candidate by copying the values of the solutions
in the IKD and SKD, and the SRLO yields a new candidate
based on the best knowledge saved in the IKD of three
randomly chosen individuals. In binary GAs, the crossover
operator chooses two solutions in the current population to
generate a new offspring. Note that the best solution of an
individual, i.e., the knowledge stored in the IKD, may not
survive in the selection of GAs since there is no certain
mechanism to save it for the next generation. ,erefore, the
inherent search mechanisms of GAs and AHLORL are
different.

Compared with binary GAs, Particle Swarm Optimi-
zation may be more similar to AHLORL in the structure of
the algorithm as the information of the individual best
solutions and the global best solution is also adopted in PSO.
However, the underlying search mechanisms of PSO and
AHLORL are also different. For the standard PSO, it is a real-
coded algorithm inspired by the foraging of birds. But the
proposed AHLORL is a binary-coded algorithm that mimics
the learning mechanism of humans. In the updating of the
population, PSO and its binary variants generate solutions
based on the “velocity,” and the information of the “velocity”

is updated based on its inertia information and the indi-
vidual/global best information. But, there is no corre-
sponding definition of the “velocity” or inertia information
in AHLORL. Besides, PSO performs the new search based on
its current position while the following search in AHLORL
does not depend on its current solution.,erefore, the forms
of the operators of AHLORL and binary PSO are different,
and the candidates generated by AHLORL and binary PSO
with the same population are also distinct.

5. Experimental Results and Discussion

In this section, the proposed AHLORL, as well as seven
recent algorithms, i.e., HLORL [28], IAHLO [14], SCHLO
[13], Scale-Free Binary Particle Swarm Optimization
(SFPSO) [52], Binary Grey Wolf Optimizer (BGWO) [53],
Binary Artificial Algae Algorithm (BAAA) [54], and Im-
proved Binary Differential Evolution (IBDE) [55], were
applied to solve the 10/30-dimensional CEC 15 benchmark
functions [50] and multidimensional knapsack problems
(MKPs) [56]. For a fair comparison, the parameter settings
for all the algorithms adopted the recommended values,
which are listed in Table 9. Besides, the simulation

Table 10: Continued.

Fun Metric AHLORL HLORL IAHLO SCHLO SFPSO BGWO BAAA IBDE

F12

Best 1.0052E + 02 1.0115E+ 02 1.0133E+ 02 1.0118E+ 02 1.0166E+ 02 1.0218E+ 02 1.0227E+ 02 1.0165E+ 02
Mean 1.0155E + 02 1.0195E+ 02 1.0270E+ 02 1.0230E+ 02 1.0384E+ 02 1.0670E+ 02 1.0565E+ 02 1.0353E+ 02
Std 4.3034E − 01 4.0969E− 01 5.8725E− 01 5.9069E− 01 1.2615E+ 00 3.0044E+ 00 2.0406E+ 00 1.0769E+ 00
t-test — 1 1 1 1 1 1 1
W-test — 1 1 1 1 1 1 1

F13

Best 2.1308E + 01 2.1427E+ 01 2.4364E+ 01 2.3509E+ 01 2.2514E+ 01 2.4153E+ 01 2.4025E+ 01 3.0650E+ 01
Mean 2.5728E + 01 2.6305E+ 01 2.8891E+ 01 2.9169E+ 01 3.0810E+ 01 3.5695E+ 01 3.3104E+ 01 3.7691E+ 01
Std 1.8822E + 00 2.2454E+ 00 2.0852E+ 00 1.7060E+ 00 3.0419E+ 00 3.8189E+ 00 3.8470E+ 00 3.0153E+ 00
t-test — 1 1 1 1 1 1 1
W-test — 1 1 1 1 1 1 1

F14

Best 3.3572E+ 02 2.8040E+ 02 1.4995E+ 02 3.9862E+ 02 4.2596E+ 02 1.7775E+ 03 4.3885E+ 02 9.9638E+ 02
Mean 2.7176E+ 03 4.0533E+ 03 3.4954E+ 03 2.5245E + 03 5.2164E+ 03 6.6428E+ 03 6.6212E+ 03 4.1075E+ 03
Std 9.2981E+ 02 1.9211E+ 03 2.0107E+ 03 9.5392E + 02 2.3174E+ 03 2.9204E+ 03 2.7114E+ 03 1.2864E+ 03
t-test — 1 1 0 1 1 1 1
W-test — 1 1 0 1 1 1 1

F15

Best 1.0002E + 02 1.0035E+ 02 1.0002E+ 02 1.0009E+ 02 1.0056E+ 02 1.0335E+ 02 1.0240E+ 02 1.0659E+ 02
Mean 1.0234E + 02 1.0610E+ 02 1.0306E+ 02 1.0387E+ 02 1.1060E+ 02 1.1615E+ 02 1.1081E+ 02 1.1903E+ 02
Std 1.9637E + 00 4.3975E+ 00 2.4058E+ 00 3.0619E+ 00 3.8583E+ 00 7.8143E+ 00 3.8961E+ 00 6.4351E+ 00
t-test — 1 1 1 1 1 1 1
W-test — 1 1 1 1 1 1 1

Table 11: ,e summary results of the t-test and W-test on the 10-dimensional benchmark functions.

Metric AHLORL HLORL IAHLO SCHLO SFPSO BGWO BAAA IBDE

t-test
1 9 12 13 15 15 15 15
0 6 3 2 0 0 0 0

−1 0 0 0 0 0 0 0

W-test
1 10 13 14 14 14 15 14
0 5 2 1 1 1 0 1

−1 0 0 0 0 0 0 0
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Table 12: ,e results of all the algorithms on the 30-dimensional benchmark functions.

Fun Metric AHLORL HLORL IAHLO SCHLO SFPSO BGWO BAAA IBDE

F1

Best 3.5098E + 05 9.0963E+ 05 4.2587E+ 06 4.9958E+ 06 2.7440E+ 06 3.7163E+ 06 6.1783E+ 06 1.2036E+ 07
Mean 2.9313E + 06 5.0158E+ 06 1.3071E+ 07 1.1129E+ 07 1.8469E+ 07 3.5357E+ 07 3.4367E+ 07 3.9808E+ 07
Std 1.5240E + 06 4.5879E+ 06 5.1957E+ 06 4.2216E+ 06 1.1233E+ 07 1.8509E+ 07 2.1090E+ 07 1.4055E+ 07
t-test — 1 1 1 1 1 1 1
W-test — 1 1 1 1 1 1 1

F2

Best 1.0894E + 06 4.2357E+ 06 2.5375E+ 08 8.0420E+ 06 8.3441E+ 07 1.4856E+ 08 1.8754E+ 08 6.8389E+ 08
Mean 2.5609E + 07 1.1108E+ 08 8.6618E+ 08 1.6169E+ 08 1.0878E+ 09 1.3677E+ 09 1.2748E+ 09 2.6559E+ 09
Std 2.0518E + 07 1.1473E+ 08 3.6072E+ 08 1.2576E+ 08 6.5628E+ 08 7.9023E+ 08 7.8449E+ 08 9.4198E+ 08
t-test — 1 1 1 1 1 1 1
W-test — 1 1 1 1 1 1 1

F3

Best 2.0015E + 01 2.0027E+ 01 2.0673E+ 01 2.0129E+ 01 2.0611E+ 01 2.0024E+ 01 2.0023E+ 01 2.0017E+ 01
Mean 2.0088E + 01 2.0199E+ 01 2.0874E+ 01 2.0375E+ 01 2.0835E+ 01 2.0133E+ 01 2.0133E+ 01 2.0119E+ 01
Std 4.4153E − 02 8.6295E− 02 5.6902E− 02 8.2217E− 02 7.0497E− 02 7.9673E− 02 8.2617E− 02 7.3520E− 02
t-test — 1 1 1 1 1 1 1
W-test — 1 1 1 1 1 1 1

F4

Best 1.6636E + 01 2.9605E+ 01 1.0905E+ 02 5.5509E+ 01 6.1622E+ 01 7.1585E+ 01 6.6964E+ 01 8.1246E+ 01
Mean 3.5857E + 01 5.9574E+ 01 1.6191E+ 02 9.2484E+ 01 9.4954E+ 01 1.1528E+ 02 1.1890E+ 02 1.3745E+ 02
Std 7.3883E + 00 1.3293E+ 01 1.5608E+ 01 1.6034E+ 01 1.8212E+ 01 2.3329E+ 01 2.4313E+ 01 1.8938E+ 01
t-test — 1 1 1 1 1 1 1
W-test — 1 1 1 1 1 1 1

F5

Best 3.1978E + 02 1.0839E+ 03 3.6009E+ 03 2.3346E+ 03 1.7347E+ 03 1.6199E+ 03 1.8477E+ 03 2.0324E+ 03
Mean 1.3751E + 03 1.9456E+ 03 5.0128E+ 03 3.3259E+ 03 3.2133E+ 03 2.8057E+ 03 2.8749E+ 03 3.0347E+ 03
Std 4.0458E + 02 4.6736E+ 02 4.3888E+ 02 3.9043E+ 02 5.8685E+ 02 5.4174E+ 02 5.0916E+ 02 3.6628E+ 02
t-test — 1 1 1 1 1 1 1
W-test — 1 1 1 1 1 1 1

F6

Best 5.9882E+ 04 1.3325E + 04 4.0064E+ 04 2.3135E+ 05 1.9820E+ 05 6.2731E+ 05 1.0287E+ 06 6.4738E+ 05
Mean 4.0067E + 05 4.4431E+ 05 5.4702E+ 05 1.0361E+ 06 2.8680E+ 06 1.2642E+ 07 8.7032E+ 06 7.3282E+ 06
Std 2.2508E + 05 3.4413E+ 05 4.2097E+ 05 4.8414E+ 05 2.0881E+ 06 8.5527E+ 06 5.3332E+ 06 4.1596E+ 06
t-test — 0 1 1 1 1 1 1
W-test — 0 1 1 1 1 1 1

F7

Best 6.4758E+ 00 6.8847E+ 00 1.0866E+ 01 9.8167E+ 00 8.6934E+ 00 1.1447E+ 01 6.0209E + 00 1.3647E+ 01
Mean 1.0124E + 01 1.1213E+ 01 1.5438E+ 01 1.3752E+ 01 2.2356E+ 01 3.7480E+ 01 3.6721E+ 01 2.3279E+ 01
Std 1.3229E + 00 1.7691E+ 00 1.5947E+ 00 1.4168E+ 00 1.7295E+ 01 2.9827E+ 01 3.3357E+ 01 7.9519E+ 00
t-test — 1 1 1 1 1 1 1
W-test — 1 1 1 1 1 1 1

F8

Best 9.5273E + 03 9.8358E+ 03 1.8766E+ 04 3.8604E+ 04 7.4961E+ 04 2.4240E+ 05 7.3224E+ 04 2.7181E+ 05
Mean 1.0991E + 05 1.3257E+ 05 1.3993E+ 05 2.0626E+ 05 7.6158E+ 05 3.4480E+ 06 2.3953E+ 06 1.9233E+ 06
Std 6.0527E + 04 8.4546E+ 04 1.0217E+ 05 1.0570E+ 05 6.0954E+ 05 2.6455E+ 06 2.1905E+ 06 1.2221E+ 06
t-test — 1 1 1 1 1 1 1
W-test — 1 1 1 1 1 1 1

F9

Best 1.0244E + 02 1.0261E+ 02 1.0470E+ 02 1.0368E+ 02 1.0417E+ 02 1.0394E+ 02 1.0420E+ 02 1.0539E+ 02
Mean 1.0288E + 02 1.0333E+ 02 1.0680E+ 02 1.0462E+ 02 1.0761E+ 02 1.1690E+ 02 1.2238E+ 02 1.1573E+ 02
Std 2.1536E − 01 1.1594E+ 00 1.8305E+ 00 5.5225E− 01 3.4149E+ 00 4.2117E+ 01 5.5823E+ 01 6.7971E+ 00
t-test — 1 1 1 1 1 1 1
W-test — 1 1 1 1 1 1 1

F10

Best 8.0989E + 03 4.1676E+ 04 2.2123E+ 04 3.5227E+ 04 5.8620E+ 04 1.1142E+ 05 3.5327E+ 05 2.4152E+ 05
Mean 1.5791E + 05 1.8300E+ 05 2.7241E+ 05 2.9698E+ 05 1.4694E+ 06 4.0229E+ 06 4.7046E+ 06 3.2672E+ 06
Std 9.7338E + 04 9.2415E+ 04 2.3919E+ 05 1.9105E+ 05 9.9794E+ 05 3.2280E+ 06 6.3750E+ 06 2.4546E+ 06
t-test — 0 1 1 1 1 1 1
W-test — 1 1 1 1 1 1 1

F11

Best 3.0624E + 02 3.0852E+ 02 3.1583E+ 02 3.1800E+ 02 3.1903E+ 02 3.1587E+ 02 3.1734E+ 02 3.3006E+ 02
Mean 3.2617E + 02 4.8949E+ 02 6.1431E+ 02 3.8016E+ 02 8.5938E+ 02 9.3240E+ 02 8.3604E+ 02 4.6217E+ 02
Std 3.8006E + 01 1.4960E+ 02 2.5687E+ 02 1.0738E+ 02 1.0920E+ 02 1.3880E+ 02 2.6787E+ 02 1.7508E+ 02
t-test — 1 1 1 1 1 1 1
W-test — 1 1 1 1 1 1 1
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environment was Eclipse platform and Java encoding on
Windows 7, 64-bit operating system, the configuration of
computer was Intel Xeon E3-1230 v3 @3.30GHz 16G
RAMs.

5.1. Results of the CEC 15 Benchmark Functions

5.1.1. Low-Dimensional Benchmark Functions. ,e opti-
mization results of all algorithms on the 10-dimensional
benchmark functions are presented in Table 10, where the
best numerical results are highlighted in bold. Besides, the
Student’s t-test (t-test) and the Wilcoxon signed-rank test
(W-test) are also summarized in Table 11. As can be seen
from Tables 10 and 11, the AHLORL is significantly superior
to these compared algorithms, which obtains 13 best nu-
merical results out of 15 functions. Besides, the results of the
t-test clearly indicate that the proposed AHLORL is sub-
stantially better than HLORL, IAHLO, SCHLO, SFPSO,
BGWO, BAAA, and IBDE on 9, 12, 13, 15, 15, 15, and 15 out
of 15 functions. And the results of theW-test also unfold that
the proposed AHLORL is obviously superior to HLORL,
IAHLO, SCHLO, SFPSO, BGWO, BAAA, and IBDE on 10,
13, 14, 14, 14, 15, and 14 out of 15 functions, respectively.

5.1.2. High-Dimensional Benchmark Functions. ,e nu-
merical results of all algorithms on the 30-dimensional CEC
15 benchmark functions are listed in Table 12, where the best
optimization results are also marked in bold. For conve-
nience, the summary results of the t-test and W-test are
counted in Table 13. From Tables 12 and 13, AHLORL
obtains the best numerical results on all the functions.
Besides, the t-test results explicitly show that the proposed
AHLORL significantly surpasses HLORL, IAHLO, SCHLO,
SFPSO, BGWO, BAAA, and IBDE on 12, 15, 15, 15, 15, 15,
and 15 out of 15 functions, respectively. And the W-test
results also show that the proposed AHLORL is significantly
better than HLORL, IAHLO, SCHLO, SFPSO, BGWO,
BAAA, and IBDE on 13, 15, 15, 15, 15, 15, and 15 out of 15
functions, respectively.

5.2. Results of the Multidimensional Knapsack Problems
(MKPs). To further verify the optimization ability of
AHLORL, a total of 30multidimensional knapsack problems
(MKPs) [56], i.e., the instances 10.500.00-29, was adopted as
the test function to evaluate the performance of AHLORL.
,e times of simulation test for all problems were 100 in-
dependently, and the population size and the maximal

Table 12: Continued.

Fun Metric AHLORL HLORL IAHLO SCHLO SFPSO BGWO BAAA IBDE

F12

Best 1.0417E + 02 1.0482E+ 02 1.0777E+ 02 1.0545E+ 02 1.0797E+ 02 1.0681E+ 02 1.0739E+ 02 1.0603E+ 02
Mean 1.0555E + 02 1.0592E+ 02 1.0985E+ 02 1.0719E+ 02 1.0982E+ 02 1.1025E+ 02 1.1067E+ 02 1.0822E+ 02
Std 5.3918E − 01 6.2218E− 01 1.1221E+ 00 7.3087E− 01 1.1802E+ 00 1.9445E+ 00 1.8683E+ 00 9.9629E− 01
t-test — 1 1 1 1 1 1 1
W-test — 1 1 1 1 1 1 1

F13

Best 7.5673E+ 01 7.3943E + 01 1.1390E+ 02 9.7683E+ 01 9.7090E+ 01 9.8463E+ 01 8.4401E+ 01 1.0127E+ 02
Mean 9.1145E + 01 9.1641E+ 01 1.2233E+ 02 1.0993E+ 02 1.1661E+ 02 1.1086E+ 02 1.0969E+ 02 1.1720E+ 02
Std 6.8232E + 00 5.9686E+ 00 3.1306E+ 00 3.8369E+ 00 5.1212E+ 00 5.9995E+ 00 7.5160E+ 00 4.4689E+ 00
t-test — 0 1 1 1 1 1 1
W-test — 0 1 1 1 1 1 1

F14

Best 3.1272E + 04 3.1353E+ 04 3.1820E+ 04 3.1425E+ 04 3.1611E+ 04 3.1730E+ 04 3.1699E+ 04 3.2629E+ 04
Mean 3.2927E + 04 3.3319E+ 04 3.4153E+ 04 3.3370E+ 04 3.4475E+ 04 3.4700E+ 04 3.4791E+ 04 3.4534E+ 04
Std 8.3761E + 02 8.8714E+ 02 1.0854E+ 03 9.9792E+ 02 1.0511E+ 03 1.1733E+ 03 1.5108E+ 03 9.1681E+ 02
t-test — 1 1 1 1 1 1 1
W-test — 1 1 1 1 1 1 1

F15

Best 1.0182E + 02 1.0285E+ 02 1.0937E+ 02 1.0383E+ 02 1.0888E+ 02 1.0589E+ 02 1.0689E+ 02 1.2353E+ 02
Mean 1.0562E + 02 1.0782E+ 02 1.1710E+ 02 1.0952E+ 02 1.1862E+ 02 2.1332E+ 02 1.6383E+ 02 1.5057E+ 02
Std 1.3104E + 00 2.4117E+ 00 3.2758E+ 00 2.8086E+ 00 4.9390E+ 00 3.3686E+ 02 2.1802E+ 02 3.2049E+ 01
t-test — 1 1 1 1 1 1 1
W-test — 1 1 1 1 1 1 1

Table 13: ,e summary results of the t-test and W-test on the high-dimensional benchmark functions.

Metric AHLORL HLORL IAHLO SCHLO SFPSO BGWO BAAA IBDE

t-test
1 12 15 15 15 15 15 15
0 3 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

W-test
1 13 15 15 15 15 15 15
0 2 0 0 0 0 0 0

−1 0 0 0 0 0 0 0
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Table 14: ,e results of all the algorithms on the multidimensional knapsack problems (MKPs).

Problem Algorithm Best Mean Worst Std t-Test W-test

10.500.0

AHLORL 113770.0 112515.5 111112.0 520.6 — —
HLORL 113392.0 111882.3 110844.0 508.9 1 1
IAHLO 103981.0 101229.4 99509.0 817.3 1 1
SCHLO 110985.0 109034.1 106690.0 819.4 1 1
SFPSO 105522.0 103397.3 99615.0 1083.6 1 1
BGWO 98719.0 94972.4 91396.0 1452.8 1 1
BAAA 109324.0 107065.6 102318.0 1361.2 1 1
IBDE 98658.0 95399.1 93779.0 932.2 1 1

10.500.1

AHLORL 115343.0 114185.3 112536.0 536.1 — —
HLORL 114829.0 113352.3 112249.0 510.1 1 1
IAHLO 104791.0 102300.2 99872.0 883.3 1 1
SCHLO 112654.0 110545.4 108797.0 880.0 1 1
SFPSO 107092.0 104492.1 101672.0 1032.7 1 1
BGWO 98755.0 95498.8 91153.0 1340.1 1 1
BAAA 111014.0 108443.1 104757.0 1118.7 1 1
IBDE 98355.0 95931.3 93363.0 1019.0 1 1

10.500.2

AHLORL 115115.0 114113.1 113027.0 482.8 — —
HLORL 114597.0 113382.7 112109.0 470.0 1 1
IAHLO 104090.0 102071.7 99972.0 799.1 1 1
SCHLO 112137.0 110417.4 108348.0 756.7 1 1
SFPSO 107126.0 104349.0 102060.0 1037.5 1 1
BGWO 98531.0 95154.7 91693.0 1459.0 1 1
BAAA 110563.0 108404.6 105710.0 1060.5 1 1
IBDE 98484.0 95936.1 93732.0 925.0 1 1

10.500.3

AHLORL 115177.0 113690.2 112607.0 501.9 — —
HLORL 114500.0 113000.5 111978.0 490.9 1 1
IAHLO 103401.0 101526.7 99638.0 783.1 1 1
SCHLO 111905.0 109826.5 107634.0 855.7 1 1
SFPSO 105730.0 103726.9 101340.0 910.6 1 1
BGWO 97955.0 95011.9 91703.0 1370.7 1 1
BAAA 110349.0 107690.8 104607.0 1147.7 1 1
IBDE 98176.0 95512.3 93028.0 986.6 1 1

10.500.4

AHLORL 112734.0 111477.5 110234.0 438.7 — —
HLORL 112142.0 110843.5 109754.0 488.2 1 1
IAHLO 102241.0 100001.5 97861.0 935.1 1 1
SCHLO 109843.0 108015.9 105552.0 859.6 1 1
SFPSO 105108.0 102428.1 99452.0 1134.1 1 1
BGWO 97090.0 93680.8 90287.0 1443.4 1 1
BAAA 108672.0 106086.9 103229.0 1054.5 1 1
IBDE 96521.0 93964.0 92109.0 981.0 1 1

10.500.5

AHLORL 115816.0 114534.9 113008.0 545.9 — —
HLORL 115172.0 113916.6 112556.0 466.1 1 1
IAHLO 103176.0 101530.9 100124.0 721.4 1 1
SCHLO 112958.0 110823.1 108643.0 943.8 1 1
SFPSO 107709.0 104292.7 102048.0 1154.5 1 1
BGWO 98901.0 94952.6 90938.0 1504.2 1 1
BAAA 110665.0 108352.3 105058.0 1003.0 1 1
IBDE 97354.0 94899.5 92461.0 1007.2 1 1

10.500.6

AHLORL 115971.0 114783.5 113426.0 486.1 — —
HLORL 115261.0 114186.3 112740.0 497.9 1 1
IAHLO 104943.0 102615.8 100549.0 828.7 1 1
SCHLO 113446.0 111451.9 109636.0 802.9 1 1
SFPSO 106527.0 105021.0 101896.0 994.4 1 1
BGWO 99483.0 95590.0 91570.0 1533.4 1 1
BAAA 111964.0 109092.6 106503.0 1107.5 1 1
IBDE 98693.0 95908.3 93870.0 1067.9 1 1
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Table 14: Continued.

Problem Algorithm Best Mean Worst Std t-Test W-test

10.500.7

AHLORL 114142.0 113243.2 112113.0 459.7 — —
HLORL 113305.0 112510.0 111271.0 420.6 1 1
IAHLO 103489.0 101443.4 99754.0 864.6 1 1
SCHLO 111576.0 109702.2 107436.0 883.5 1 1
SFPSO 105719.0 103562.6 100190.0 1078.6 1 1
BGWO 98657.0 94523.5 91059.0 1421.6 1 1
BAAA 109896.0 107575.2 104160.0 1096.9 1 1
IBDE 98332.0 95295.1 92864.0 959.8 1 1

10.500.8

AHLORL 113833.0 112635.4 111321.0 504.6 — —
HLORL 112964.0 112040.4 110359.0 508.3 1 1
IAHLO 103400.0 101125.5 99572.0 823.2 1 1
SCHLO 111031.0 109272.2 105571.0 924.4 1 1
SFPSO 105540.0 103384.4 100600.0 1019.1 1 1
BGWO 97854.0 94697.9 91237.0 1402.8 1 1
BAAA 109954.0 107151.7 103881.0 1249.5 1 1
IBDE 98882.0 95393.9 93069.0 1043.7 1 1

10.500.9

AHLORL 114983.0 114184.6 113012.0 434.7 — —
HLORL 114788.0 113580.5 112484.0 474.3 1 1
IAHLO 104168.0 102295.6 100085.0 786.6 1 1
SCHLO 112202.0 110479.1 108249.0 839.4 1 1
SFPSO 107208.0 104519.9 101627.0 1204.7 1 1
BGWO 98752.0 95404.3 91729.0 1425.1 1 1
BAAA 110823.0 108415.5 102170.0 1339.6 1 1
IBDE 98965.0 96162.1 94342.0 952.5 1 1

10.500.10

AHLORL 212879.0 211667.0 210108.0 515.8 — —
HLORL 212239.0 210406.5 208933.0 557.1 1 1
IAHLO 203992.0 201407.8 199591.0 784.8 1 1
SCHLO 209760.0 208011.5 205448.0 976.9 1 1
SFPSO 207024.0 203787.1 200739.0 923.2 1 1
BGWO 195031.0 189837.5 186272.0 1707.4 1 1
BAAA 209238.0 207181.9 204201.0 1040.1 1 1
IBDE 193836.0 190033.6 187542.0 1138.6 1 1

10.500.11

AHLORL 214822.0 213715.3 211772.0 516.5 — —
HLORL 214022.0 212461.0 211032.0 578.3 1 1
IAHLO 204449.0 202539.6 200745.0 720.4 1 1
SCHLO 212097.0 209782.1 208038.0 762.9 1 1
SFPSO 207488.0 205121.6 202628.0 933.2 1 1
BGWO 193401.0 190283.1 186498.0 1569.5 1 1
BAAA 211544.0 208978.8 206337.0 994.1 1 1
IBDE 192953.0 190320.0 188121.0 1074.3 1 1

10.500.12

AHLORL 213703.0 212376.1 211168.0 514.3 — —
HLORL 212398.0 211141.2 209222.0 580.3 1 1
IAHLO 204266.0 201329.4 199793.0 794.9 1 1
SCHLO 210798.0 208467.0 206135.0 978.1 1 1
SFPSO 206413.0 203802.0 201967.0 927.5 1 1
BGWO 192662.0 189101.0 186318.0 1504.8 1 1
BAAA 209650.0 207360.8 203869.0 1273.6 1 1
IBDE 191857.0 189242.2 187582.0 912.2 1 1

10.500.13

AHLORL 212625.0 211482.2 209900.0 489.5 — —
HLORL 211326.0 210310.1 209271.0 498.5 1 1
IAHLO 202212.0 200167.8 197838.0 820.2 1 1
SCHLO 209298.0 207633.1 205217.0 908.6 1 1
SFPSO 205407.0 202710.3 199971.0 1025.4 1 1
BGWO 191428.0 187601.5 183122.0 1731.4 1 1
BAAA 209058.0 206739.7 203571.0 1217.1 1 1
IBDE 191141.0 187978.1 185301.0 1135.0 1 1
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Table 14: Continued.

Problem Algorithm Best Mean Worst Std t-Test W-test

10.500.14

AHLORL 209743.0 208596.5 207667.0 460.2 — —
HLORL 208863.0 207382.8 206203.0 562.9 1 1
IAHLO 200131.0 198124.2 196529.0 849.1 1 1
SCHLO 206980.0 204761.5 202417.0 854.0 1 1
SFPSO 202602.0 200608.0 198290.0 996.2 1 1
BGWO 189680.0 186146.3 182509.0 1479.1 1 1
BAAA 206637.0 204316.4 200682.0 1035.2 1 1
IBDE 189184.0 186891.2 184202.0 1053.8 1 1

10.500.15

AHLORL 210871.0 209569.9 207919.0 564.3 — —
HLORL 209850.0 208598.7 206823.0 553.6 1 1
IAHLO 200124.0 198504.7 196616.0 782.2 1 1
SCHLO 208065.0 205853.3 203907.0 949.9 1 1
SFPSO 203250.0 200889.3 198190.0 920.7 1 1
BGWO 190424.0 186044.0 180941.0 1762.4 1 1
BAAA 207532.0 204522.0 201071.0 1296.2 1 1
IBDE 189469.0 186533.5 184525.0 1009.2 1 1

10.500.16

AHLORL 213979.0 212733.5 211607.0 447.9 — —
HLORL 212788.0 211584.1 210003.0 551.2 1 1
IAHLO 204257.0 201416.1 199614.0 884.6 1 1
SCHLO 210549.0 208953.1 206989.0 824.8 1 1
SFPSO 206749.0 204229.6 201470.0 989.1 1 1
BGWO 193898.0 188963.6 183804.0 1906.9 1 1
BAAA 210623.0 207895.1 204029.0 1334.9 1 1
IBDE 192404.0 189239.5 187040.0 1112.4 1 1

10.500.17

AHLORL 216086.0 214444.2 213022.0 584.7 — —
HLORL 214649.0 213125.9 212126.0 532.0 1 1
IAHLO 205296.0 203324.2 201504.0 818.6 1 1
SCHLO 212509.0 210242.7 208412.0 877.8 1 1
SFPSO 207927.0 205715.2 203416.0 837.5 1 1
BGWO 196171.0 191007.8 187060.0 1875.3 1 1
BAAA 212163.0 209648.1 206546.0 1139.5 1 1
IBDE 196214.0 191684.0 189545.0 975.8 1 1

10.500.18

AHLORL 210263.0 208878.4 207740.0 508.1 — —
HLORL 209673.0 207895.3 206792.0 488.9 1 1
IAHLO 200589.0 198119.2 195967.0 812.7 1 1
SCHLO 207557.0 205288.4 202595.0 866.1 1 1
SFPSO 203146.0 200614.0 198019.0 976.6 1 1
BGWO 190317.0 185829.2 181380.0 1766.6 1 1
BAAA 206481.0 204376.6 199841.0 1147.8 1 1
IBDE 189435.0 186275.1 184217.0 1009.3 1 1

10.500.19

AHLORL 216256.0 214914.9 213692.0 506.7 — —
HLORL 215023.0 213617.5 212300.0 590.9 1 1
IAHLO 206333.0 204386.1 201917.0 833.5 1 1
SCHLO 212876.0 210941.3 208463.0 978.6 1 1
SFPSO 209270.0 206606.9 203959.0 949.3 1 1
BGWO 195908.0 192282.2 188736.0 1445.6 1 1
BAAA 213062.0 210214.8 207258.0 1105.2 1 1
IBDE 195994.0 192959.8 191050.0 1064.3 1 1

10.500.20

AHLORL 302215.0 301298.5 300236.0 425.6 — —
HLORL 301585.0 300838.4 300115.0 366.4 1 1
IAHLO 292406.0 290153.6 288741.0 719.5 1 1
SCHLO 300292.0 298668.5 296817.0 656.6 1 1
SFPSO 294739.0 292406.7 290576.0 951.7 1 1
BGWO 287155.0 284406.9 281145.0 1408.7 1 1
BAAA 298427.0 296235.6 293445.0 882.2 1 1
IBDE 285664.0 283137.3 280969.0 1048.1 1 1
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Table 14: Continued.

Problem Algorithm Best Mean Worst Std t-Test W-test

10.500.21

AHLORL 300047.0 299211.0 298122.0 405.6 — —
HLORL 299638.0 298799.1 297873.0 327.1 1 1
IAHLO 289863.0 288335.8 286770.0 677.9 1 1
SCHLO 298287.0 296598.2 294000.0 740.7 1 1
SFPSO 292800.0 290481.4 287934.0 863.6 1 1
BGWO 286431.0 282791.7 279058.0 1648.1 1 1
BAAA 296665.0 294396.9 292360.0 880.0 1 1
IBDE 284002.0 281474.2 279179.0 928.3 1 1

10.500.22

AHLORL 300385.0 299216.8 298454.0 349.2 — —
HLORL 299515.0 298766.9 297999.0 330.4 1 1
IAHLO 291114.0 288994.8 286745.0 710.2 1 1
SCHLO 298391.0 296598.6 295026.0 688.5 1 1
SFPSO 292972.0 290987.8 288860.0 807.3 1 1
BGWO 287567.0 283495.6 280420.0 1557.7 1 1
BAAA 296630.0 294581.2 291335.0 951.9 1 1
IBDE 284770.0 282112.8 280297.0 954.0 1 1

10.500.23

AHLORL 298371.0 297631.9 296972.0 351.0 — —
HLORL 298305.0 297154.6 296254.0 402.6 1 1
IAHLO 288461.0 286591.8 284931.0 735.8 1 1
SCHLO 296509.0 295004.6 292914.0 646.8 1 1
SFPSO 291285.0 288761.1 285978.0 893.4 1 1
BGWO 284344.0 280812.0 277107.0 1410.5 1 1
BAAA 294646.0 292441.2 289923.0 930.5 1 1
IBDE 282517.0 279893.4 277913.0 991.9 1 1

10.500.24

AHLORL 301958.0 301178.2 300267.0 364.3 — —
HLORL 301937.0 300726.7 299962.0 397.6 1 1
IAHLO 291715.0 289829.9 287890.0 755.7 1 1
SCHLO 300078.0 298565.6 296701.0 757.8 1 1
SFPSO 293581.0 292161.5 289638.0 809.6 1 1
BGWO 287947.0 283995.3 280454.0 1566.0 1 1
BAAA 298585.0 295992.7 294506.0 837.1 1 1
IBDE 285550.0 283100.8 280529.0 1065.3 1 1

10.500.25

AHLORL 299260.0 298446.4 297617.0 335.9 — —
HLORL 298901.0 297980.0 297156.0 372.2 1 1
IAHLO 290256.0 288533.4 286662.0 759.2 1 1
SCHLO 297688.0 295979.4 294106.0 644.7 1 1
SFPSO 292616.0 290445.8 288062.0 867.3 1 1
BGWO 286462.0 283057.1 279369.0 1295.0 1 1
BAAA 295892.0 293902.7 290951.0 961.4 1 1
IBDE 285118.0 282043.4 279656.0 1006.0 1 1

10.500.26

AHLORL 303031.0 301745.0 301001.0 371.9 — —
HLORL 302049.0 301300.9 300374.0 361.9 1 1
IAHLO 293550.0 290964.8 289203.0 748.5 1 1
SCHLO 300923.0 299336.0 297649.0 609.4 1 1
SFPSO 295285.0 293236.9 290848.0 846.7 1 1
BGWO 288028.0 285192.2 280841.0 1441.5 1 1
BAAA 298930.0 296835.7 294529.0 877.2 1 1
IBDE 287349.0 283893.9 281788.0 1073.6 1 1

10.500.27

AHLORL 294409.0 293232.0 292501.0 378.3 — —
HLORL 293538.0 292822.7 291939.0 334.3 1 1
IAHLO 285759.0 283169.4 281179.0 759.5 1 1
SCHLO 292222.0 290747.6 289393.0 644.2 1 1
SFPSO 286925.0 285025.9 282668.0 858.5 1 1
BGWO 280920.0 277702.1 273044.0 1518.9 1 1
BAAA 290489.0 288805.8 287020.0 818.9 1 1
IBDE 279027.0 276672.2 273862.0 959.2 1 1
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generation number were set to 100 and 5000, respectively.
,e MKPs is a multiconstrained problem and the objective
of MKPs is to find out an optimal subset for the maximum

total profit and with multiple constraints, which is presented
as follows:

maxf x1, x2, . . . , xN( 􏼁 � 􏽘

N

j�1
pjxjs.t.

􏽘

N

j�1
rijxj ≤ ci, i ∈ 1, 2, . . . , M{ },

xj ∈ 0, 1{ }, j ∈ 1, 2, . . . , N{ },

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (14)

where N and M are the number of items and constraints,
respectively. pj stands for the profit of the j-th item, ci means
the capacity of the i-th knapsack, and rij represents the
weight of the j-th item in the i-th knapsack with capacity
constraint ci.

At the same time, previous work [47] demonstrates that
the penalty function method, called pCOR, has the best
results on solving MKPs, and therefore pCOR is used in this
paper which can be presented as follows:

pCOR(x) �
pmax + 1

rmin
× max CV(x, i){ }, (15)

CV(x, i) � max 0, 􏽘 rijxj−cj􏼐 􏼑, (16)

where pCOR(x) is the penalty coefficient used in the penalty
function for infeasible solutions, pmax is the maximum profit

coefficient, rmin is the minimum resource consumption, and
CV(x, i) is the amount of constraint violation for constraint i.

,e results of all algorithms on the multidimensional
knapsack problems (MKPs) are given in Table 14, where the
best solutions have been highlighted in bold. To analyze the
superiority of the AHLORL, the summary results of the t-test
and W-test are summarized in Table 15. From Table 14, the
proposed AHLORL has the best performance on the mul-
tidimensional knapsack problems (MKPs). Specifically,
AHLORL obtains the best numerical results on all the
problems, and the superiority of AHLORL is also reflected in
Table 15 where no algorithm is competitive to it.,erefore, it
can be concluded that the AHLORL algorithm is a promising
binary metaheuristic algorithm.

Based on the numerical simulation results on the
multidimensional knapsack problems (MKPs) and CEC 15

Table 14: Continued.

Problem Algorithm Best Mean Worst Std t-Test W-test

10.500.28

AHLORL 299442.0 298382.7 297751.0 347.8 — —
HLORL 298678.0 297848.4 296912.0 364.1 1 1
IAHLO 290118.0 287148.3 285486.0 739.9 1 1
SCHLO 297333.0 295810.7 293097.0 730.5 1 1
SFPSO 291563.0 289273.7 286573.0 932.5 1 1
BGWO 285815.0 281373.3 277453.0 1529.9 1 1
BAAA 295388.0 293188.0 290847.0 1029.9 1 1
IBDE 283464.0 280183.5 277694.0 1048.9 1 1

10.500.29

AHLORL 304836.0 303754.2 303009.0 351.8 — —
HLORL 304383.0 303361.8 302190.0 387.9 1 1
IAHLO 295204.0 292865.5 290276.0 872.5 1 1
SCHLO 303018.0 301395.3 299597.0 712.2 1 1
SFPSO 297197.0 294974.5 292606.0 958.2 1 1
BGWO 290420.0 286599.3 283284.0 1725.2 1 1
BAAA 300634.0 298845.4 296797.0 929.4 1 1
IBDE 289072.0 285729.0 283654.0 968.1 1 1

Table 15: ,e summary results of the t-test and W-test on the multidimensional knapsack problems (MKPs).

Metric AHLORL HLORL IAHLO SCHLO SFPSO BGWO BAAA IBDE

t-Test
1 30 30 30 30 30 30 30
0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

W-test
1 30 30 30 30 30 30 30
0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0
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benchmarks functions as well as the results of the parameter
study, it is fair to claim that AHLORL has overwhelming
advantages over previous HLO variants, as well as SFPSO,
BGWO, BAAA, and IBDE, because the proposed adaptive
strategy can exploit the optimization ability of SILO and
SRLO more effectively. And therefore, the optimization
search ability of AHLORL is significantly enhanced.

6. Conclusions and Future Work

,e SRLO and SILO are both important learning operators
for HLORL, which can play different roles and functions at
different stages during the search process. ,e reasonable
execution probability of SRLO and SILO can effectively
enhance the learning efficiency of the algorithm, and
therefore the learning performance is significantly im-
proved. Inspired by this, an improved adaptive human
learning optimization algorithm with reasoning learning is
proposed, and a new adaptive strategy is presented based on
the search requirements to utilize the optimization ability of
SILO and SRLO more efficiently and effectively.

A comprehensive parameter study is performed to
evaluate the influences of the proposed adaptive strategy. On
that basis, the analysis on each parameter is given and the
deep insights of the roles and functions of SRLO and SILO
are taken. ,en, the necessity for the adaptive ps strategy is
concluded. ,e comparison results of different adaptive
strategies demonstrate the efficiency and superiority of the
proposed AHLORL and reveal why the proposed adaptive
strategy can achieve the practically perfect trade-off between
exploration and exploitation at different search stages of the
algorithm. Finally, the experimental results show that the
proposed AHLORL outperforms the other algorithms in
terms of search accuracy and scalability.

It is well known that humans can adaptively choose and
adjust their strategies to solve problems more efficiently and
effectively, and the performance of AHLORL is also influ-
enced by the parameter pi, which determines the learning
probabilities of operating ILO and SILO. ,erefore, our
future work will focus on the relationship between pi and ps
and try to develop a cooperatively adaptive strategy for both
pi and ps to further balance the exploration-exploitation
ability and enhance the performance of the algorithm.
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