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With the rapid development of society, the risk management of personal health and assets has become an important content that
cannot be ignored in all walks of life. With the in-depth advancement of risk management, most of the construction risks of
prefabricated buildings adopt qualitative research based on experience and intuitive judgment and quantitative research on
quantitative mathematical statistics, but there are few models for risk assessment of prefabricated buildings with dynamic
characteristics to adapt to the rapid development of prefabricated buildings and the lack of prefabricated construction in various
stages and complex environments, with risk prediction and e�ective response capabilities. Based on this, this paper attempts to
propose a fuzzy neural network risk research method for prefabricated building construction, making full use of the fuzzy neural
network’s qualitative knowledge expression and quantitative numerical computing advantages, to establish a set of strong fault
tolerance and better adaptive ability: fuzzy neural network evaluation model for extensive prefabricated building construction
risk. �rough the design of the fuzzy network model structure, the membership vector of the qualitative and quantitative
indicators of the fuzzy comprehensive evaluation of the risk of prefabricated building construction is used as the input vector of
the neural network, and the evaluation result is used as the output of the neural network. �e samples were trained, programmed,
and debugged, and it was found that the training results of the samples were in good agreement with the expected output results,
which further veri�ed the feasibility and applicability of the fuzzy neural network in the risk assessment process of prefabricated
buildings. It is of good guiding signi�cance to conduct continuous observation and formulate e�ective risk aversion and
response plans.

1. Introduction

With the continuous advancement of construction indus-
trialization, prefabricated buildings have achieved unprec-
edented development, injecting new kinetic energy into the
advancement of global climate governance. With the con-
tinuous emergence of green construction appeals, the new
construction method of prefabricated buildings will become
more and more popular. Meanwhile, it is widely used in
industry and residences because of its high production ef-
�ciency, high production accuracy, small environmental
impact, and high degree of industrialization. Compared with
traditional building forms, prefabricated buildings have
di�erent quality, technology, and construction period re-
quirements in the detailed design stage, prefabrication

transportation stage, and hoisting stage. In order to reduce
and avoid risk losses, prefabricated buildings are e�ectively
risked [1, 2].

Management is particularly important. In risk man-
agement, risk assessment is an important basis for risk
management. It aimed to �nd, analyze, and predict the
dangerous and harmful factors existing in the project and the
system and the severity of the accident that may be caused,
then propose reasonable and feasible safety countermea-
sures, and guide the source of danger [3, 4]. Monitoring and
accident prevention are done to achieve the lowest accident
rate, the least loss, and the best return on safety investment.
Traditional risk assessment methods are divided into
qualitative assessment and quantitative assessment. �e
qualitative method is mainly based on experience and
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intuitive judgment, while the quantitative method is based
on a large number of experimental results and extensive
statistical analysis of accident data. Both of these two
methods have certain defects, which limit their application,
and the method combining qualitative and quantitative can
make up for the shortcomings of traditional methods [5].

-erefore, this paper adopts the fuzzy evaluationmethod
based on neural network to study the risk management of
prefabricated construction. Applications can also be a good
way to overcome subjectivity in evaluation.

2. Related Work

In terms of risk management research on prefabricated
building construction, the predecessors have conducted
statistical modeling and analysis of various building risk
factors such as cost, safety, and energy for analysis, evalu-
ation, and decision-making for enterprises. For example, by
combining factors such as the construction period of pre-
fabricated buildings, energy consumption in the construc-
tion process, and seismic performance of prefabricated
buildings, the dynamic case analysis research method is used
to analyze the high probability risk of prefabricated build-
ings and the use of residential target comfort and prefab-
rication. -e data monitoring of the prefabricated buildings
explains the construction management risks of prefabricated
buildings and the degree of influence of various risk factors
on the public [6]. Lee et al., through literature review and
detailed analysis of risk factors at the construction site,
combined with the impact of the risk factors on the site of
prefabricated building construction, used AHP to establish a
weight system for risk indicators. According to the classi-
fication of risk factors in the construction management of
conventional buildings, comprehensively use the statistical
analysis method of accident cases and risk matrix to carry
out risk assessment [7]. Hinze and others put forward
suggestions on the safety management of prefabricated
buildings and evaluate the construction risks of pre-
fabricated buildings through the concept of leading indi-
cators [8].

-rough the construction of the F-QRAM model, Pinto
evaluates inaccurate and vague risk variables, determines the
key risk factors of prefabricated building construction,
provides guidance for safety risk management during project
construction, and guides decision makers in the process of
risk assessment. It provides enterprises critical, scientific,
and objective guidance for risk response [9]. Xiao et al.,
through the construction of a fuzzy-based prefabricated
building risk assessment model, used the direct rights
method to calculate the weights of various indicators, ef-
fectively reducing the deviation caused by subjective
weighting [10]. Based on the existing research and analysis
combined with rough set theory, Guo et al. discussed and
analyzed DM (data mining) technology and redefined the
risk factors affecting prefabricated buildings. -rough the
quantitative assessment of risk factors, redundant risk fac-
tors are reduced to form the final efficient and quick de-
cision-making method [11].

Staub-French et al. use BIM applications and REPCON
(Project Progress Management Program) to combine the
Internet and prefabricated buildings to simulate and adjust
the construction progress and the process of project
implementation, so as to formulate effective control for the
quality and safety in the construction management of
prefabricated buildings measures [12]. Li et al. used SNA to
identify various risk factors in precast concrete projects.
-rough BIM-centered strategic recommendations, the
probability of risk occurrence can be reduced and the
communication of target stakeholders can be promoted [13].
Sinha conducted in-depth research and analysis on the
construction management of prefabricated frame systems
based on the research foundation of predecessors, con-
ducted research on various types of supporting structural
components and evaluated construction management
risks, and proposed the use of standardized supporting
frame systems in construction, to ensure the quality of the
structure and reduce the risk factors of construction
management [14].

3. Related Theories

3.1. Fuzzy�eory. Fuzzy theory is developed on the basis of
fuzzy mathematics. -e theory is attached to the basic
concept of fuzzy sets and the theory of continuous mem-
bership functions [15]. A large number of facts show that
many things are put before the cart because of excessive
pursuit of precision. If a suitable mathematical language is
found to describe the ambiguity of things, proper fuzzy
processing can achieve a more precise purpose.

3.1.1. Fuzzy Set. A fuzzy set has an indistinct boundary. For
a fuzzy set, an element can both belong to the set and not
belong to the set, and the boundary is blurred. In fuzzy logic
based on fuzzy sets, the truth of any statement or proposition
is only a certain degree of truth, that is, fuzziness. It reflects
the uncertainty of events, which can be characterized by the
degree to which an element belongs to a certain set, and a
numerical value belonging to [0,1]—amembership function.
In [16], fuzzy sets and membership functions are defined as
follows: Given a universe of discourse X, any mapping from
X to the closed region [0,1]:

μA: X⟶ [0, 1],

x⟶ μA(x).
(1)

μA is called the membership function of the fuzzy set A,
and μA(x) is called x is the membership function of A. -e
degree of membership can also be denoted as A(x).

3.1.2. Membership Function. Professor Zadeh first proposed
the concept of membership function in 1965, which is used
to describe the degree of membership of the element u to the
fuzzy set U. Due to the uncertainty of this relationship, it is
generally used from the interval [0,1]. -e value taken re-
places the two values of 0 and 1 to describe the “true degree”
of an element belonging to a fuzzy set. -rough membership
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function, a fuzzy concept can be expressed transitionally
from “not belonging at all” to “belonging completely,” and it
is easier to quantitatively analyze and express all fuzzy
concepts.

-e qualitative description of objective things by mem-
bership function is relatively objective in nature, but different
individuals have different cognitions to the same fuzzy concept,
so there is subjectivity. -e determination of the membership
function is still based on experience and experiments, and there
is no effective systematic method. At present, the common
determination methods include fuzzy statistics method, as-
signment method, expert experience method, and so on.-ese
methods improve the rough membership function through
continuous “learning” and “practice,” so as to achieve the unity
of the subjective and the objective.

3.1.3. Fuzzy Logic System. Fuzzy logic system refers to a
system including fuzzy concepts and fuzzy logic. When it
exercises control function, it is called fuzzy logic controller.

Due to the randomness in fuzzy concept and fuzzy logic
selection, fuzzy logic systems with various states can be
constructed. For example, the combination of various fuzzy
neurons constitutes a neural network logic systemwith fuzzy
information processing functions.

3.2. BP Neural Network Algorithm

3.2.1. Principle of BP Neural Network. -e BP neural net-
work consists of three parts: input layer, hidden layer, and
output layer. Each layer involves a large number of neurons,
and these three layers are also organically combined by these
neurons to form the integrity of the model [17–20].

In the BP neural network model, the feature vector is
input from the input layer to carry out the model network.
After the feature vector is recognized in the input layer, it is
transmitted to the hidden layer by the neuron and performs
certain data processing. Finally, it is also transmitted to the
output layer by the neuron. -e data is processed and
compared according to the given expected value. When the
output conditions are not met, the output layer starts to

perform reverse transfer and weight adjustment, and this
cycle is repeated until the output reaches the preset expected
value. It can be seen that the BP neural network is an in-
telligent model that can continuously learn and self-adjust,
and its structure is shown in Figure 1.

-e learning of the BP neural network is mainly to adjust
the connection weights between the neurons only through the
learning algorithm, so that the output results are closer to the
expected value. Guided learning with a tutor is divided into four
processes: forward transmission of information, reverse ad-
justment of errors, model training, and “learning convergence.”

3.2.2. Learning Algorithm of BP Neural Network. -e
flowchart of the BP neural network learning algorithm is
shown in Figure 2; initialization is to select the initial weight
of the network, generally a small random number around
zero. When the specified number of learning times or the
expected output error index is reached, or the change of the
error index is less than a certain closed value, the learning
ends; otherwise, the learning continues.

Combined with Figure 1, it is assumed that the input
learning sample is p, the number of input neurons is n, the
number of hidden layer neurons ism, the number of output
neurons is r, and the conversion function adopts a sigmoid
function, namely: f(x) � 1/1 + e− x, the weight correction
process is as follows:

Signal forward transmission

Error reverse adjustment

Input layer hidden layer Output layer

Figure 1: BP neural network structure.

initialization

end

Given a supervisory 
signal

Calculate the output of each node in 
the hidden layer and output layer

Calculate the reverse 
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Figure 2: Flowchart of BP algorithm.
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(1) Forward propagation of information

①-e output of the jth neuron in the hidden layer is

Sj � f netj􏼐 􏼑 � f 􏽘
n

t�1
ωijxti + θj

⎛⎝ ⎞⎠,

j � 1, 2, . . . , m; t � 1, 2, . . . , p,

(2)

where xti is the input of the i-th neuron in the t-th
sample, and ωij is the weight from the i-th neuron
to the jth neuron.
②-e output of the kth neuron in the output layer is

Sk � f netk( 􏼁

� f 􏽘

m

j�1
ωjksj + θk

⎛⎝ ⎞⎠, k � 1, 2, . . . , r,

(3)

ωjk is the connection weight from the jth neuron to
the kth neuron.
③ Define the error function:

E �
1
2

􏽘

r

k�1
Sk + sk( 􏼁

2

�
1
2

􏽘

r

k�1
ek( 􏼁

2
,

(4)

where Sk is the expected output of the kth neuron in
the output layer.

(2) Weight change and backpropagation of error

① -e weight change of the output layer
-e weights from the jth input to the kth output are

Δωjk � −α
zE

zωjk

� −α
zE

zSk

·
zSk

znetk
·
znetk
zωjk

� α Sk − sk( 􏼁 · f′ netk( 􏼁 · Sj � αδjkSj.

(5)

Among them, δjk � (Sk − sk) · f′(netk)

Similarly:

Δθk � −α
zE

zθjk

� −α
zE

zSk

·
zSk

znetk
·
znetk
zθjk

� α Sk − sk( 􏼁 · f′ netk( 􏼁

� αδjk.

(6)

② Changes in hidden layer weights

-e weights from the jth input to the kth output are

Δωij � −β
zE

zωij

� −β
zE

zSk

·
zSk

zSj

·
zSj

zn etj

·
znetj
zωij

,

� β 􏽘
r

k�1
Sk − sk( 􏼁 · f′ netk( 􏼁 · ωjk · f′ netj􏼐 􏼑 · xti

� βδijxti.

(7)

Among them, δij � ej · f′(netj), ej � 􏽐
r
k�1 δjkwjk

Δθj � −β
zE

zθj

� −β
zE

zSk

·
zSk

zSj

·
zSj

znetj
·
znetj
zθj

,

� β 􏽘

r

k�1
Sk − sk( 􏼁 · f′ netk( 􏼁 · ωjk · f′ netj􏼐 􏼑 � βδij.

(8)

Among them, α and β are called the step size of the
gradient search algorithm, also called the conver-
gence factor. -e larger the value, the faster the
weight adjustment. Generally, the values of α and β
can be larger without causing oscillation.

(3) -e error backpropagation process is actually by
calculating the error ek of the output layer and then
multiplying it by the first derivative f′(netk) of the
activation function of the output layer to obtain δjk.
Since the target vector is not directly given in the
hidden layer, the δjk of the output layer is used to
transfer the error backward to obtain the change
Δωjk of the output layer weight and then calculate
� 􏽐

r
k�1 δjkΔωjk and then multiply ej by the first

derivative of the activation function of the hidden
layer f′(netj) to obtain δij, so as to obtain the
variation of the weight of the previous layer Δωij.

(4) Weight correction

① Use δjk to correct the weights and thresholds
between the output layer and the hidden layer

ωjk(t + 1) � ωjk(t) + Δωjk � ωjk(t) + αδjkSj,

θk(t + 1) � θk(t) + Δθk � θk(t) + αδjk.
(9)

② Use δij to correct the weights and thresholds
between the input layer and the hidden layer

ωij(t + 1) � ωij(t) + Δωij � ωij(t) + βδijSj,

θj(t + 1) � θj(t) + Δθj � θj(t) + βδij.
(10)

Calculate the function E after the corrected error again; if
E is less than the specified upper limit of error, the algorithm
ends; otherwise, the number of learning times t� t+ 1 is
updated, and the weights and thresholds are recorrected.

-ere are two ways to train the network with the BP
network algorithm. One is to modify the weights every time a
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sample is input, which is the standard error propagation
method; the other is the batch method, that is, all the samples
that constitute a training cycle are computing the total average
error after one input is a truly global gradient descent method.
-e number of corrections in the latter is significantly reduced,
which can save learning time, but since the average of all mode
errors is used, oscillations may occur in some cases.

4. Risk Assessment Model of Prefabricated
ConstructionBasedonFuzzyNeuralNetwork

4.1. Fuzzy Neural NetworkModel Construction. Fuzzy neural
network can be divided into fuzzy neural network calculated
according to fuzzy numbers and fuzzy neural network formed
based on the logical reasoning process of fuzzy rules [21–24].
Based on the characteristics of knowledge management, this
paper builds a 4-layer fuzzy neural network based on the first
type of fuzzy neural network. -e first and second layers are
fuzzy modules, and the second, third, and fourth layers are
neural network modules, as shown in Figure 3.

-e first layer is the input layer, which is responsible for
the input of the fuzzy neural network. Each node represents
an input variable (risk index). According to the reliability
and validity test in Chapter 2, the input layer has a total of 7
nodes.

-e second layer is the fuzzification layer, whose role is
to fuzzify the input variables and make them the input layer
of the neural network module. -is layer uses a Gaussian
function as the membership function:

μxi � exp −
1
2

xi − μi

σi

􏼠 􏼡

2
⎡⎣ ⎤⎦. (11)

Among them, μi is the center of themembership function,
σi determines the width of the membership function, and tthe
mean value of all samples of the index xi on the input layer is
the μi value of the index at the corresponding level; the
membership of the index on the fuzzification layer. -e
function width takes the following value:

σi �

�������������
1
n

􏽘
n

j�1 xi − μi( 􏼁

􏽲

. (12)

-e third layer of fuzzy reasoning layer is also the hidden
layer of the fuzzy neural network. It mainly realizes the
mapping from the fuzzy value of the input variable to the
fuzzy value of the output variable and determines the
number of nodes according to the above algorithm.

-e fourth layer is the output layer, which outputs the
result of fuzzy evaluation.

xi

x1

xn

u5n

rm

rk

r1

O1

O2

O3

O4

O5

ωij

Fuzzy module Neural Network Module

Figure 3: Fuzzy neural network topology diagram.
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4.2. Learning Steps of Fuzzy Neural Network. -e specific
learning steps are as follows:

Step 1: Cluster the sample data using the K-means
method, set the number of clusters to 5, and obtain the
mean μi and variance σi ∈{1, 2, 3, 4, 5} of each category,
respectively.

Step 2: Transform the input sample Xk

h ∈ (1, 2, . . . , P) · · · through the membership function
to realize the fuzzification process, so that n nodes are
mapped to 5n fuzzy layer nodes and used as the input of
the fuzzy inference layer.

Step 3: Set the number of learning times t� 0, assign
small random numbers to the network weights and
thresholds, ωij(t) ∈ [−1, 1], ωjk(t) ∈ [−1, 1] σj(t) ∈
[−1, 1]; σk(t) ∈ [−1, 1].

Step 4: Input a sample (Xh, Th); P is the number of
samples, Xh ∈ Rp, Tk ∈ Rr.
Step 5: Calculate the actual output of the fuzzy
inference layer and the output layer, respectively;
Sj � f(netj), Sk � f(netk), where f(x) is a sigmoid
function.
Step 6: Calculate the fuzzy inference layer error σij and
the error σjk of each node in the output layer.
Step 7: -e t-th correction is made to the weights and
the stop values, ωjk(t + 1) � ωjk(t) + αδjkSj, θk(t+ 1)

� θ(t) + αδjk; ωij(t + 1) � ωij(t) + βδijSj, θj(t + 1) �

θ(t) + βδij;

Step 8: Calculate the error function E; if E< ε, the
network training ends; otherwise, go to Step 5.

5. Risk Assessment and Analysis of
Prefabricated Building Construction
Based on Fuzzy Neural Network

In this section, on the basis of the relevant literature
[25–33], the risk management evaluation index system
and theoretical system of prefabricated building con-
struction will be proposed, and the evaluation indicators
will be integrated, and the empirical research on the risk
evaluation of prefabricated building construction will be
carried out by using the fuzzy neural network method, and
the indicators will be verified. Verify the rationality and
effectiveness of the index system and the operability of
risk assessment work.

In the verification process, the computer is used as the
realization tool, and the research methods combining BP
neural network and SPSS statistical analysis are used,
respectively. -e generalization ability and training speed
of the network can reduce the probability of the BP
network falling into a local minimum point, and the BP
neural network program is written by using the neural
network toolbox in the MATLAB language program to
provide decision support for the research on risk man-
agement of prefabricated buildings.

5.1. Prefabricated Building Construction Risk
Data Acquisition

5.1.1. Acquisition of Input Layer Data. -e acquisition of
input layer data is mainly achieved through the factor score
of each sample, that is, how the common factor is repre-
sented by a linear combination of statistical indicators,
which refers to the estimated value Fj of the common factor
􏽢Fj

􏽢Fj:
􏽢Fj � bj1X1 + bj2X2 + · · · + bjpXp, j � 1, 2, . . . , 7; p � 25. (13)

Since this study uses correlation coefficient matrix for
factor analysis, it is assumed that x1, x2, . . . , xp are stan-
dardized variables of influencing factors; bi1, bi2, . . . , bip are
factor score coefficients; 􏽢Fj is the estimated value of the jth
factor, as shown in Table 1.

5.1.2. Fuzzy Layer into Data Acquisition. K-means clus-
tering is performed on the 5 common factors of the sample,
and the number of clusters is set to 5, which correspond to
the high, high, medium, low, and low of the construction risk
of prefabricated buildings; the clustering method of com-
mon factors adopts Iterate and Classify. -e clustering
method continuously iterates and replaces the center po-
sition on the basis of the starting class center and assigns the
observations to the nearest class; after 10 iterations, the
cluster center matrix is obtained, as shown in Table 2.

After the samples are classified, run the Analyze Com-
pare Means command in SPSS 20.0 software to obtain the
value of the membership function width δi of each factor at
the corresponding level. -e results are shown in Table 3.

According to the Gaussian function, the membership
degree of each factor in each category in the sample can be
obtained. As the output of the second layer of the fuzzy
neural network, there are 25 in total.

5.2. Evaluation Results and Analysis of Construction Risks of
Prefabricated Buildings

5.2.1. Determine the Number of Hidden Layer Nodes.
RunMATLAB 2016a; use 160 sample data to train the neural
network and 10 sample data to test the neural network to
find the optimal number of hidden layer nodes. According to
the relevant theory in Section 3.2.1, the optimal hidden layer
of BP neural network should be between 7 and 16, and the
number of nodes in the output layer is 5; (1,0,0,0,0),
(0,1,0,0,0), (0,0,1,0, 0), (0,0,0,1,0), (0,0,0,0,1) represent the
low, low, medium, high risk status of prefabricated building
construction, respectively.

Run the following program in MATLAB, and adjust the
number of hidden layer nodes between 7 and 16 in turn.
After repeated training, the results are shown in Table 4.

p� []ʹ; % training sample data
t� []ʹ; % training sample target output
net� newff(minmax(p), [7, 5], (“logsig,” “logsig,”
“traingd”); % Adjust the number of hidden layer nodes
in turn
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Table 1: Factor score matrix.

Variable
Component

1 2 3 4 5 6 7
Illegal wires 0.127 0.169 0.012 0.186 0.098 0.095 0.187
Not wearing protective equipment 0.215 0.109 0.096 0.128 0.118 0.011 0.232
Low sense of responsibility 0.145 0.119 0.239 0.125 0.058 0.132 0.077
Unskilled workers 0.244 0.040 0.095 0.065 0.296 0.015 0.219
Work fatigue or difficulty concentrating 0.153 0.025 0.017 0.630 0.149 0.139 0.029
Improper operation of staff 0.221 0.016 0.002 0.330 0.011 0.221 0.015
Unsafe factors of materials 0.159 0.079 0.017 0.320 0.100 0.112 0.111
-e machine itself is faulty 0.069 0.018 0.094 0.180 0.224 0.126 0.125
Machine overload 0.129 0.050 0.930 0.134 0.055 0.214 0.236
Machine instability 0.085 0.189 0.080 0.097 0.437 0.053 0.043
Insufficient formwork or support strength 0.046 0.328 0.074 0.139 0.019 0.024 0.201
Safety electricity check is not in place 0.017 0.011 0.339 0.440 0.048 0.021 0.068
Inappropriate device selection 0.032 0.118 0.443 0.620 0.097 0.091 0.032
Scaffolding is not strong 0.037 0.018 0.276 0.220 0.008 0.321 0.013
Lack of safety rules and regulations 0.046 0.230 0.052 0.500 0.128 0.045 0.067
Working at heights in rain and snow 0.021 0.425 0.171 0.036 0.115 0.003 0.038
No protective equipment issued 0.021 0.114 0.036 0.220 0.246 0.025 0.068
Improper protective measures 0.047 0.084 0.134 0.300 0.368 0.053 0.054
-e scheme design is unreasonable 0.022 0.158 0.025 0.620 0.231 0.044 0.550
Component positioning is not accurate 0.027 0.121 0.110 0.460 0.740 0.238 0.195
Component connection technology is immature 0.057 0.008 0.001 0.237 0.013 0.657 0.091
Installation detection technology is not in place 0.024 0.002 0.065 0.436 0.019 0.009 0.035
-e venue is wet 0.045 0.142 0.247 0.410 0.063 0.083 0.372
Lightning strike 0.005 0.004 0.108 0.257 0.007 0.012 0.034
Unstable address conditions 0.028 0.026 0.580 0.003 0.139 0.069 0.569
Extraction method: principal component analysis. Rotation method: varimax with Kaiser normalization component scores.

Table 2: Final cluster center table.

Risk factor
Cluster

1 2 3 4 5
Construction man-made risk factors 0.30669 0.65002 0.37318 0.75269 0.99813
Construction object status risk factor 0.93776 0.60900 0.13977 0.96965 0.32387
Organizational management risk factors 0.01515 0.30078 0.43660 0.49873 0.49662
Technical risk factor 0.95545 1.10145 0.38124 0.19331 0.28419
Environmental risk factors 0.11760 0.6142 0.03631 0.17670 0.20122

Table 3: -e number of observations in each cluster.

Cluster Construction man-
made risk factors

Construction object
status risk factor

Organizational
management risk factors

Technical risk
factor

Environmental risk
factors

1 Std.Deviation 0.77162 0.88396 0.85552 0.72690 1.04963
N 30 30 30 30 30

2 Std.Deviation 0.81567 0.78319 0.78090 0.78561 0.98561
N 33 33 33 33 33

3 Std.Deviation 0.50520 0.66778 0.83839 0.80372 1.10388
N 35 35 35 35 35

4 Std.Deviation 0.85277 0.72303 1.12236 0.82401 0.80691
N 31 31 31 31 31

5 Std.Deviation 0.70531 0.76015 0.98847 0.60445 1.02208
N 41 41 41 41 41

Total Std.Deviation 1.00000 1.00000 1.00000 1.00000 1.00000
N 170 170 170 170 170
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net.trainParam.show� 100;
net.trainParam.goal� 1e− 5:
net.trainParam.epochs-8000;
net.trainParam.lr� 0.08;
net.trainParam.lr_inc� 1.4;
[net,tr]� train(net,p,t);
Y� sim(net,p); e� t− y:
Q�mse(e)
% output training error
ptest� []ʹ; % test sample data
ttest� []ʹ; test sample target output
a4� sim(net,ptest);
E� ttest-a4;
Perf�mse(E)
% output test error

(1) Save Netl Net. In Table 4, as the number of hidden layer
nodes increases, the training error gradually decreases, but the
test error slightly oscillates after more than 14. -erefore, the
relationship between the number of hidden layer nodes,
training error, and test error is comprehensively considered.
And the number of nodes in the hidden layer is determined to
be 14. It is not that the more the nodes in the hidden layer, the
better the performance of the network.When testing samples,
it was found that the training error first decreased and then
gradually increased with the increase of the number of nodes
in the hidden layer. Although the increase is not very large, it
is enough to affect the performance of the neural network.

Figure 4 shows that, with the increase of training times,
the network training error gradually decreases. When the
training times reaches 903 times, the network reaches the set
error; that is, the network completes the training.

5.2.2. Evaluation Results and �eir Analysis. -e actual
output results and the expected output results of the 10

Table 4: -e relationship between the number of hidden layer nodes and the training error and measurement error.

Number of hidden layer nodes Error training Test error
7 9.9601e− 006 1.5167e− 005
8 9.9594e− 006 1.3938e− 005
9 9.9254e− 006 1.4127e− 005
10 9.9249e− 006 1.5753e− 005
11 9.9160e− 006 1.1991e− 005
12 9.9061e− 006 1.0685e− 005
13 9.8343e− 006 1.5538e− 005
14 9.8254e− 006 1.6156e− 005
15 9.7783e− 006 1.4073e− 005
16 9.4784e− 006 2.9405e− 005

Performance is 9.6604e-006, Goal is 1 e-005

10-1

10-2

10-3

10-4

10-5

100

10-6

Tr
ai

ni
ng

-B
lu

e G
oa

l-B
la

ck

0 100 200 300 400 500 600 700 800 900
903 EpochsStop Training

Figure 4: -e training graph with the hidden layer node of 14.
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sample data are shown in Table 5. It is found that the training
results of the samples are in good agreement with the ex-
pected output. It can be seen that the trained fuzzy neural
network can well obtain and store expert knowledge, ex-
perience, and judgment. It can be seen that the data-based
serial fuzzy neural network has good scientificity, rationality,
and practicability in the process of risk assessment of pre-
fabricated buildings.

-rough the above research, it can be seen that the
neural network overcomes the inaccuracy of the fuzzy al-
gorithm due to the insufficient discrimination of each
component in the evaluation vector. And it can make the
analysis results more realistic and convincing. -e fuzzy
evaluation of aspects and the principle of maximum
membership ignore other evaluation information. Fuzzy BP
neural network evaluation method not only has strong fault
tolerance, but also has the characteristics of self-adaptation
and self-correction, which will be more widely used in risk
management in other fields.

6. Conclusion

As an emerging green construction method, prefabricated
buildings have gradually accelerated with their development.
In addition, the construction standards of ordinary con-
struction teams are uneven, and the difficulty of risk
management has also increased. Traditional risk assessment
is mainly based on qualitative research and analysis. It is
empirical and intuitive judgment. But quantitative research
is based on a large number of experimental results and
indicators or laws obtained by extensive statistical analysis of
accident data to perform quantitative calculations. In dif-
ferent organizational management and project construction
processes, the risks of prefabricated buildings have various
forms and the size of the risks are also different. -erefore,
the model for its evaluation should also have dynamic
characteristics, so as to facilitate the reasonable prediction
and control of risks. -is paper attempts to apply the fuzzy
neural network to the risk assessment and management of
prefabricated buildings and does the following research:

(1) With the help of fuzzy theory to quantify risk factors
and the advantages of BP neural network’s effective
intelligent behavior, learning ability, self-adaptive
mechanism, and high flexibility, a prefabricated

construction risk assessment model based on fuzzy
neural network is established.

(2) In the design of fuzzy neural network, the number of
hidden layer nodes usually needs to be determined
by multiple experiments or experience. -is paper
proposes a method to select the optimal number of
hidden layer nodes according to the formula and past
experience. -e method is concise, which can reduce
the number of verifications, and it has good reference
and use value.

(3) -rough programming and debugging, the fuzzy
neural network is trained, and it is found that the
training results of the samples are in good agreement
with the expected output results, which verifies the
feasibility and applicability of the fuzzy neural net-
work in the risk assessment process of prefabricated
buildings.-e dynamic characteristics of risks can be
continuously observed, and effective risk aversion
and response plans can be formulated with good
guiding significance.

Data Availability

-e dataset can be accessed upon request.
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