
Research Article
Discriminative Similarity-Balanced Online Hashing for
Supervised Image Retrieval

Chen Chen ,1 Xiaoqin Wang ,1 Xiao Chen ,2 Rushi Lan ,1 Zhenbing Liu ,1

and Xiaonan Luo 1

1Guangxi Key Laboratory of Image and Graphic Intelligent Processing, Guilin University of Electronic Technology,
Guilin 541004, China
2Ministry of Education Key Laboratory of Cognitive Radio and Information Processing,
Guilin University of Electronic Technology, Guilin 541004, China

Correspondence should be addressed to Rushi Lan; rslan2016@163.com

Received 26 October 2021; Revised 26 November 2021; Accepted 2 December 2021; Published 12 February 2022

Academic Editor: Le Sun

Copyright © 2022 Chen Chen et al. 'is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

When virtualizing large-scale images of the real world, online hashing provides an efficient scheme for fast retrieval and compact
storage. It converts high-dimensional streaming data into compact binary hash codes while saving the structural characteristics
between samples into the Hamming space. Existing works usually update the hashing function based on the similarity between
input data, or design a codebook to assign code words for each single input sample. However, assigning code words to multiple
samples while retaining the balanced similarity of the image instances is still challenging. To address this issue, we propose a novel
discriminative similarity-balanced online hashing (DSBOH) framework in this work. In particular, we first obtain the Hadamard
codebook that guides the generation of discriminative binary codes according to label information. 'en, we maintain the
correlation between the new data and the previously arrived data by the balanced similarity matrix, which is also generated by
semantic information. Finally, we joined the Hadamard codebook and the balanced similarity matrix into a unified hashing
function to simultaneously maintain discrimination and balanced similarity. 'e proposed method is optimized by an alternating
optimization technique. Extensive experiments on the CIFAR-10, MNIST, and Places205 datasets demonstrate that our proposed
DSBOH performs better than several state-of-the-art online hashing methods in terms of effectiveness and efficiency.

1. Introduction

With the widespread use of digital monitoring facilities and
the Internet, the generated streaming data have also in-
creased correspondingly [1–4]. 'e processing of streaming
data needs to be performed in approximately real time,
which is very difficult for high-dimensional multimedia data
such as images and videos [5, 6]. Online hashing can encode
high-dimensional streaming data that arrive online into
compact binary codes with low storage and efficient com-
putation [7, 8]. In particular, it preserves the relationship
among the samples into the Hamming space and updates the
hashing function in the light of the newly arrived data to
adapt to the new data instance [9, 10]. In view of the ad-
vantages of low storage and efficient computation, online

hashing is widely applied in education, finance, military,
among other industries [11–14].

Most existing online hashing methods have been de-
voted to the trade-off between accuracy and efficiency
[15–17]. According to the learning strategy, people divide
these techniques into unsupervised online hashing and
supervised online hashing [18–20]. 'e well-known unsu-
pervised methods mainly include online sketch hashing
(SketchHash) [21], FasteR online sketch hash (FROSH) [22],
and zero-mean sketch [23]. SketchHash designs the hashing
function with the sketch scheme [21]. FROSH uses the
independent subsampling random Hadamard transform on
various small data blocks to get a compact and accurate
sketch while speeding up the sketching procedure [22]. 'e
zero-mean sketch method solves the uncertainty problem of

Hindawi
Scientific Programming
Volume 2022, Article ID 2809222, 12 pages
https://doi.org/10.1155/2022/2809222

mailto:rslan2016@163.com
https://orcid.org/0000-0002-7453-3147
https://orcid.org/0000-0002-6813-7666
https://orcid.org/0000-0002-8705-7127
https://orcid.org/0000-0002-9488-8236
https://orcid.org/0000-0001-6551-4174
https://orcid.org/0000-0002-0751-5045
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/2809222

the offset value and improves the data processing efficiency
by zero-mean sketch [23]. Supervised methods obtain better
performance than unsupervised methods in most instances
because of the utilization of label information. Some rep-
resentative works include online hashing (OKH) [24, 25],
adaptive hashing (AdaptHash) [26], online supervised
hashing (OSH) [27, 28], online hashing with mutual in-
formation (MIHash) [29], balanced similarity for online
discrete hashing (BSODH) [30], and Hadamard codebook-
based online hashing (HCOH) [31]. 'ese methods have
achieved satisfactory performance.

However, some existing supervised online hashing
methods still achieve unsatisfactory accuracy in real appli-
cations as they ignore any discriminative and balanced
similarity. More specifically, HCOH generates discrimina-
tive binary codes with maximum information entropy by the
Hadamard codebook, but ignores the local neighbor rela-
tionship among samples and only processes a single input.
On the other hand, BSODH only considers balanced sim-
ilarity based on the pairwise relationship and neglects the
global data distribution, which results in a decrease in ac-
curacy [32, 33]. Hence, both HCOH and BSODH have
problems when applied to real applications.

In this work, we put forward a novel discriminative sim-
ilarity-balanced online hashing (DSBOH) framework, which
can simultaneously preserve the global distribution informa-
tion of data and pairwise relationships between samples to
generate discriminate hash codes with maximum information
entropy. In particular, first, we maintain the maximum in-
formation entropy of hash codes via a Hadamard codebook.
'en, the pairwise similarity matrix is adjusted to ensure that
the updated scheme of balanced hash codes is used to preserve
the correlation between the new and existing data. Finally, we
combine the above attributes into a unified hashing function.
An alternating iterative algorithm is used to solve the proposed
DSBOH method. Compared with several state-of-the-art
online hashing techniques, remarkable results have been
achieved by our proposed DSBOH method.

In summary, the main contributions of this work include
the following:

(i) 'e Hadamard matrix is used to ensure that the
hash codes with maximum information entropy are
separable and can deal with situations with un-
known number of categories.

(ii) We preserve the balanced similarity between newly
arrived data and previously arrived data into the
generated Hamming space using the inner product
to deal with uneven data distribution.

(iii) We combine the Hadamard codebook and the
balanced similarity matrix into a unified hashing
function to simultaneously maintain the discrimi-
nation and balanced similarity of the hashing
modal.

(iv) 'e alternating iterative algorithm is used to opti-
mize the proposed method, and experimental re-
sults verify that our method performs much better
than several state-of-the-art online hashing
techniques.

'e remainder of this study is organized as follows.
Section 2 gives a brief overview of the related works. In
Section 3, we elaborate on the framework and optimization
of the proposed method. Section 4 details the experimental
results and analyses. Finally, we conclude the paper in
Section 5.

2. Related Work

In this section, we present supervised methods, such as OKH
[24, 25], OSH [27, 28], AdaptHash [26], MIHash [29], and
BSODH [30].

Huang et al. first proposed a prototype based on online
hashing termed OKH [24]. In each current iteration, a
new pair of data samples is used, a pair of sample simi-
larity loss functions is designed according to the Ham-
ming distance, and the prediction loss referring to Ref.
[34] is used. 'e function evaluates whether the operating
hashing projection vector suits the new data and expects
the model to save as much of the historical information of
the previous round of projection vectors as possible
during the update process. To make the original online
hashing algorithmmore perfect in loss function theory, an
improved weakly supervised online hashing learning
model [25], which does not require the label information
of the data, is proposed for the loss threshold of the
hashing modal. 'e new objective function is designed to
calculate the disparity between the Hamming distances of
pairwise data, and the upper limit loss of the online hash
theory is rigorously analyzed. Second, because the hashing
function learned in the algorithm update relies on new
data, it easily falls into local deviations according to the
characteristics of online hash algorithms to adapt to the
new data; a multimodal strategy is produced to reduce
such deviations.

Cakir et al. proposed the OSHmethod [27], which adapts
to data changes, and the label types of datasets are unknown.
A random method is used to generate the codebook, so that
the code generated by the hashing function and the category
matching error in the corresponding codebook are mini-
mized [35]. To ensure the last round of information, the
previous hashing functions are linearly combined and
superimposed; however, the codebook structure directly
determines the coding efficiency.'erefore, in the follow-up
literature, an improved online supervised hashing [28] is
proposed for this problem. 'e ECOC codebook is applied
according to online supervised hashing, which improves the
space efficiency and solves the original Hamming loss for-
mula. Complexity proposes an efficient solution method
based on the upper boundary, which improves the time
efficiency of the algorithm.

AdaptHash [26] uses the relationship between data
sample similarity and Hamming distance to solve the
problem of how online models adapt to current data. First,
the objective function is constructed using the similarity of
current sample pairs and the Hamming distance relationship
combined with the minimum loss variance function [36],
and the gradient descent algorithm is used to solve the hash
projection vector; the objective function is further

2 Scientific Programming

generalized to make similar or unsimilar sample data pairs.
'e Hamming distance is minimized (maximized) to reduce
the update redundancy caused by the update mechanism;
finally, the hinge loss function [37] is used to filter the hash
map with the largest error, and the iterative calculation is
reentered until the number of iterations reaches the set
value.

MIHash [29] adopts the theory of quantitative infor-
mation coding to obtain high-quality hash code that elim-
inates unnecessary hash table updates. 'e mutual
information between the dataset samples is well correlated
with standard evaluation indicators and is used to calculate
the information entropy. When optimizing the mutual in-
formation target, differentiable histogram merging tech-
nology is used to derive stochastic gradient descent-based
optimization rules, and finally, the differentiated rules are
utilized to merge the derived histograms and apply them to
the learning objective function. 'is work is dedicated to the
synchronization of the hash code and the hashing function
updates and effectively reduces the reconstruction of the
hash table.

BSODH [30] studies the relationship between new data
and previously arrived data. 'is work considers that the
problem of online hashing is attributed to two issues:
updating imbalance and optimization inefficiency. 'e
above authors recommend asymmetric graph regularization
techniques to keep the relevance of online streaming data
and previously accumulated datasets. To deal with data
imbalance in the learning stage of online hashing, BSODH
designs a new balanced similarity matrix between new data
and previously arrived data, which tackles the challenge of
quantization error brought by relaxation learning in the
discrete optimization method in online learning and reveals
advanced results compared with the quantization-based
schemes.

In addition, some existing offline deep hashing
methods [38–42] use deep learning techniques to train the
hashing function and map the image data into low-di-
mensional binary codes to complete the mission of image
retrieval, but as the amount of data increases, the
retraining model consumes more time whenever new data
arrive. For example, deep transfer hashing (DTH) [42]
trains a CNN model and inputs the online generated
image pairs and their labels into the network. 'e loss
function of the model makes the outputs of similar in-
stances close, while the outputs of dissimilar instances are
pushed farther, thus obtaining the binary codes repre-
senting the semantic structure of the original image pairs.
However, this method requires a complex relaxation
process and a relatively large number of bits to obtain
satisfactory retrieval results.

3. The Proposed Framework

Figure 1 shows the overall framework of our proposed
discriminative similarity-balanced online hashing
(DSBOH), which contains two main modules, namely
discriminative codebook and balanced similarity.'e details
of the proposed DSBOH are presented as follows.

3.1. Notations. Assume that N d-dimensional data denoted
as Xt � [xt

1, xt
2, . . . , xt

nt
] ∈ Rd×nt are fed into the system at the

t stage, whose corresponding label L is expressed as
Lt � [lt1, lt2, . . . , ltnt

] ∈ Nnt . Our goal is to generate k-di-
mensional binary codes Bt � [bt

1, bt
2, . . . , bt

nt
] ∈ 1, −1{ }k×nt ,

k≪d. 'e mapping matrix to be learned for reducing the
d-dimensional real-valued data Xt to k-dimensional binary
data Bt is represented as Wt ∈ Rd×k. 'e expression of Bt is
defined as follows:

B
t

� F X
t

 � sgn W
tT

X
t

 , (1)

where F(·) represents the hashing function, WtT represents
the transposition of Wt, and sgn(·) is the symbolic function
defined as follows:

sgn(x) �
1, 0≤ x,

−1, 0> x.
 (2)

To retain the similarity or dissimilarity relationship
between the newly arrived streaming data and the previously
arrived data, we consider constructing the hashing function
with a similarity matrix. At the t stage, the currently arriving
data are defined as Xt

c � [xt
c1, xt

c2, . . . , xt
cnt

] whose corre-
sponding labels are represented as Lt

c, and the generated
hash codes are represented as Bt

c.'e data arriving before the
t stage are Xt

a � [X1
c , X2

c , . . . , Xt−1
c] whose corresponding

labels are represented as Lt
a, and the generated hash codes are

represented as Bt
a. All symbol notations utilized in this study

are presented in Table 1.

3.2. Hadamard Codebook. To maintain the maximum in-
formation entropy of hash codes, we construct a Hadamard
codebook in three steps. First, we generate an orthogonal
Hadamard matrix that is 2q-dimensional (q is a positive
integer) according to the definition Cij � (−1)(i− 1)(j− 1),
where Cij is the jth element of the ith row in matrix C. 'e
Hadamard matrix can generate independent hash codes that
satisfy two principles of the error-correcting output code:
the Hamming distance between columns is maximized to
ensure a significant difference between classifiers, and the
Hamming distance between rows is maximized to have a
strong error correction ability. Attention should be paid to
guarantee that the dimension of the Hadamard matrix is a
bit larger than the number of labels. Second, we assign data
from the same class to the same column vector of the
Hadamard matrix C to be the target vector in the Hadamard
codebook C. In particular, when a batch of new data is
received, we randomly and nonrepeatedly select certain
columns in the Hadamard matrix to construct virtual
multilabel vectors in the Hadamard codebook. When the
label of the new data is the same as the data that arrived
before, it is assigned to the same column vector. 'ese
vectors are aggregated to form a codebook C. Finally, we use
locality-sensitive hashing (LSH) [43] to align the code length
of the Hadamard codebook with that of the hash codes.

To maintain the independence of the hash code and
retain the global distribution information, we define the loss
function L1 based on the Hadamard codebook as follows:

Scientific Programming 3

L1 � min
Wt

F X
t

 − CJ Xt()

������

������

2

F
, (3)

where Ci represents the ith column of codebook C, J(xt
i
)

denotes the label category of xt
i , and ‖ · ‖F is the Frobenius

norm of a matrix.

3.3. Balanced Similarity. Suppose that there are two input
data xi and xj, the corresponding labels are li and lj and the
hash codes are expressed as Bi � [bi1, bi2, . . . , bik]T ∈
1, −1{ }k×1 and Bj � [bj1, bj2, . . . , bjk]T ∈ 1, −1{ }k×1, respec-
tively. Sij represents the similarity matrix of xi and xj. If xi

and xj belong to one category, that is, li � lj, then Sij � 1.We
expect that the hash codes within the same category are the
same; that is, Bi � [bi1, bi2, . . . , bik]T � [bj1, bj2, . . . , bjk]T

� Bj. Because the product of the same binary codes is 1,
BT

j Bj � k � kSij. Conversely, if xi and xj are within different
categories, that is, li ≠ lj, then Sij � −1. We also expect that

the hash codes from different categories are different; that is,
Bi � [bi1, bi2, . . . , bik]T � [−bj1, −bj2, . . . , −bjk]T � −Bj. Be-
cause the product result of the different binary codes is −1,
BT

i Bj � −k � kSij. In sum, the product of BT
i and Bj has a

common value with kSij, which means that we can retain the
similarity relationship of input data into the Hamming space
through the above method as follows:

min
Bt

i
,Bt

j

B
tT
i B

t
j − kS

t
ij

�����

�����
2

F
. (4)

To keep the similarity relationship constructed from the
newly arrived data Xt

c at the t stage and the data Xt
a before

the t stage in the Hamming space, the relationship between
the inner product of the binary codes Bt

c and Bt
a and sim-

ilarity St is used. In addition, with the increase in the new
instances, the similarity matrix St becomes more and more
sparse because most image pairs are dissimilar [30]. To
prevent the model from overly relying on dissimilar in-
formation and ignoring the information of similar pairs, we
adjust the similarity matrix according to the similarity and
dissimilarity and convert the similarity matrix St to the
balanced similarity matrix S

t by multiplying by different
balance factors. 'e balanced similarity matrix S

t is defined
as follows:

S
t

ij �
μsS

t
ij, S

t
ij � 1,

μdS
t
ij, S

t
ij � −1,

⎧⎪⎨

⎪⎩
(5)

where S
t

ij and St
ij represent the element in the ith row and jth

column of matrices S
t and St, respectively. μs denotes the

impact factor of the similarity pairs, while μd denotes the
impact factor of the dissimilarity pairs. When μs is greater
than μd, the Hamming distance between similar pairs will
decrease, while that between dissimilar pairs will increase. By
adjusting the two balance factors, the problem of data

1 1 1 1 1 1
1 -1 -1 -1 1 -1
1 1 -1 1 -1 -1
1 -1 1 -1 -1 1
1 1 1 -1 -1 -1
1 -1 -1 1 -1 1
1 1 -1 -1 1 1
1 -1

1
1
-1
-1
1
1
-1
-1 1

1
1
1
1
-1
-1
-1
-1 1 1 -1

-1 -1
-1 -1
-1 -1
-1 1
-1 -1
1 -1

1 -1
-1 1
1 -1
-1 -1
-1 -1
1 1
-1 -1
1 1

-.2 -.2
-.2 -.2
-.2 -.2
-.2 1.2
-.2 -.2
1.2 -.2

1 1 -1 -1 -1 1
-1 -1 1 -1 -1 1
1 -1 -1 1 1 1
-1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1
1 1 1 1 1 1
-1 -1 -1 -1 -1 -1
1 1 1 1 1 -1

× r ≈
×

TS t Ŝ t

input data

new data

arrived data Bt
a Bt

c

Hadamard matrix

1 1 1 1 1
-1 -1 -1 1 -1
1 -1 1 -1 -1
-1 1 -1 -1 1
1 1 -1 -1 -1

W2 W7

W8

W1
W4 W5

W6

W3-1 -1 1 -1 1
1 -1 -1 1 1
-1 1 1 1 -1

Hadamard codebook (a)

(b)

(c)

Figure 1:'e overall framework of the proposed discriminative similarity-balanced online hashing (DSBOH). (a)'e hash codes generated
by the constructed Hadamard codebook for the input data are independent of each other, but the similar relationship between the data is
ignored. (b) 'e similarity matrix constructed from the new data and the arrived data guides the generated hash codes to have a stronger
classification ability but ignores the global data distribution. (c) 'e proposed algorithm can generate more discriminative hash codes for
satisfactory retrieval results.

Table 1: Notations utilized in this study.

Symbol Notations
Xt Input data at t stage
Lt Label of Xt

Bt Binary codes generated for Xt

Wt Hashing mapping matrix at t stage
Xt

c Data arriving currently at t stage
Lt

c Label of Xt
c

Bt
c Binary codes generated for Xt

c

Xt
a Data all arriving before t stage

Lt
a Label of Xt

a

Bt
a Binary codes generated for Xt

a

d Dimension of input data
k Dimension of binary code
N Number of input data
nt Number of input data at t stage

4 Scientific Programming

imbalance can be solved. 'us, the loss function of balanced
similarity can be defined as follows:

L2 � min
Bt

a,Bt
c

B
tT
c B

t
a − kS

t
�����

�����
2

F
,

s.t. B
t
c ∈ 1, −1{ }

k×nt , B
t
a ∈ 1, −1{ }

k×mt ,

(6)

where mt �
t−1
i�1ni denotes the total number of instances

that arrived before t stage.

3.4. Overall Formulation. Different from HCOH and
BSODH, which find the global data distribution or balanced
similarity via a local neighbor relationship, DSBOH aims to
generate discriminative binary codes for single or multiple
inputs by preserving global distribution information with
the help of Hadamard codebook and local pairwise rela-
tionship between the newly arrived data and the previously
arrived data in a seamless framework. When the data ex-
plode, the modal still has a strong generalization ability
because we consider retaining the semantic relationship
between the data at different stages. Furthermore, hash codes

are independent and discriminative due to the use of
codebook. 'erefore, we combine loss function L1 of the
Hadamard codebook hashing function in equation (3) and
loss function L2 of balanced similarity preservation in
equation (6) into the same objective function, which is
expressed as follows:

min
Bt

a,Bt
c,Wt

B
tT
c B

t
a − kS

t
�����

�����
2

F
+ λt

F X
t

 − CJ Xt()

������

������

2

F
,

s.t. B
t
c ∈ 1, −1{ }

k×nt , B
t
a ∈ 1, −1{ }

k×mt ,

(7)

where λt is the parameter to control the importance.
To minimize the quantization error between learned

hashing function F(Xt) and the target hash code Bt, the
quantized loss function is defined as follows:

min
Wt

F X
t

 − B
t

�����

�����
2

F
. (8)

Finally, adding equation (8) into (7), and adding the
Frobenius norm of Wt as a regular term, the overall for-
mulation is expressed as follows:

L � min
Bt

a,Bt
c,Wt

B
tT
c B

t
a − kS

t
�����

�����
2

F
+ λt

F X
t

 − CJ Xt()

������

������

2

F
+ σt

F X
t

 − B
t

�����

�����
2

F
+ εt

W
t

����
����
2
F
,

s.t.
B

t
c ∈ 1, −1{ }

k×nt ,

B
t
a ∈ 1, −1{ }

k×mt ,

(9)

where σt and ϵt are parameters to control the importance of
each module.

3.5. Alternating Optimization. Owing to the discrete re-
strictions of the binary codes, the optimization problem of
the variables in equation (9) is nonconvex [44, 45]. In this
regard, an alternating optimization technique is adopted to
deal with our proposed loss function L. 'at is, when a
variable is updated, others are fixed as constants.'e specific
details of the implementation are introduced as follows.

(1) Solving Wt: fix Bt
a and Bt

c, so that the first term in
equation (9) can be eliminated. 'e objective
function becomes:

min
Wt

λt
F X

t
 − CJ Xt()

������

������

2

F
+ σt

F X
t

 − B
t
c

�����

�����
2

F
+ εt

W
t

����
����
2
F
.

(10)

Replacing the formula F(Xt) � sgn(WtTXt) in
equation (1) with F(Xt) � tanh(WtTXt) for opti-
mization convenience, we obtain the following:

min
Wt

tan h W
tT

X
t
c − CJ

Xt
c()

�������

�������

2

F

+ σt tanh W
tT

X
t
c − B

t
c

�����

�����
2

F
+ εt

W
t

����
����
2
F
. (11)

Using the formula of matrix A:

‖A‖F �

��������

tr A
T
A

�

��������

tr AA
T

. (12)

We convert equation (11) into the form of the trace
of the matrix as follows:

min
Wt

tr W
tT

X
t
c − CJ

Xt
c()

 X
tT
c W

t
− C

T

J
Xt

c()

+ σt
tr W

tT
X

t
c − B

t
c X

tT
c W

t
− B

tT
c

+ εt
tr W

t
W

tT
 .

(13)

Scientific Programming 5

After simplification, we obtain the following:

min
Wt

1 + σt
 X

t
cX

tT
c +

t

I tr W
t
W

tT

− 2tr W
tT

X
t
c

CJ
Xt

c()
+ σt

B
t
c ,

(14)

where I stands for the d-dimensional identity matrix.
Equation (14) takes the partial derivative of Wt and
makes the result zero. 'at is:

1 + σt
 X

t
cX

tT
c + εt

I W
t

− X
t
c

CJ
Xt

c()
+ σt

B
t
c � 0.

(15)

'erefore, we update Wt with the following
equation:

W
t

� 1 + σt
 X

t
cX

tT
c + εt

I
− 1

X
t
c

C
T

J Xt()
+ σt

B
tT
c .

(16)

(2) Solving Bt
a: fix Wt and Bt

c; therefore, only the first
term remains in equation (9). 'e objective function
now becomes:

min
Bt

a,Bt
c,Wt

B
tT
c B

t
a − kS

t
�����

�����
2

F
. (17)

According to Ref. [46], the F norm is changed to the
L1 norm; the result is as follows:

B
t
a � sgn B

t
c
S

t
 . (18)

(3) Solving Bt
c: fix Wt and Bt

a. Equation (9) becomes:

min
Bt

c

B
tT
c B

t
a − kS

t
�����

�����
2

F
+ σt

F X
t

 − B
t
s

�����

�����
2

F
. (19)

For further optimization, we remove irrelevant items
and obtain the following:

min
Bt

c

B
tT
c B

t
a

����
����
2
F

− 2tr P
T
B

T
s , (20)

where P � kλtBt
a

St
T

+ σtWtTXt
c. According to su-

pervised discrete hashing (SDH) [6] and BSODH
[30], the optimization in equation (20) is NP hard, so
we turn the matrix into a combination of row vec-
tors, transferring the problem into row by row
updating. 'at is to say, equation (20) becomes:

min
b

t

cr

b
tT

ar
b

t

cr + Bt
a

T B
t

c

�����

�����
2

F
− 2tr pt

ar

Tb
t

cr + Pt
T B

t

c , (21)

where b
t

cr, b
t

ar, and pr are the rth row of Bt
c, B

t
a, and P;

B
t

c, Bt
a, and P

t are the remaining parts of Bt
c, Bt

a, and P

except for the rth row, respectively. 'e above for-
mula is expanded to obtain the following:

min
b

t

cr

bt
ar

Tb
t

cr

������

������

2

F
+ Bt

a

T B
t

c

�����

�����
2

F
+ 2tr Bt

c

T B
t

a
bt

ar

T

− 2tr pt
ar

Tb
t

cr − 2tr Pt
T B

t

c ,

(22)

'e equation (22) is simplified to obtain the
following:

min
b

t

cr

tr Bt
c

T B
t

a
bt

ar

T
− pt

r

T
 b

t

cr . (23)

'erefore, we update row by row according to the
following rules:

b
t

cr � sgn pr − b
t

ar
Bt
a

T B
t

c . (24)

'e proposed DSBOH is summarized in Algorithm 1.

Input: training instances X; labels L; the number of
data batches T; code length k; parameters λt, σt, ∈t.
Output: binary codes B and hash map matrix W.

Initialize W and WLSH with the normal Gaussian
distribution

Generate Hadamard matrix of r-dimension
if r≠ k then

Adopt LSH for Hadamard to get codebook C

else
Make Hadamard as codebook C

end if
while T←1 do

Denote the data coming currently as Xt
c

Set Xt
a � [Xt

a; Xt
c], Bt

a � [Bt
a; Bt

c]

Compute S according to labels
UpdateWt via equation (16) andBt

a via equation (18)
while r becomes k←1 do

Update bt
cr via equation (24)

end while
end while
Set W � Wt and calculate Bt � sgn(WtTXt)

Return W, B

4. Experiments

To prove the effectiveness of DSBOH, extensive experiments
on three widely used image datasets are conducted in this
section and compared them with several advanced online
hashing techniques.

4.1. Datasets. CIFAR-10 [47] is an inclusively applied
dataset for image retrieval and classification. It is composed
of 60,000 samples selected from ten classes, and each sample

6 Scientific Programming

is represented by 4096-dimensional CNN features. 'e ten
classes are airplane, automobile, bird, cat, deer, dog, frog,
horse, ship, and truck. Each category includes 6,000 samples.
We randomly select 5,900 samples from each category as the
training set; the remaining images are set as the testing set.
From the training set, 20,000 instances are utilized for
learning hashing functions [31]. Twenty example images
from each category of CIFAR-10 are shown in Figure 2.

MNISTconsists of 70,000 hand-written digital images with
10 categories, which include numbers 0 to 9; each image is
represented by a 784-dimensional vector.We randomly sample
100 instances from each class to construct the testing set and
make use of the remaining part to compose the training set.
20,000 images randomly selected from the training set are used
to learn the hash model [18]. We randomly select 27 example
instances from each class to show in Figure 3.

Places205 [48] is a large-scale scene-centric dataset that
contains 205 common scene categories and 2.5million images
with labels. First, the fc-7 layer of AlexNet [49] calculates the
features of each image, and then, PCA is exploited to simplify
these features into 128-dimensional vectors.We stochastically
choose 20 images from each category to form the test set, and
the others automatically consist of the training set. 100,000
images in the training set are randomly selected to learn the
hashing functions. Two hundred randomly picked images of
Places205 are shown in Figure 4.

4.2. Experimental Settings

4.2.1. Parameter Settings. According to experience, the
ranges of λt, σt, and ϵt for the proposed DSBOH are set in
0: 0.05: 5{ }. For the CIFAR-10 dataset, the best combination
for (λt, σt, ∈t) is empirically adopted to (0.7, 0.3, 0.8). For the
MNIST dataset, we set (0.1, 0.3, 1.2) as the configuration of
(λt, σt, ∈t). For the Places205 dataset, (0.1, 0.8, 0.2) corre-
sponds to (λt, σt, ∈t). Table 2 shows the detailed parameters
of DSBOH on the CIFAR-10, MNIST, and Places205
datasets. In addition, we conducted experiments with hash
codes of different lengths from the set [8, 16, 32, 48, 64, 128].
It is worth mentioning that SketchHash requires the size of a
batch greater than that of hash codes [21]. 'ence, we only
show the results of SketchHash under 64 bits.

4.2.2. Evaluation Protocols. To evaluate the proposed
method, we apply a set of widely adopted protocols, which
includes the mean average precision (mAP), the average
accuracy of the first 1000 retrieved samples (mAP@1000),
which is used for the large dataset Places205 to reduce the
calculation time, precision within a Hamming sphere with a
radius of 2 centered on every query point (Precision@H2),
and the average precision of top-R retrieving neighbors
(Precision@R). We also compare the running time on
CIFAR-10 and MNIST with other methods. Additionally,
the precision-recall curves on CIFAR-10 and MNIST are
adopted to evaluate our proposed method.

4.2.3. Compared Methods. We contrast the proposed
DSBOH with several advanced online hashing methods,
including OKH [25], OSH [28], AdaptHash [26], Sketch-
Hash [21], and BSODH [30]. All the results of the above
methods are implemented via the publicly available source
codes. We implement all the methods using MATLAB on a
single computer equipped with a 3.0GHz Intel Core i5-8500
CPU and 16GB RAM; all results shown in this work are the
average of the three runs.

Figure 3: Example images of MNIST dataset.

Figure 4: Example images of Places205 dataset.

Table 2: Parameter settings to CIFAR-10, MNIST, and Places205
on DSBOH.

Parameter CIFAR-10 MNIST Places205
λt 0.7 0.1 0.1
σt 0.3 0.3 0.8
ϵt 0.8 1.2 1.2
μs 1.5 1.5 1.5
μd 0.5 0.5 0.5
nt 2000 20 000 20 000

Figure 2: Example images of CIFAR-10 dataset.

Scientific Programming 7

4.3. Results and Discussion. First, we can observe the ex-
perimental results of mAP and Precision@H2 on CIFAR-10
in Table 3. From this table, we can find that (1) mAP: in the
case of 16 bits, 32 bits, 48 bits, 64 bits, and 128 bits hash
codes, our proposed method has improved the second-best
BSODH method by 6.5%, 1.4%, 4.0%, 1.1%, and 1.6%, re-
spectively, and the mAP of DSBOH is slightly lower than
that of BSODH. (2) Precision@H2: in the case of 8 bits,
16 bits, and 32 bits, our proposed method is 10.6%, 14.8%,
and 4.6% better than the second-best BSODH, respectively.
Although the mAP at 48 bits, 64 bits, and 128 bits of our
proposed DSBOH slightly decreases compared with
BSODH, our DSBOH performs better than other online
hashing methods.

Table 4 shows the mAP and Precision@H2 results of our
raised DSBOH and compared techniques on the MNIST
dataset. 'e consequences indicate that (1) mAP: the pro-
posed DSBOH accomplishes an increase of 0.3%, 2.1%, 1.2%,
0.8%, 1.5%, and 2.1% for mAP compared with the second-
best BSODH in 8 bits, 16 bits, 32 bits, 48 bits, 64 bits, and
128 bits. Hence, the superiorities of DSBOH are demon-
strated. (2) Precision@H2: the Precision@H2 of our DSBOH
is much better than BSODH by 9.5%, 9.4%, and 2.3% for the
8 bits, 16 bits, and 32 bits, respectively. 'e performance of

our DSBOH is slightly lower than that of BSODH in terms of
48 bits, 64 bits, and 128 bits.

'e experimental consequences of mAP@1000 and
Precision@H2 on the Places205 database are expressed in
Table 5. From this table, we can learn that (1) mAP@1000:
our proposed DSBOH is 1.3%, 0.5%, and 1.0% better than
the second-best BSODH in terms of 48 bits, 64 bits, and
128 bits, respectively, and ranks second in terms of 8 bits,
16 bits, and 32 bits. (2) Precision@H2: the outcome of
Precision@H2 for our DSBOH is the highest at 32 bits and
2.3% higher than the second-best method. For other hash bit
lengths, DSBOH slightly decreases compared with the best.

For further verification of the performance of our
DSBOH, we execute comparative experiments on Preci-
sion@R under 16 bits, 32 bits, and 64 bits hash codes on the
CIFAR-10 and MNIST datasets. As shown in Figure 5, the
proposed approach continuously reveals the best Precision@
R, which demonstrates the superiority of DSBOH. In ad-
dition, the precision-recall curves on the CIFAR-10 and
MNIST datasets are shown in Figures 6(a) and 6(b), re-
spectively. Both curves wrap more curves, which proves the
effectiveness of our algorithm. To clearly show the perfor-
mance, we calculate the blue area under the curve (AUC) of
the PR curves on CIFAR-10 and MNIST and obtain 95.70%

Table 3: mAP and Precision@H2 results on CIFAR-10 for 8, 16, 32, 48, 64, and 128 bits.

Methods
mAP PrecisionH2

8 bits 16 bits 32 bits 48 bits 64 bits 128 bits 8 bits 16 bits 32 bits 48 bits 64 bits 128 bits
OKH [25] 0.100 0.134 0.223 0.252 0.268 0.350 0.100 0.175 0.100 0.452 0.175 0.372
OSH [28] 0.123 0.126 0.129 0.131 0.127 0.125 0.120 0.123 0.137 0.117 0.083 0.038
AdaptHash [26] 0.116 0.138 0.216 0.297 0.305 0.293 0.114 0.254 0.185 0.093 0.166 0.164
SketchHash [21] 0.248 0.301 0.302 0.327 —— —— 0.256 0.431 0.385 0.059 —— ——
BSODH [30] 0.564 0.604 0.689 0.656 0.709 0.711 0.305 0.582 0.691 0.697 0.690 0.602
DSBOH 0.556 0.669 0.703 0.696 0.720 0.727 0.411 0.730 0.737 0.655 0.552 0.371
'e first-ranked results are given in bold.

Table 4: mAP and Precision@H2 results on MNIST for 8, 16, 32, 48, 64, and 128 bits.

Methods
mAP Precision@H2

8 bits 16 bits 32 bits 48 bits 64 bits 128 bits 8 bits 16 bits 32 bits 48 bits 64 bits 128 bits
OKH [25] 0.100 0.155 0.224 0.273 0.301 0.404 0.100 0.220 0.457 0.724 0.522 0.124
OSH [28] 0.130 0.144 0.130 0.148 0.146 0.143 0.131 0.146 0.192 0.134 0.109 0.019
AdaptHash [26] 0.138 0.207 0.319 0.318 0.292 0.208 0.153 0.442 0.535 0.335 0.163 0.168
SketchHash [21] 0.257 0.312 0.348 0.369 —— —— 0.261 0.596 0.691 0.251 —— ——
BSODH [30] 0.593 0.700 0.747 0.743 0.766 0.760 0.308 0.709 0.826 0.804 0.814 0.643
DSBOH 0.596 0.721 0.759 0.751 0.781 0.781 0.403 0.803 0.849 0.788 0.651 0.415
'e first-ranked results are given in bold.

Table 5: mAP@1000 and Precision@H2 results on Places205 for 8, 16, 32, 48, 64, and 128 bits.

Methods
mAP@1000 Precision@H2

8 bits 16 bits 32 bits 48 bits 64 bits 128 bits 8 bits 16 bits 32 bits 48 bits 64 bits 128 bits
OKH [25] 0.018 0.033 0.122 0.048 0.114 0.258 0.007 0.010 0.026 0.017 0.217 0.075
OSH [28] 0.018 0.021 0.022 0.032 0.043 0.164 0.007 0.009 0.012 0.023 0.030 0.059
AdaptHash [26] 0.028 0.097 0.195 0.223 0.222 0.229 0.009 0.051 0.012 0.185 0.021 0.022
SketchHash [21] 0.052 0.120 0.202 0.242 —— —— 0.017 0.066 0.220 0.176 —— ——
BSODH [30] 0.035 0.174 0.250 0.273 0.308 0.337 0.009 0.101 0.241 0.246 0.212 0.101
DSBOH 0.046 0.154 0.249 0.286 0.313 0.347 0.011 0.089 0.264 0.175 0.119 0.037
'e first-ranked results are given in bold.

8 Scientific Programming

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Pr
ec

isi
on

 @
 R

510 20 30 40 50 60 70 80 90 1001
R

OKH
SketchHash
AdaptHash

OSH
BSODH
DSBOH

(a)

510 20 30 40 50 60 70 80 90 1001
R

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Pr
ec

isi
on

 @
 R

OKH
SketchHash
AdaptHash

OSH
BSODH
DSBOH

(b)

510 20 30 40 50 60 70 80 90 1001
R

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Pr
ec

isi
on

 @
 R

OKH
AdaptHash
OSH

BSODH
DSBOH

(c)

510 20 30 40 50 60 70 80 90 1001
R

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Pr
ec

isi
on

 @
 R

OKH
SketchHash
AdaptHash

OSH
BSODH
DSBOH

(d)

510 20 30 40 50 60 70 80 90 1001
R

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Pr
ec

isi
on

 @
 R

OKH
SketchHash
AdaptHash

OSH
BSODH
DSBOH

(e)

510 20 30 40 50 60 70 80 90 1001
R

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Pr
ec

isi
on

 @
 R

OKH
AdaptHash
OSH

BSODH
DSBOH

(f)

Figure 5: Precision@R curves of compared algorithms on CIFAR-10 andMNIST. (a) 16 hash bits on CIFAR-10, (b) 32 hash bits on CIFAR-
10, (c) 64 hash bits on CIFAR-10, (d) 16 hash bits on MNIST, (e) 32 hash bits on MNIST, and (f) 64 hash bits on MNIST.

PR (AUC: 94.66%)

PR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pr
ec

isi
on

0.2 0.4 0.6 0.8 10
recall

(a)

PR

PR (AUC: 97.24%)

0.2 0.4 0.6 0.8 10
recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pr
ec

isi
on

(b)

Figure 6: Precision-recall curve on CIFAR-10 and MNIST under 32 bit hashing codes. (a) PR curve on CIFAR-10 and (b) PR curve on
MNIST.

Scientific Programming 9

and 97.28% AUCs, respectively, which verifies that our
learning model has a double high ratio of precision and
recall.

4.4. TrainingEfficiency. Figure 7 presents the training time of
our proposed method and compared approaches in terms of
32 bits on the CIFAR-10 dataset and MNIST dataset. As for
Figure 7(a), we notice that our proposed DSBOH runs faster
than AdaptHash, OSH, and BSODH but is very similar to
OKH and SketchHash. We find that in CIFAR-10, although
OKH and SketchHash have the shortest training time, their
model accuracy is very poor. 'e training time spent by
DSBOH is the shortest among the remaining algorithms, and
the training efficiency is the highest. According to Figure 7(b),
the training time of every method for comparison exceeds our
proposed DSBOH except for SketchHash. 'erefore, our
algorithm is efficient for online image retrieval.

5. Conclusion

In this study, we bring forward DSBOH as a novel scheme
that combines global distribution and balanced similarity to
generate discriminative hash codes for image retrieval. To
this end, we utilize the Hadamard codebook to assist the
construction of the hashing function and keep the similarity
between the newly arrived samples and the previously ar-
rived samples from the original real value space into the
Hamming space. Vast experiments on three benchmark
datasets demonstrated that DSBOH shows significant ad-
vantages in effectiveness and efficiency compared with
several innovatory online hashing methods. Since we use the
codebook to assign code words to single-label images, the
problem of code word assignment applied to multilabel
image retrieval is worthy of further study. It is also possible
to study a codebook that can better store the structure in-
formation of the image data in the future.

Data Availability

'e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

'e authors declare that they have no conflicts of interest.

Acknowledgments

'is work was partially supported by the National Natural
Science Foundation of China (nos. 62172120, 61762028, and
61 962 014), Guangxi Science and Technology Project (nos.
AD18281079, 2019GXNSFFA245014, 2019AC20014, and
AB19110038), Ministry of Education Key Laboratory of
Cognitive Radio and Information Processing (no.
CRKL190109), and Guangxi Key Laboratory of Intelligent
Processing Computer Image and Graphics (no. GIIP2001).

References

[1] H. Lu, R. Yang, Z. Deng, Y. Zhang, G. Gao, and R. Lan,
“Chinese image captioning via fuzzy attention-based dense-
net-bilstm,” ACM Transactions on Multimedia Computing,
Communications, and Applications, vol. 17, no. 1, 2021.

[2] H. Liu, R. Ji, J. Wang, and C. Shen, “Ordinal constraint binary
coding for approximate nearest neighbor search,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 41, no. 4, pp. 941–955, 2019.

[3] H. Wang, X. Liu, and X. Nie, “Supervised discrete hashing
through similarity learning,” Multimedia Tools and Applica-
tions, vol. 80, no. 11, Article ID 16215, 2021.

[4] S. Ge, C. Li, S. Zhao, and D. Zeng, “Occluded face recognition
in the wild by identity-diversity inpainting,” IEEE Transac-
tions on Circuits and Systems for Video Technology, vol. 30,
no. 10, pp. 3387–3397, 2020.

[5] X. Wang, R. Lan, H. Wang, Z. Liu, and X. Luo, “Fine-grained
correlation analysis for medical image retrieval,”Computers &
Electrical Engineering, vol. 90, Article ID 106992, 2021.

[6] F. Shen, C. Shen, W. Liu, and H. T. Shen, “Supervised discrete
hashing,” in Proceedings of the 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 37–45,
Boston, MA, USA, June 2015.

[7] J.-P. Heo, Y. Lee, J. He, S.-F. Chang, and S.-E. Yoon,
“Spherical hashing: binary code embedding with hyper-
spheres,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 37, no. 11, pp. 2304–2316, 2015.

4.53 4.98

20.73

93.45

36.12

7.81
0

20

40

60

80

100
tr

ai
ni

ng
 ti

m
e (

s)

SketchHash AdaptHash OSH BSODH DSBOHOKH

(a)

4.58

1.27

6.26

24.07

4.83 4.07

0

5

10

15

20

25

tr
ai

ni
ng

 ti
m

e (
s)

SketchHash AdaptHash OSH BSODH DSBOHOKH

(b)

Figure 7: Training time of compared methods on CIFAR-10 and MNIST under 32 bit hashing codes. (a) Training time of compared
methods on CIFAR-10 and (b) training time of compared methods on MNIST.

10 Scientific Programming

[8] M. Hashemi and M. Hall, “Detecting and classifying online
dark visual propaganda,” Image and Vision Computing,
vol. 89, pp. 95–105, 2019.

[9] J. Wang, T. Zhang, J. Song, N. Sebe, and H. T. Shen, “A survey
on learning to hash,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 40, no. 99, p. 1, 2016.

[10] Z. Chen, H. Lu, S. Tian et al., “Construction of a hierarchical
feature enhancement network and its application in fault
recognition,” IEEE Transactions on Industrial Informatics,
vol. 17, no. 7, pp. 4827–4836, 2021.

[11] P. Wang, D. Wang, X. Zhang et al., “Numerical and exper-
imental study on the maneuverability of an active propeller
control based wave glider,” Applied Ocean Research, vol. 104,
2020.

[12] X. Zhang, X. Li, Y. Liu, and F. Feng, “A survey on freehand
sketch recognition and retrieval,” Image and Vision Com-
puting, vol. 89, pp. 67–87, 2019.

[13] R. Lan, Y. Zhou, Z. Liu, and X. Luo, “Prior knowledge-based
probabilistic collaborative representation for visual recogni-
tion,” IEEE Transactions on Cybernetics, vol. 50, no. 4,
pp. 1498–1508, 2020.

[14] S. Ge, Z. Luo, C. Zhang, Y. Hua, and D. Tao, “Distilling
channels for efficient deep tracking,” IEEE Transactions on
Image Processing, vol. 29, pp. 2610–2621, 2020.

[15] Z. Liu, F. Chen, and S. Duan, “Distributed fast supervised
discrete hashing,” IEEE Access, vol. 7, 2019.

[16] P. K. Agarwal and R. Sharathkumar, “Streaming algorithms
for extent problems in high dimensions,” Algorithmica,
vol. 72, no. 1, pp. 83–98, 2015.

[17] S. Hong, H. Park, J.-S. No, T. Helleseth, and Y.-S. Kim, “Near-
optimal partial Hadamard codebook construction using bi-
nary sequences obtained from quadratic residue mapping,”
IEEE Transactions on Information =eory, vol. 60, no. 6,
pp. 3698–3705, 2014.

[18] W. Liu, J. Wang, R. Ji, Y. Jiang, and S. Chang, “Supervised
hashing with kernels,” in Proceedings of the 2012 IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 2074–2081, Providence, RI, USA, June 2012.

[19] U. Chaudhuri, B. Banerjee, A. Bhattacharya, and M. Datcu,
“Crossatnet–a novel cross-attention based framework for
sketch-based image retrieval,” Image and Vision Computing,
vol. 104, 2020.

[20] J. Tan, T. Zhang, L. Zhao, X. Luo, and Y. Y. Tang, “A robust
image representation method against illumination and oc-
clusion variations,” Image and Vision Computing, vol. 112,
2021.

[21] C. Leng, J. Wu, J. Cheng, X. Bai, and H. Lu, “Online sketching
hashing,” in Proceedings of the IEEE Conference on Computer
Vision Pattern Recognition, pp. 2503–2511, Boston, MA, USA,
June 2015.

[22] X. Chen, I. King, and M. R. Lyu, “Frosh: faster online
sketching hashing,” in Proceedings of the =irty-=ird Con-
ference on Uncertainty in Artificial Intelligence, UAI 2017,
E. Gal, K. Kersting, and A. T. Ihler, Eds.,
pp. 1790–2022pp. 1790–, Sydney, Australia, August 2017.

[23] Y. Long, L. Liu, S. Fumin, L. Shao, and L. Xuelong, “Zero-shot
learning using synthesised unseen visual data with diffusion
regularisation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 40, p. 99, 2017.

[24] L.-K. Huang, Q. Yang, and W.-S. Zheng, “Online hashing,” in
Proceedings of the IJCAI International Joint Conference on
Artificial Intelligence, pp. 1422–1428, Beijing, China, August
2013.

[25] L.-K. Huang, Q. Yang, and W.-S. Zheng, “Online hashing,”
IEEE Transactions on Neural Networks and Learning Systems,
vol. 29, no. 6, pp. 2309–2322, 2018.

[26] F. Cakir and S. Sclaroff, “Adaptive hashing for fast similarity
search,” in Proceedings of the 2015 IEEE International Con-
ference on Computer Vision (ICCV), pp. 1044–1052, Santiago,
Chile, December 2015.

[27] F. Cakir and S. Sclaroff, “Online supervised hashing,” in
Proceedings of the International Conference on Image Pro-
cessing, ICIP, pp. 2606–2610, Quebec City, Canada, September
2015.

[28] F. Cakir, S. A. Bargal, and S. Sclaroff, “Online supervised
hashing,” Computer Vision and Image Understanding,
vol. 156, pp. 162–173, 2017.

[29] F. Cakir, K. He, S. A. Bargal, and S. S. Mihash, “Online hashing
with mutual information,” in Proceedings of the 2017 IEEE
International Conference on Computer Vision (ICCV),
pp. 437–445, Venice, Italy, March 2017.

[30] M. Lin, R. Ji, H. Liu, X. Sun, Y. Wu, and Y. Wu, “Towards
optimal discrete online hashing with balanced similarity,” in
Proceedings of the 33rd AAAI Conference on Artificial Intel-
ligence, AAAI, pp. 8722–8729, Honolulu, Hawai, February
2019.

[31] M. Lin, R. Ji, H. Liu, and Y. Wu, “Supervised online hashing
via Hadamard codebook learning,” in Proceedings of the 2018
ACM Multimedia Conference, pp. 1635–1643, Seoul, Korea,
October 2018.

[32] D. Wang, Q. Wang, Y. An, X. Gao, and Y. Tian, “Online
collective matrix factorization hashing for large-scale cross-
media retrieval,” in Proceedings of the 43rd International ACM
SIGIR Conference on Research and Development in Infor-
mation Retrieval, pp. 1409–1418, Virtual Event, China, July
2020.

[33] Z. Qian, J. Xu, K. Zheng, P. Zhao, and X. Zhou, “Semantic-
aware top-k spatial keyword queries,” World Wide Web,
vol. 21, no. 3, pp. 573–594, 2018.

[34] D. Xu, I. W. Tsang, and Y. Zhang, “Online product quanti-
zation,” IEEE Transactions on Knowledge and Data Engi-
neering, vol. 30, no. 11, pp. 2185–2198, 2018.

[35] M. Liu, D. Zhang, S. Chen, and H. Xue, “Joint binary classifier
learning for ecoc-based multi-class classification,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 38, no. 11, pp. 2335–2341, 2016.

[36] M. Long, C. Yue, Z. Cao, J. Wang, and M. I. Jordan,
“Transferable representation learning with deep adaptation
networks,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 41, no. 12, pp. 3071–3085, 2018.

[37] L.-W. Huang, Y.-H. Shao, J. Zhang, Y.-T. Zhao, and
J.-Y. Teng, “Robust rescaled hinge loss twin support vector
machine for imbalanced noisy classification,” IEEE Access,
vol. 7, Article ID 65390, 2019.

[38] L. Zhu, H. Cui, Z. Cheng, J. Li, and Z. Zhang, “Dual-level
semantic transfer deep hashing for efficient social image re-
trieval,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 31, no. 4, pp. 1478–1489, 2021.

[39] L. Liao and Z. Li, “Deep hashing using n-pair loss for image
retrieval,” in Proceedings of the 16th International Conference
on Computational Intelligence and Security (CIS), pp. 20–24,
Minsk, Belarus, November 2020.

[40] J. Zhang and Y. Peng, “Query-adaptive image retrieval by
deep-weighted hashing,” IEEE Transactions on Multimedia,
vol. 20, no. 9, pp. 2400–2414, 2018.

[41] A. K. Bhunia, P. S. Raj Kishore, P. Mukherjee, A. Das, and
P. P. Roy, “Texture synthesis guided deep hashing for texture

Scientific Programming 11

image retrieval,” in Proceedings of the IEEEWinter Conference
on Applications of Computer Vision (WACV), pp. 609–618,
Waikoloa Village, Hawaii, January 2019.

[42] H. Zhai, S. Lai, H. Jin, X. Qian, and T. Mei, “Deep transfer
hashing for image retrieval,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 31, no. 2, pp. 742–753,
2021.

[43] M. Datar, “Locality-sensitive hashing scheme based on
p-stable distributions,” in Proceedings of the 20th ACM
Symposium on Computational Geometry, pp. 253–262,
NewYork, NY, USA, June 2004.

[44] S. Shalev-Shwartz, “Online learning and online convex op-
timization,” Foundations and Trends in Machine Learning,
vol. 4, no. 2, 2011.

[45] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” Proceedings
of the IEEE, vol. 86, no. 11, 1998.

[46] W.-C. Kang, W.-J. Li, and Z.-H. Zhou, “Column sampling
based discrete supervised hashing,” in Proceedings of the
=irtieth AAAI Conference on Artificial Intelligence,
pp. 1230–1236, AAAI Press, Phoenix, AZ, USA, February
2016.

[47] A. Torralba, R. Fergus, and T. William, “Freeman. 80 million
tiny images: a large data set for nonparametric object and
scene recognition,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 30, no. 11, pp. 1958–1970, 2008.

[48] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba,
“Places: a 10 million image database for scene recognition,”
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 40, no. 6, 2017.

[49] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet
classification with deep convolutional neural networks,”
Communications of the ACM, vol. 60, no. 6, pp. 84–90, 2017.

12 Scientific Programming

