Hindawi

Scientific Programming

Volume 2022, Article ID 2302027, 10 pages
https://doi.org/10.1155/2022/2302027

Research Article

@ Hindawi

An Optimized Systematic Approach to Identify Bugs in

Cloud-Based Software

Shanmugasundaram Marappan ,! Archana Kollu ®,? Ismail Keshta®,}
Shehab Mohamed Beram (), Sahil Bhende (©,” and Karthikeyan Kaliyaperumal

'Department of Computer Science, College of Computer Science & Information Technology, Jazan University, Jizan, Saudi Arabia
’Department of Computer Engineering, Pimpri Chinchwad College of Engineering and Research Ravet, Pune 412101, India
*Computer Science and Information Systems Department, College of Applied Sciences, AlMaarefa University, Riyadh,

Saudi Arabia

*Research Centre for Human-Machine Collaboration (HUMAC), Department of Computing and Information Systems,
School of Engineering and Technology, Sunway University, Kuala Lumpur, Malaysia
°UBS Business Solutions (India) Pvt. Ltd., Nanakaramguda, India

°IT @ IoT-HH Campus, Ambo University, Ambo, Ethiopia

Correspondence should be addressed to Karthikeyan Kaliyaperumal; karthikeyan@ambou.edu.et

Received 19 July 2022; Revised 10 August 2022; Accepted 22 August 2022; Published 15 September 2022

Academic Editor: Punit Gupta

Copyright © 2022 Shanmugasundaram Marappan et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

The resolution of a software bug depends on the severity of the defect report. Open-source software defect tracking solutions have
taken over as the principal means of processing enormous amounts of defect information data due to the ongoing increase in
software scale. Dealing with software faults requires analyzing the implications of defect report severity in the data warehouse.
Thus, the authors have proposed an optimized systematic approach through the research and analysis of Bugzilla defect tracking
system data in this study, where it is found that the attribute characteristics of different projects are quite different and the
statistical features of the repair rate, resolution time, developers, components, and other attributes are consistent. This technique,
therefore, assumes that a rise in the severity of software defect reports will result in a rise in the defect repair rate and that the
severity is normally based on the severity distribution of various components and projects. According to the study’s findings,

developers hold the most defects when the repair rate is low and the defect resolution time is shortest.

1. Introduction

The major approach for ensuring software quality is severity
analysis of software defect reports, which is also an im-
portant signal for assessing, sorting, and assigning software
defect reports. Software errors rise in tandem with the
volume and complexity of software development. As a result,
software defect correction has become critical in the creation
and maintenance of software. Many manufacturers, such as
Bugzilla and JIRA, utilize defect tracking systems like
Bugzilla and JIRA to monitor and repair software bugs in a
fast, accurate, and effective way. At the same time, software

users and developers will utilize software defect reports to
explain different aspects of software faults [1]. Atlassian, an
Australian company, developed the tool JIRA. It is used for
project management as well as the bug and issue tracking.
The Mozilla Foundation developed a web-based bug
tracking program known as Bugzilla. Tracking Mozilla’s
initiatives, such as the Firefox web browser, is done using the
application. Defect tracking systems like Bugzilla and JIRA
are utilized by numerous manufacturers to quickly, pre-
cisely, and effectively monitor and fix software defects.
Software defect findings are employed by software users and
developers to describe various parts of software flaws at the

mailto:karthikeyan@ambou.edu.et
https://orcid.org/0000-0001-9431-4358
https://orcid.org/0000-0001-7375-1137
https://orcid.org/0000-0001-9803-5882
https://orcid.org/0000-0001-8534-9508
https://orcid.org/0000-0003-4475-1394
https://orcid.org/0000-0003-4705-1799
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/2302027

same time. The only difference that may favor Bugzilla over
the JIRA is that Bugzilla is preferable for small companies
where the start-up budget is low, while JIRA is a large ship
that fulfills every useful function necessary for the software
tracking system but it is complex in nature and, therefore,
used for complex projects.

Errors in the system’s setup settings are known as
configuration errors. Incorrect system states, such as system
breakdowns, performance declines, and other unexpected
system behavior, are frequent manifestations of configura-
tion problems.

The following categories can be used to group config-
uration challenges to tackle the errors according to their
characteristics and lack of tool support for troubleshooting
and tolerance: systems and configurations are both com-
plicated, making it challenging to guarantee accuracy. Log
messages are frequently missing, and users lack trouble-
shooting assistance, traditional fault tolerance, and recovery
methods are of little assistance. The severity of software
defect reports may indicate the extent to that faults have an
impact on software development and operation [2]. As a
result, the severity of the fault will have a direct impact on the
priority of defect repair and staff selection [3]. Defect as-
signment has become a necessary task in software defect
repair as a result of long-term data gathering that has
resulted in a vast defect report warehouse. The score for
flaws, during the dispatching step, is usually completed by
the developer. However, while sending the defect to the fixer,
the severity of the software defect report should be used to
establish the defect’s priority, and the degree of impact on
software development and operation should be stated [4]. As
a result, software defect severity prediction is a crucial
problem in software defect correction [5].

At present, artificial methods are used to predict the
severity of software defects, and there are the following core
problems:

(a) Data volume problem: there are many defect reports
submitted through the defect tracking system. For
example, Mozilla receives 135 defect reports per day
[6]. Therefore, the manual processing method will
significantly burden defect dispatchers and pro-
cessing personnel.

(b) Accuracy problem: due to the differences in the
professional level and experience of the defect re-
porters, the selection of defect severity varies sig-
nificantly during the submission process of the
defect report; so many reporters choose the default
severity during the report submission process.
Rating, or submitting an incorrect severity rating,
affects the severity prediction of defect reports.

Therefore, the software defect severity prediction is a
crucial problem in software defect correction, and the core
problems as discussed above mainly include the data volume
concern and the accuracy problem. Hence, due to the
presence of major concerns, this paper comprehensively
analyzes the relationship between the severity of software
defect reports and the report submitters, resolution time,

Scientific Programming

repair rate, components, and products by comparing the
defect report data of Mozilla products and Eclipse products
in the Bugzilla software defect tracking system relationship.
As the outcome of this study, it can be seen that by using
machine learning to analyze the data from software defect
reports and assess their severity, software defects can be
classified more accurately, their repair time for serious flaws
can be accelerated, and their repair rates can be increased to
ensure the effectiveness of software version iteration.

2. Related Works

Machine learning methods are often used in existing re-
search to anticipate the severity of new fault reports. To assist
developers in determining the severity of a particular fault,
Menzies and Marcus created the SEVERIS (Severity Issue
Assessment) technique [7]. To anticipate the severity of
problems, the SEVERIS method uses text mining and
combines it with the RIPPER rule learning algorithm. The
findings reveal that text mining and machine learning
methods are used to forecast fault severity. The authors
investigated whether problem severity could be predicted by
evaluating the text description of defect reports using text
mining and verifying it using the NB method [8]. Then, in
2011, they extended the previous work by conducting tests to
examine the influence of four machine learning algorithms,
including NB, MNB, KNN, and SVM, on predicting the
severity (severe or not) of software flaws [9]. The findings
reveal that the MNB algorithm outperforms other algo-
rithms in terms of performance and efficiency. To forecast
the severity of fresh defect reports, the authors used in-
formation retrieval methods, particularly the BM25-based
text similarity algorithm and the KNN algorithm. This
technique outperforms the SEVERIS algorithm in terms of
prediction accuracy the author has created and applied CP, a
novel text classification approach, to estimate the severity of
defect reports in 2015 [10].

Data mining methods are then used to predict false
positives with a lower false-positive rate. Literature has
proposed a formal privacy analysis method based on static
taint analysis to simplify the design and review process of
high-level privacy properties of software architectures [11].
Literature obtained second order database access informa-
tion flow through string analysis of database, filename, and
session variables, which can detect second order SQLIA and
multiorder vulnerabilities the proposed PHP (hypertext
preprocessor) static analysis framework, which can auto-
matically parse the standard features of dynamic languages,
independently define the value and heap analysis of dynamic
languages, and automatically combine them to find actual
security vulnerabilities [12]. The positive rate is low. Liter-
ature developed a highly modular static analysis framework
SCALA-AM, which achieves modularity by separating op-
erational semantics, can be extended to support multiple
languages, including numerous machine abstractions, and
can be implemented in different pollution analysis on-de-
mand programs [13]. Literature has innovatively grown the
data flow analysis framework into a sparse form. They used
the light optimization method to eliminate the unrelated

Scientific Programming

taint propagation in static taint analysis to optimize the time
and space overhead and did not realize the aliasing between
aliases: substantial updates and precise computation of
conserved subdomains [14]. Literature has proposed and
implemented a taint analysis method based on offline
indexing of execution traces. Taking bytes as the granularity,
the problem of taint loss caused by instant translation ex-
ecution was described and solved for the first time [15].
Literature has implemented a novel approach to static taint
analysis that is accurate and scalable, treating taint analysis
as a demand-driven problem that only computes vulnerable
information flows instead of computing complete data flow
solutions. Requirement-driven tracking and computation of
weak information flow improve the accuracy and efficiency
of the analysis while scaling the analysis to large codebases
[16].

Dynamic taint analysis detects whether the data comes
from an untrusted external input immediately when the
program is executed and sees whether the data can be
propagated from the taint source to the taint convergence
point by monitoring the spread of the taint data of the
program in the system program in real-time. Literature
developed a dynamic integrity contamination analysis
model for Java, which addresses the imperfect sanitization
problem in an in-depth approach, combined with antici-
patory and retrospective measures, which is a forward-
looking recognition of sanitization results [17]. The case of
retrospective contamination is wholly sterilized, which well
avoids the appearance of false positives, but the model
scalability needs to be strengthened and developed. As per
the study, the authors have developed a binary dynamic taint
analysis tool called Sword DTA to maximize the detection of
software vulnerabilities. This tool is suitable for both
hardware and software. It finds vulnerabilities through
vulnerability modeling and taints checking. It has a good
effect on buffer overflow, integer overflow, division by zero,
UAF (used after free), and other vulnerabilities. Still, it has a
good impact on different types of vulnerabilities [18].
Moreover, there are numerous approaches available for
ensuring software quality in software development, such as
quality management approach, formal technical analysis,
multi testing strategy, effective software engineering tech-
nology, measurement, and reporting mechanism. Several
examples are CloudQA, Akamai CloudTest AppPerfect,
CloudSleuth, Nessus, Wire shark, etc. Along with this,
software quality assurance provides several benefits and
limitations such as generating standard quality software,
saving time and cost, low maintenance for a longer time, and
improved process creation, and the limitations include in-
corporating multiple resources, hiring more employees for
quality maintenance, etc.

The exposure is temporarily powerless, and the path
coverage is not high. Literature has provided a platform-
independent dynamic taint analysis for JavaScript, encoding
the taint propagation process as abstract machine instruc-
tions and executing these instructions to get a taint flow
report about the applicant but without tracking the implicit
flow; moreover, the taint propagation strategy is not flexible
enough and does not support user-defined operations.

The contributions of this paper mainly include the
following aspects:

(1) Introduce and analyze the statistical characteristics
of the bug report data warehouse of the Bugzilla bug
tracking system in the Mozilla project and Eclipse
project.

(2) The probability that developers fix bugs decreases
with the increase in the number of bug reports.

(3) Through the analysis of the severity of the defect,
reports of the two projects, the repair rate, repair
time, repairers, and other factors, the correlation of
the data between the projects is obtained.

3. Overview of Bugzilla, an Open-Source Bug
Tracking System

Mozilla Corporation created and maintains Bugzilla, an
open-source bug tracking system. The plan creates a com-
prehensive defect tracking system for users by recording and
tracking software defects, as well as providing services such
as defect submission, assignment, repair, and closure across
the entire software. The bug tracking tool Bugzilla enables
developers to monitor still open issues on their products. It
uses MySQL and is coded in perl. Although Bugzilla is a tool
for recording defects, it can also be used to manage tests and
may thus be readily integrated with other test case man-
agement platforms like quality center, etc. It is simple to use
and get to Bugzilla. Criteria for finding bugs are extremely
effective. It is helpful to rename and save each bug search
thread. The user interface for listing issues, particularly the
ability to modify columns and edit searches, is quite helpful.
The navigation to various screens in Bugzilla can be sluggish
at times, with less customized options. Additionally, the UI
and UX of Bugzilla appear to be out of date and in need of an
update. Furthermore, there are not many plugins available,
which is a problem.

Users’ software defect reports have a complete life cycle,
as shown in Figure 1. When the user confirms and submits
the defect report, the report status is set to the uncertified
state (unconfirmed); when the developer accepts the defect,
it becomes the certified state (confirmed); if the developer
can directly solve the fault, the defect report will be changed
to the resolved state (resolved); if it cannot be decided, it will
enter the dispatching process, and the defect state will be
adjusted to be repairing (in progress). Repair; after the repair
is completed and confirmed, it reaches the verified state
(verified); when the developer approves the solution of the
defect report to be correct, the report status becomes re-
solved, and the information is closed at the same time; when
the message needs to be repeated when opened, the
reporting status is adjusted to reopened [19].

In the dispatching process, the severity attribute of the
defect (severity) is mainly used to determine the defect repair
sequence and repair personnel. Suppose the data flow
analysis is performed directly and simply with each pair of
source and sink. In that case, it will waste computing re-
sources because there is no executable path between many
sources and sinks.

Scientific Programming

UNCONFIRMED \
CONFIRMED \
IN_PROGRESS
v
RESOLVED —
v
VERIFIED

FIGURE 1: Software defect tracking process diagram [9].

According to the location of the source and sink in Web
applications and the characteristics of cross-file propagation,
this paper proposes a multimatching preprocessing method,
which first excludes source and sink pairs that cannot have
executable paths before performing complex data flow
analysis. This reduces unnecessary resource consumption.

The multiple matching preprocessing methods include
four submethods, which are given as follows:

(a) Exact method matching

(b) Exact Request information matching
(c) Session information matches

(d) Method parameters match

All these methods are classified independently as follows:
(1) exact method matching, the same method of judging
whether source and sink are located in the same file; (2) exact
request information matching, judging whether source and
sink can return values according to the get method of the
exact request information matches with set method pa-
rameters; (3) session information matches, judges whether
source and sink can be matched through the attributes of the
session object; and (4) method parameters match, judges
whether source is passed to the method of sink as a pa-
rameter of the method call statement. Currently, match
methods can support the constant propagation of request
and session object properties.

In addition, for a successfully matched source and sink
pair, if the source is not native, the native source mapped by
the source needs to be checked with the sink.

3.1. Mozilla Project Defect Tracking System. When a defect
report is submitted, the necessary attributes are generally
marked. For example, the defect report numbered 35 in-
cludes the status, author, time, defect description, severity
level after the account is submitted, and detailed attribute
information contained in each part. The report ID is 35, and
the title is “navigator does not free preference hash table
when exiting.” The report was written and last updated on
March 1, 2018. The product targeted by the information is
MozillaClassic, the component is XFE, and the severity level
is “minor.” According to Bugzilla’s fix log, the report was
assigned only once between 1998 and 2018 to Chris McAfee,

who revised the account on December 12, 1998, with
“verified” status [20].

3.2. Eclipse Project Defect Tracking System. When a defect
report is submitted, the necessary attributes are generally
marked, for example, the defect report information of
Eclipse with ID 30. The report is titled “[CVS Core] serv-
er.CVS ignore files should be considered by the client.” A
report authored by Jean-Michel Lemieux and last updated
May 6, 2009. The product targeted by the information is a
platform, the component is a team, and the severity level is
average. According to Bugzilla’s fix record, the report was
fixed by nine people between 2001 and 2009, the report
authors assigned the object Platform VCm-Inbox, and the
fix was completed on May 6, 2009 [21].

4. Impact of Project Attributes on the Severity of
Defect Reports

In collecting user reports, the Bugzilla defect report pro-
cessing system will mark the content of the information with
a severity rating, which determines the processing priority of
the word and affects the defect processing time and repair
rate, and other characteristics. The severity of the defect
report is divided into seven levels, from high to low, blocked,
critical, major, standard, minor, trivial, and enhancement,
where every day is the default level when the defect report is
submitted. It is also the most selected by the user in pre-
senting the information. Mozilla and Eclipse projects’ at-
tributes accounted for 73.92% and 67.02%, respectively. The
life cycle of developing software inevitably includes defects.
No code is ever written effectively on the first try. It is
important to find, note, and fix bugs, irregularities, and
errors. Therefore, extensive testing and optimization are
needed to provide a strong software product. A variety of
bugs include which can tamper with the functioning of the
program called functional bugs, or which can disrupt the
normal workflow as workflow bugs, similarly, they may
include logical bugs, bugs in unit level and system level
integration, etc. Depending upon their severity levels, as can
be seen, defect reports with higher severity have a bigger
impact on software functionality. Developers will, therefore,
pay more attention to these software problems, and as a

Scientific Programming 5
TaBLE 1: Bug reports [7].
Severity Quantity % of all defect reports Number of resolved Proportion of reports resolved at this level/%
Blocker 15576 2.14 14458 99.12
Critical 86194 7.9 79239 95.18
Major 85594 6.84 78874 95.45
Minor 46231 4.79 44136 88.84
Normal 895328 84.27 796 968 88.99
Trivial 19615 2.56 19316 93.12
Enhancement 66537 6.5 52100 77.87
result, their rate of rectification will increase. On the other 1400 -
hand, less serious software faults are less likely to be fixed 1200 |
1 s o
and have little impact on performance. E 1000
g 800 -
.) . . E 600 -
4.1. Mozilla Project Bug Report Properties and Severity Levels é 400
2]
~
4.1.1. Relationship Analysis 200 +
(1) The impact of defect severity on the pace of defect 0-— — - — = —
. . < < <
repair: the total number of defect reports with an 2 2 = E 2 &
average severity level recorded in this study in the = S : = e -

Mozilla project is 885,328, accounting for more than
73% of all defect reports. The blocker-level defect
reported with the greatest severity, on the other
hand, is just 1.14%. Table 1 shows the percentage of
bug reports with severity levels.

Defect reports of higher severity have a greater in-
fluence on software functionality, as can be observed.
As a result, developers will pay greater attention to
such software flaws, and their rate of correction will
rise as a result. Software flaws of lesser severity, on
the other hand, have minimal influence on software
performance and have a low repair rate.

(2) The impact of the severity of the defect report on the
defect resolution time because the resolution time is
one of the essential characteristics of the defect re-
port, which states the total time taken by the software
to resolve the errors/bugs. Therefore, this experiment
compares and analyzes the average resolution time of
bug reports of different severity in the Mozilla
project, and the results are shown in Figure 2 with
Table 2. The average resolution time of all defect
reports collected in the experiment was 772 days; the
resolution time of the blocker-level defect report
with the highest severity was 1,083 days; the reso-
lution time of the enhancement-level defect with the
lowest severity was 1,240 days; the resolution time
for defects with an ordinary degree is shorter than
the average resolution time because the defect with
the ordinary degree can be resolved quickly com-
pared to the defects with the higher severity degree;
and for defects with a non-normal severity, the
resolution time is longer than the average resolution
time.

It can be seen that software defects with an average
severity level will be solved by developers first; de-
fects with higher severity levels are more challenging
to solve, resulting in longer resolution time; defects

enhancement

Security Level

FIGURE 2: The resolution time chart of defect reports of different
severity levels.

TaBLE 2: The resolution time chart of defect reports of different
severity levels [8].

Blocker Critical Major Normal Minor Trivial Enhancement

1100 907 1016 679 1060 1001 1240
90 -
80 -
70 -
60 - = |
%
% 50 \\
A 40
30
20 - /
10
0
s &8 & g g 3
o5 = o it = S
= 2 g € g3
) S g
Serial
—— already fixed —— unfixable
—— repeat Incomplete information
—— can't reproduce invalid
— illegal remove

FIGURE 3: Proportion of the developer’s solution to the defect.

6 Scientific Programming
TaBLE 3: Proportion of the developer’s solution to the defect.
Serial Already fixed Repeat Can’t reproduce Illegal ~ Unfixable Incomplete information Invalid Remove
[5, 10) 10 12 14 16 18 20 10 80
[10, 50) 20 22 24 26 28 30 15 75
[50, 100) 30 32 34 36 38 40 20 70
[100, 500) 40 42 44 46 48 50 25 65
[500, 1000) 50 52 54 56 58 60 30 60
1000+ 45 47 50 52 54 56 27 65

3)

(4)

with lower severity levels are not given much at-
tention high, resulting in a longer resolution time.

The impact of developer support on the defect repair
rate

Through the analysis of software defect reports of
Mozilla products, it is found that there is a close
relationship between the holder of the report (de-
veloper) and the repair rate of the report. There are
8,497 developers in this project, of which 3,505 hold
more than 5 bug fixes. This paper divides these
developers into 6 categories, 0~5, 5~10, 10~50,
50-100, 100-500, 500-1,000, and more than 1,000
defect reports. Since the repair rate of developers
with less than 5 defect repair jobs is not high, this
part of the data are not compared in this experiment.

This experiment analyzes the fixed rate of bug reports
held by Mozilla project developers. As shown in
Figure 3 of Table 3, with the increase in the number
of defect reports held by developers, the reported
repair rate dropped significantly from 77.22% to
52.40%; the solution duplication rate increased from
5.05% to 18.31%, and the irreproducible rate in-
creased from 5.81% It increased to 18.02%, and the
changes in attributes such as illegal, irreparable, and
incomplete information were all within 10%; from
the perspective of the severity of reports, the
reporting ratio of critical and significant levels held
by developers increased by 1.16 times (from 11.51%
rose to 24.91%), the repair rate is constantly de-
creasing, the solution repetition rate and the irre-
producible rate increase slightly, and the attributes of
illegality, irreparability, and incomplete information
also increase somewhat with the overall curve.

In the report distribution process, the higher the
repair rate, the higher the probability of obtaining
the report, and the higher the probability of getting
the report with greater difficulty. As a result, de-
velopers with more words have lower report repair
rates.

The impact of defect report severity on the repair rate
of software components by analyzing the severity
distribution of 16 members with more than 10,000
defect reports in Mozilla. It is found that among the
defect reports for each element, the number of defect
reports with a severity level of standard is the largest
by counting the distribution of bug reports for
different components of Mozilla. Mozilla has 1,936

TETEITEZSLLTESEEE
U Bp © L 7 v & v o T
c B FREEZE S S ER S b
Umd.)’_lﬁ)'_' © 5 N Vs e O O g
&) O OoOR T EIL E£E0E OO0 RF
D = U) “UO?SD o= e T
ot g %o‘}_{ w2 . &o D
X O o = - S L oo = W oy
£4585%8 0% x50 % 2 &
L = o o - X f=
558§ T2 O0OE<LZS @ 5 g ¢
=S < 0 < 28R B e £
=] =8 Qg g 5
o O = 2 S W 5 o
23 S & 22 g o = 5
3 w2 : Es B
S = ®) @
S S o z > 51
= o 4 o]
e = s 4

g = ¢

= 20

‘23 S

<

s =

%)

g

=

-

3

w

—— Number of defect reports
—— Repair rate

FIGURE 4: Distribution of the number of defect reports and repair
rates for different components.

parts covered in bug reports. As shown in Figure 4 to
Table 4, the repair rate of defect reports of various
features varies greatly. For example, the repair rate of
the server operations component is the highest,
reaching 85.94%; the repair rate of the untrained
element is the lowest, only 0.84%.

According to the severity distribution of defect reports
corresponding to other members, there are significant dif-
ferences in the severity levels of defect reports for various
parts. The main reason is that the proportion of words with
different severity levels fluctuates wildly in each element. For
example, in the server operations component, the blocker
level reports account for the most significant proportion,
resulting in the highest repair rate; in the untrained part, the
average level reports account for the essential proportion,
resulting in the lowest repair rate. In addition, it shows that
the repair rate will increase with the increase in severity.

Scientific Programming

TaBLE 4: Distribution of the number of defect reports and repair rates for different components.

Serial

Number of defect reports

Repair rate

Firefox::General

Core::JavaScript engine
SeaMonkey::General

Core::Layout

Firefox for Android::General
SeaMonkey:MailNews:Message display
Core:DOM

Core::Graphics

FireFox::Bookmarks & history
FireFox::Untriaged
www.mozilla.org::General
Servmozilla.org Graveyard::Server operationser
Core:XUL

Thunderbird::General

Release Engineering::General
Core::Plng-ins

0.1 1
0.2 5
0.3 1.2
0.4 3.3
0.5 4
0.6 4.5
0.7 5
0.8 4.8
0.9 4.5
1 4
11 55
1.2 6
1.3 5.5
1.4 2.5
1.5 3
1.6 3.5

TaBLE 5: Distribution of defect reports of different severity levels in eclipse projects.

Severity Quantity % of all defect reports Number of resolved Proportion of reports resolved at this level/%
Blocker 14559 2.14 14440 99.22
Critical 83030 7.88 79136 95.35
Major 82512 7.84 78808 95.56
Minor 46158 4.79 41086 88.87
Normal 891 298 83.93 75155 88.88
Trivial 19603 2.56 17408 93.84
Enhancement 66439 6.49 51152 78.21

4.2. Eclipse Project Defect Report Attribute and Severity Level
Relationship Analysis
(1) Influence of defect report severity on repair rate In

Eclipse projects, the number of normal-level reports
with default severity of defect reports accounted for
67.02% of the total number of reports. Only 1.54% of
the blocker-level bug reports with the highest se-
verity were reported. Table 5 shows the resolution of
defect reports with different severity levels. The
blocker level and critical level defects with the
highest severity level are resolved by more than 95%.

The number of cases in which software defects of
varying severity are resolved, it can be seen from the
quantitative distribution that the severity level is an
enhancement level of the bug reports that were fixed,
the highest percentage was fixed low, about 60%; the
highest proportion of defect reports is invalid,
reaching 18%. It can be seen that the repair rate of
defect reports with higher severity is more minor
than the quality of software products and has a more
significant impact, and the repair rate is higher than
more serious low but reports have a lower fix rate.

(2) Influence of defect report severity on defect reso-

lution time since defect resolution time is one of the
main attributes of defect reports; this paper analyzes
the relationship between resolution time and severity
level according to the specific situation of the Eclipse
project. Figure 5 to Table 6 shows the distribution of

average resolution time corresponding to defect
reports of different severity in the Eclipse project. On
the overall trend, as the severity level decreases, the
average resolution time for defect reports gradually
increases. For example, the blocker level with the
highest severity reported an average resolution time
of 45 days. The enhancement level with the lowest
severity said an average resolution time of 441 days.

It can be seen that defects with an average severity
level will be resolved first and thus have a shorter
resolution time. On the other hand, defects with
higher or lower severity are affected by the difficulty
and importance of resolution, resulting in increased
resolution time.

(3) The influence of developers on the defect repair rate

Two thousand six hundred twenty-four developers
participate in Eclipse defect repair on the Bugzilla
platform. Users with less than five defect reports are
the most, accounting for about 35% of the total users.
According to developers’ number of bug reports,
developers are divided into 6 categories.

(4) Influence of defect report severity on software

component repair rate because project component is
one of the essential attributes of a defect report, this
experiment analyzes the distribution of defect re-
ports for different parts of Eclipse products. The total
number of components for an Eclipse project is 782.
According to the distribution of defect reports, the

500
450
400
350
300
250
200
150
100

50

Resolution Time

blocker
critical
major
normal
minor
trivial

enhancement

Security Level

FiGuRre 5: Distribution of the resolution time of each severity level
defect report.

TaBLE 6: Distribution of the resolution time of each severity level
defect report.

Blocker Critical Major Normal Minor Trivial Enhancement

50 80 140 180 260 160 450

data of the top 10 members with the most significant
number of defect reports were selected for analysis.
As shown in Figure 6, the repair rate of each
component defect reported is higher than 80%, and
the repair rate of the TPTP component is the highest,
reaching 99.82%.

Furthermore, the various means to optimize the cloud
server are detailed here as planning and strategy, evaluation
of cost optimization, optimization of spot instances and
containers, Cloud Auto-scaling, concentrating on managing
cases, make the switch to new cloud deployment models. Do
not forget to use cloud optimization tools and services,
forecasting, modeling, and analytics, as well as optimize
cloud storage.

By giving more resources to a workload than necessary,
many enterprises frequently experience overspending in the
cloud. For your cloud infrastructure and your corporation,
integrating cloud optimization strategies can have a number
of significance, including the following.

Efficiency in the cloud: it is attained when workload,
performance, compliance, and cost are continuously
weighed against the best-fit infrastructure in real-time.
Utilizing cloud optimization techniques will improve the
performance of your cloud environment by reducing re-
source waste as much as feasible. Cost savings: although
there are many other types of cloud optimization, for many
firms, cost optimization is the most crucial one. Costs are
decreased as a benefit of lowering cloud waste.

Greater visibility: analytics is used in cloud optimization
strategies to increase visibility into your cloud environment.
Enhanced productivity: after implementing a cloud opti-
mization plan, personnel will spend less time attempting to
resolve issues because an optimized environment stops the
issues before they start.

Scientific Programming

10
-
9
£~ 8
LS 7
<= 6
@
5
5% 1
Eg 3
5 = 2
Z 1
0
— 3] = o0 + [5] @« —
5 5 £ 2 8 g EE PO
O » 2 B8 9 3 g
A £ o @
S)
O
Component
—— Quantity
—— Repair Rate

FiGure 6: Distribution of defect reports and repair rates for dif-
ferent components.

90 -
80 -
70 -
60 - -]
50 -
40 -

30 4 /
20 4 /

A
|

Defects

|

10 A
0
=) S S S 5
=~
= st S S S =
N . = st S =
) =) - = S
— — (=] (=} -
— L o (=4
0, S =
-)
Serial
—— Fixed —— Worksforme
—— Wontfix Not_Eclipse
—— Duplicate Moved
—— Invalid

FIGURE 7: Proportion of solutions for developers to solve defects.

Organizational innovation and efficiency: implementing
cloud optimization frequently results in a culture trans-
formation within firms, leading to better teamwork and
decision-making.

5. Discussion and Findings

The defect repair rates of developers with various numbers of
defects are counted in this study, as illustrated in Figure 7
and Table 7. Defect repair rates range from 80.11% when
there are fewer than five defects to 49.75% when there are
more than 1,000 defects. Additionally, the scheme’s repe-
tition rate increased from 3.87% to 18.69%, its non-
reproducibility rate increased from 2.43% to 10.18%, and the
amount of illegal, irreparable, and incomplete information
increased by 10%. The aforementioned phenomenon
demonstrates how a spike in developers’ problem reports
will lower their rate of correction.

According to the severity of defect reports corre-
sponding to different components, it can be seen that among

Scientific Programming 9
TaBLE 7: Proportion of solutions for developers to solve defects.

Serial Fixed Wontfix Duplicate Invalid Worksforme Not_Eclipse Moved
[5, 10) 20 14 12 16 12 18 80
[10, 50) 30 24 22 26 22 28 83
[50, 100) 40 34 32 36 32 38 85
[100, 500) 50 44 42 46 42 48 75
[500, 1000) 60 54 52 56 52 58 70
1000+ 56 50 47 52 47 54 65
the members, the defect reports with the severity level av- Data Availability

erage level account for the most significant proportion; in
the test and performance tools platform (TPTP) component
such as Bugzilla introduced in this study is a software bug
tracking tool. TPTP components used for the blocker level
defect reports with the highest severity level account for the
most critical balance of TPTP components as a result of the
experimental analysis, which has been proven in Figure 6.
Therefore, make it the highest fix rate; the lowest severity
enhancement level defect reports have the most important
proportion in the text component, resulting in the lowest fix
rate. It can be seen that the severity levels of defect reports of
different components are consistent. The defect repair rate is
higher for the higher severity level, and the defect repair rate
for the element with more high-severity defects is also
higher.

6. Conclusion

The maintenance of expansive open-source projects now
requires an accurate, thorough, and effective assessment of
the severity of defect reports. The software defect report
warehouse may be swiftly and uniformly managed using the
defect report management solution. The authors in this
study systematically analyzed the defect report repositories
for Mozilla products and Eclipse products using the Bugzilla
defect report management tool. It is expected that the release
of a new version of the product will result in an increase in
the number of software defect reports; the severity of these
reports will draw developers’ attention to software defects,
increasing the defect repair rate and cutting down the
amount of time it takes to fix software defects development.
A user’s fix rate is independent of the number of bug reports
they have. The abovementioned rules are supported by
various product components. According to the aforemen-
tioned statistical findings, it is clear that using the machine
learning method such as random forest approach, bagging
approach, SVM approach, Bayesian classification tech-
niques, and neural network techniques. To assess the severity
of software defects, reports and classifying their data can
increase the classification of software defects’ accuracy, and
its seen among all ML approaches, the most efficient one is
random forest and bagging approach, therefore, these ma-
chine learning methods significantly reduce the amount of
time needed to fix serious flaws and increase the rate at
which defects are fixed, all of which will ensure the effec-
tiveness of software version iteration. In the future, more in-
depth research will be carried out to predict the severity of
defect reports across projects.

The data shall can be obtained from the corresponding
author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] B. Zhou, I. Neamtiu, and R. Gupta, “Experience report: how
do bug characteristics differ across severity classes: a multi-
platform study,” in Proceedings of the 2015 IEEE 26th Inter-
national Symposium on Software Reliability Engineering
(ISSRE), IEEE, Gaithersbury, MD, USA, November 2015.

[2] Q. Liu, H. Washizaki, and Y. Fukazawa, “Adversarial multi-

task learning-based bug fixing time and severity prediction,”

in Proceedings of the 2021 IEEE 10th Global Conference on

Consumer Electronics (GCCE), pp. 185-186, Kyoto, Japan,

October 2021.

Y. Jia, X. Chen, S. Xu, G. Yang, and J. Cao, “EKD-BSP: bug

report severity prediction by extracting keywords from de-

scription,” in Proceedings of the 2021 8th International

Conference on Dependable Systems and Their Applications

(DSA), IEEE, Yinchuan, China, August 2021.

[4] K. Vijayakumar and V. Bhuvaneswari, “How much effort
needed to fix the bug? A data mining approach for effort
estimation and analysing of bug report attributes in Firefox,”
in Proceedings of the 2014 International Conference on In-
telligent Computing Applications, IEEE, Coimbatore, India,
March 2014.

[5] A.F.Otoom, D. Al-Shdaifat, M. Hammad, and E. E. Abdallah,
“Severity prediction of software bugs,” in Proceedings of the
2016 7th International Conference on Information and Com-
munication Systems (ICICS), IEEE, Irbid, Jordan, April 2016.

[6] A. Kaur and S. Goyal Jindal, “Severity prediction of bug re-
ports using text mining: a systematic review,” in Proceedings of
the 2018 International Conference on Advances in Computing,
Communication Control and Networking, pp. 774-780,
ICACCCN), Greater Noida, India, October 2018.

[7] A. Mehbodniya, J. L. Webber, M. Shabaz, H. Mohafez, and
K. Yadav, “Machine learning technique to detect sybil attack
on IoT based sensor network,” in IETE Journal of Research,
pp- 1-9, Informa UK Limited, 2021.

[8] A. Kaur and S. G. Jindal, “Bug report collection system
(BRCS),” in Proceedings of the2017 7th International Con-
ference on Cloud Computing, Data Science & Engineering -
Confluence, IEEE, Noida, India, January 2017.

[9] L. Kumar, M. Kumar, L. B. Murthy, S. Misra, V. Kocher, and
S. Padmanabhuni, “An empirical study on application of word
embedding techniques for prediction of software defect se-
verity level,” in Proceedings of the Annals of Computer Science

[3

10

and Information Systems. 16th Conference on Computer Sci-
ence and Intelligence Systems, IEEE, Sofia, Bulgaria, September
2021.

[10] Y. Tian, D. Lo, and C. Sun, “DRONE: predicting priority of
reported bugs by multi-factor Analysis,” in Proceedings of the
2013 IEEE International Conference on Software Maintenance,
IEEE, Eindhoven, Netherlands, September 2013.

[11] T. Gera, J. Singh, A. Mehbodniya, J. L. Webber, M. Shabaz,
and D. Thakur, “Dominant feature selection and machine
learning-based hybrid approach to analyze android ran-
somware,” in Security and Communication Networks,]. Cui,
Ed., vol. 2021, pp. 1-22, Hindawi Limited, Article ID 7035233,
2021.

[12] Q. Umer, H. Liu, and Y. Sultan, “Emotion based automated

priority prediction for bug reports,” in IEEE Access, vol. 6,

pp- 35743-35752, Institute of Electrical and Electronics En-

gineers (IEEE), 2018.

S. Ognawala, M. Ochoa, A. Pretschner, and T. Limmer,

“MACKE: compositional analysis of low-level vulnerabilities

with symbolic execution,” in Proceedings of the 31st IEEE/ACM

International Conference on Automated Software Engineering.

ASE’16: ACM/IEEE International Conference on Automated

Software Engineering, ACM, Singapore, September 2016.

Y. Lei, S. Vyas, S. Gupta, and M. Shabaz, “Al based study on

product development and process design,” in International

Journal of System Assurance Engineering and Management,

vol. 13, no. Issue S1, pp. 305-311, Springer Science and

Business Media LLC, 2021.

[15] T. Liu, R. Neware, M. W. Bhatt, and M. Shabaz, “A study on

detection and defence of malicious code under network se-

curity over biomedical devices,” in The Journal of Engineering,

Institution of Engineering and Technology (IET), 2022.

G. Yang, T. Zhang, and B. Lee, “Towards semi-automatic bug

triage and severity prediction based on topic model and multi-

feature of bug reports,” in Proceedings of the 2014 IEEE 38th

Annual Computer Software and Applications Conference,

IEEE, Vasteras, Sweden, July 2014.

P. Rattan, M. Arora, M. Rakhra et al., “A neoteric approach of

prioritizing regression test suites using hybrid ESDG models,”

Annals of the Romanian Society for Cell Biology, vol. 2965,

2021, https://www.annalsofrscb.ro/index.php/journal/article/

view/2838.

X. Xia, D. Lo, E. Shihab, and X. Wang, “Automated bug report

field reassignment and refinement prediction,” in IEEE

Transactions on Reliability, vol. 65, no. Issue 3, pp. 1094-1113,

Institute of Electrical and Electronics Engineers (IEEE), 2016.

[19] K. K. Chaturvedi and V. B. Singh, “Determining Bug severity
using machine learning techniques,” in Proceedings of the 2012
CSI Sixth International Conference on Software Engineering
(CONSEG), IEEE, Indore, India, September 2012.

[20] L. Kumar, P. Gupta, L. B. Murthy et al., “Predicting software
defect severity level using sentence embedding and ensemble
learning,” in Proceedings of the 2021 47th Euromicro Con-
ference on Software Engineering and Advanced Applications
(SEAA), IEEE, Palermo, Italy, September 2021.

[21] 1. Alazzam, A. Aleroud, Z. Al Latifah, and G. Karabatis,
“Automatic bug triage in software systems using graph
neighborhood relations for feature augmentation,” in IEEE
Transactions on Computational Social Systems, vol. 7, no. Issue
5, pp- 1288-1303, Institute of Electrical and Electronics En-
gineers (IEEE), 2020.

[13

(14

(16

(17

(18

Scientific Programming

https://www.annalsofrscb.ro/index.php/journal/article/view/2838
https://www.annalsofrscb.ro/index.php/journal/article/view/2838

