
Research Article
An Algorithm Tool for Atom Decomposition and Interaction:
AD Visualiser

Xiaobo Liu

School of Computer Science, University of Manchester, Manchester M13 9PL, UK

Correspondence should be addressed to Xiaobo Liu; xiaobo.liu@sxgkd.edu.cn

Received 25 October 2021; Accepted 8 December 2021; Published 28 January 2022

Academic Editor: Punit Gupta

Copyright © 2022 Xiaobo Liu.*is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the rapid development of software-defined network and network function virtualization technology, the scale of infra-
structure and the number of available resources in cloud platforms continue to grow. It is also be used in AD Visualiser. AD is a
visualisation tool for displaying the atomic decomposition (AD) of OWL ontologies. As the size of ontologies increases, ontology
engineers become more difficult to understand and reuse ontologies. Atomic decomposition (AD) is a modular structure to help
ontology engineers modularly manage ontologies. It decomposes ontologies into sets of atoms, with dependency, based on
modules that provide strong logical guarantees (such as locality-based modules). *is paper describes the design and imple-
mentation process of AD Visualiser and discusses its usability for ontology engineers in their daily work. For example, using AD
Visualiser, ontology engineers avoid choosing signatures and determining the extraction results. *ey can extract modules very
simply and faster. Besides, the graph of AD’s modular structure should be helpful for engineers to intuitively explore and
comprehend ontologies.

1. Introduction

In recent decades, ontologies have progressively attracted
the attention of researchers and engineers due to their
unique knowledge expression in their field or industry [1].
Ontologies are widely used in many application fields, such
as agent systems [2], knowledge management systems [3],
and e-commerce platforms [4]. *ey can produce natural
language, integrate intelligent information, and provide
semantic-based access to the web. Additionally, they can also
be used to extract data from texts in addition to many other
applications to declare the knowledge embedded in them
explicitly [5]. Besides casual ontology users, ontology experts
even have been challenged to deal with the tasks of design,
maintenance, reuse, and integration of complex ontologies.
For example, in the medical industry, Systematized No-
menclature of Medicine – Clinical Terms (SNOMED CT)
[6], Foundational Model of Anatomy (FMA) Ontology [7],
and Gene Ontology (GO) are famous large ontologies. *eir
size also increases with the expansion of knowledge, which
makes them difficult to comprehend, edit, and use. For

example, FMA contains a large amount of knowledge that is
irrelevant to a particular application area, such as anatomy.
In this case, an increasing number of methodologies and
tools have been developed to support ontology-related work.

When creating ontologies, designers may be experts in
one field but is not familiar with other fields. Especially for
medium and large ontologies, such problems are more
common. Take the FMA ontology as an example; when
expanding the knowledge related to body structure, if the
creator only knows the bones but not the skin, then the most
straightforward and cheapest method is to obtain a subset of
the skin from existing ontologies. In addition, when using
FMA ontology, the dermatologist may not need orthopae-
dic-related knowledge. *e fastest and direct method is to
extract a subset of the dermatological knowledge from the
original ontology. *erefore, both in the process of creating
and using an ontology, it is helpful for ontology engineers to
extract a subset of knowledge about a specific term from the
existing ontology. In order to complete this task better, the
module extraction of ontologies have been explored in re-
cent years [8]. Syntactic locality-based module extraction

Hindawi
Scientific Programming
Volume 2022, Article ID 3065780, 16 pages
https://doi.org/10.1155/2022/3065780

mailto:xiaobo.liu@sxgkd.edu.cn
https://orcid.org/0000-0002-6467-267X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3065780

(ME) [9] is a module extraction algorithm. Its module ex-
traction time linearly depends on the size of the ontology.
However, for medium and large ontologies, there are some
disadvantages in extracting modules directly from the on-
tology [10]. First, loading the file into the memory for
subsequent ME will cause much delay. For example, GO’s
OWL file exceeds 200MB, and pre-loading it into the main
memory will cause a great burden on the memory. Second, the
conventionalME algorithm checks the relevance of every piece
of knowledge in the ontology, which wastes lots of time.*ird,
it is difficult to determine the content of the extracted module.
For example, the user only uses the term bone to extract the
module from FMA ontology through ME. *e result is un-
predictable and may be different from the user’s wishes. One
way to solve this problem is modularisation of ontologies.

Atomic decomposition (AD) is a fine-grained, well-
connected, and easily computable modular structure based
on modules that provide strong logical properties, such as
locality-based modules (LBMs) [11]. In the case that AD of
an ontology shows in text form, people uneasy directly
discover the internal connection between the overall
structure and the decomposition results. Intuitively, dis-
playing AD in graphical forms can make it more straight-
forward and more accessible for people to understand the
structure and internal relations of the results [12]. However,
displaying only graphical AD is less likely to display com-
plete information or directly help people extract modules.
*erefore, in order to improve the usability of tools, it is
essential to add features allowing users to explore and in-
teract with images. So far, it has been challenging to find an
AD visualisation tool that meets the assumptions afore-
mentioned, so we decided to develop such software called
AD Visualiser to fill the gap.

2. Background

2.1. Description Logics. Description logics (DLs) are a family
of knowledge depiction languages that describe a specific
domain’s knowledge in a well-structured and easy-under-
stood form [13]. Generally, a DL is a decidable fragment of
first-order logic (FOL) [14]. FOL is a standard for the
formalising of mathematics into first-order formulas
(named axioms). *en, it can be said that the DL is a
syntactically restricted subset of axioms in which truth is
computable. From the perspective of knowledge represen-
tation, DLs typically contain two main parts of domain
knowledge: a terminological part called the TBox (T) and the
assertional part called the ABox (A). *e union of these two
is called a knowledge base (K) [13]. Among them, the TBox
represents knowledge about the structure of the domain
(similar to the schema in JSON, XML, or database), while the
ABox is about a concrete scenario (akin to the data in JSON,
XML, or database).

Example 1 shows the knowledge base of the juice domain
(1–14 from ABox and 15 and16 from TBox).

Example 1
Juice� { α1: Apple ⊑Fruit,
α2: Orange ⊑Fruit,

α3: Adult ⊑Person,
α4: Child ⊑Person,
α5: Carrot ⊑ Vegetable,
α6: Tomato ⊑ Vegetable,
α7: NamedJuice⊑Juice,
α8: ChildJuice ⊑NamedJuiceH∃hasTagetPerson.Child,
α9: FruitJuice ⊑ JuiceH∃hasIngredient.Fruit,
α10: AppleJuice ⊑ FruitJuice H∃hasIngredient.Apple,
α11: OrangeJuice ⊑ FruitJuice
H∃hasIngredient.Orange,
α12: VegetableJuice ⊑
JuiceH∃hasIngredient.Vegetable,
α13: CarrotJuice ⊑ VegetableJuice
H∃hasIngredient.Carrot,
α14: TomatoJuice ⊑ VegetableJuice
H∃hasIngredient.Tomato,
α15: Bobby: Child,
α16: (Bobby, ChildJuice):: likes
}

To the semantics of DL is defined in terms of an in-
terpretation I � (“21600” o:spt� “75” o:preferrelative� “t”
path� “m@4@5l@4@11@9@11@9@5xe” filled� “f”
stroked� “f”> ΔI, ·I). *e interpretation domain ΔI is a
nonempty set, and an interpretation function ·I that maps
each atomic concept A to a subset AI of ΔI, each atomic role
r to a binary relation rI on ΔI ×ΔI, and each individual a to
an element aI ∈ΔI [13].

Different DL languages use different sets of constructors,
which distinguish and limit the expressive power of this DL.
*e two main DLs cited throughout this project are ALC

and SROIQ. *e constructors allowed in the language, their
syntax, and their semantics are described in Table 1, where
CI is the extension of C in I and b ∈ ∆I is an r-filler of a in I if
(a, b) ∈ rI.

*e logic-based semantics of DLs make each statement
to be well-defined and easy to share, so it is easy to judge
whether a knowledge base entails a piece of knowledge. DLs
use the standard entailment symbol “|� ” because the se-
mantics of entailment in DL coincides with FOL [13]. En-
tailment is a deduction or implication, that is, some axioms
are logically derived from or implied by other axioms.

2.2. Ontology. In computer science, the term ontology
typically represents a formal, explicit specification of a
conceptual model specified using some ontology languages
[15]. To be more specific, the ontology denotes a computer-
processable and well-defined knowledge description form
about concepts and their interrelationships. Previous on-
tology languages are generally based on semantic networks
and frames. In contrast, recently, a majority of ontology
languages is based on DLs [16]. An ontology can be viewed
as a knowledge base. *erefore, an ontology can be regarded
as a finite set of axioms. So we can call Example 1 juice
ontology.

2 Scientific Programming

*e backbone of ontology entails a generalization/spe-
cialization hierarchy of concepts, such as taxonomy. *is
example can be described in lots of ontology languages. In
particular, the most concerned language in this project is
Web Ontology Language (OWL), a state-of-the-art semantic
web language standardized by the World Wide Web Con-
sortium (W3C). OWL uses its own grammar to explain the
grammar in DL, but such a grammatical sentence is too long
and complicated. In order to facilitate users to understand
the meaning of the content, AD Visualiser uses Manchester
syntax, which is a user-friendly compact syntax of OWL
ontologies. It is frame-based, contrary to other axiom-based
syntaxes of OWL. *is project involves these three kinds of
syntaxes in total. Example2.2.1 borrows the DL syntax. *e
OWL syntax is mostly used in OWL files. For the conve-
nience of users to read and understand, the software uses the
Manchester syntax on the user interface. *e comparison of
the DL, OWL, and Manchester syntaxes is shown in Table 2.

2.3. Module. Given a seed signature Σ, a module M is a
subset of the ontology O. *erefore, for all axioms with
terms only from the signature, we have M |� a if O |� a. As
the usability of OWL ontology continues to improve, some
of them already contain thousands of concepts. Medium to
large ontologies generally contains more than 30,000 axioms
(such as gene ontology, including 558,760 axioms [17]). As a
result, these posed some major challenges to the entire
development process of the ontology, such as understand-
ing, editing, and debugging. As a subset of ontology,
modules can be used to share and reuse parts of ontology. In
recent years, several approaches to ontology module ex-
traction and ontology modularisation have been explored.
For these tasks, the most fundamental question is which
module to choose as the basis. *is project focuses on lo-
cality-based modules (LBMs), a family of logical modules

that provide strong logical guarantees. Compared with other
module types, they are proved to be more suitable for
module extraction [8]. *e reasons are that they are easy to
obtain, are computationally efficient, and has been imple-
mented and used to extract modules [18]. Besides, LBMs are
as expressive as SROIQ: they provide necessary and unique
features (called logical guarantee), such as coverage, self-
contained functions, and exhaustive functions, which make
the axioms locality. In other words, for each axiom, whether
it is included in the module or not, it must be independent of
other axioms. *ey strike a perfect balance between the
computable and the minimal.*is means that given the seed
signature, although the LBM extracted from the ontology
possibly contains axioms that are not relevant to the sig-
nature, the extraction time is truly short.

2.4. Atomic Decomposition. Atomic decomposition (AD) is
a method of decomposing ontology into modules and of-
fering a modular structure. Using LBMs as the basis, AD
divides an ontology into numerous portions, called atoms,
which have a dependency relationship in pairs. An atom is a
set of axioms that always cooccur in a module. *us, any Σ
−module either contains all axioms in the atom or does not
contain any axioms. Dependency relation means that all
modules containing atom a must also contain atom b,
meaning that atom a depends on atom b.

All atoms of the ontology are represented as A(O); then
each atom in A(O) is disjoint with any another one. Atoms
are maximal subsets of axioms that are not separated by any
Σ −module. *e definition of the genuine module is that a Σ
−module that cannot be decomposed as the union of two or
more incomparable modules. *erefore, every module can
be obtained as the union of suitable genuine modules. In this
sense, atoms are genuine modules; thus, a new module can
be obtained with the union of atoms.

Table 1: DLs semantics.

Language Name Syntax Semantics
ALC Top ⊤ ΔI

Bottom ⊥ ∅
Intersection C⊓D CI∩DI

Atomic negation A ΔI∖AI

Limited
Existential

Quantification value ∃r a ∈ ΔI ∣ ∃b · (a, b) ∈ rI

Restriction ∀r.C a ∈ ΔI ∣ ∀b.(a, b) ∈ rI⟶ b ∈ CI

SROIQ Union C⊔D CI⋃DI

Negation C ΔI∖CI

Role chain ∘ r ∘ s⊑t
Nominal a{ } a{ }I⊆ΔI with# a{ }I � 1
Inverse
Role r− (a, b) ∈ ΔI∧ΔI ∣ (a, b) ∈ rI

Unqualified ≥nr a ∈ ΔI ∣ # binΔI ∣ (a, b) ∈ rI ≥ n

Number ≤nr a ∈ ΔI ∣ # binΔI ∣ (a, b) ∈ rI ≤ n

Restriction � nr a ∈ ΔI ∣ # bin ΔI ‖ (a, b) ∈ rI} � n}

Qualified ≥nr.C a ∈ ΔI ∣ # b ∈ CI ≥ n

Number ≤nr.C a ∈ ΔI ∣ # b ∈ CI ≤ n

Restriction � nr.C a ∈ ΔI ∣ # b ∈ CI � n

Scientific Programming 3

*e definition of dependency is a binary relation be-
tween atoms in terms of cooccurrence in modules. *e
relation is a partial order: if both a depends on b, and b
depends on a hold, consequently a� b.We use > for the strict
partial order underlying ≤. We can use the standard notions
of a principal ideal (a downwards closed subset of a partially
ordered set) and an antichain:

(1) *e poset (A(O), >) is denoted as atomic decom-
position (AD) of O.

(2) *e principal ideal of an atom a ∈ A(O) is the set ↓ a:
� {b|a ≤ b}.

(3) An antichain of atoms is a set B ⊆ O such that a Ç b
for any two distinct.

An ontology’s modular structure is determined by all
modules and interrelations of the ontology or at least a
suitable subset thereof [11]. *is modular structure is based
on two fundamental notions: (a) an atom of the input
ontology O is a maximal subset of axioms that are never
separated by any module of O and (b) the dependency
relation between atoms of O captures a further kind of
cohesion and allows for a natural definition of basic modules
of O. Consequently, the atoms of O are O’s highly cohesive
and low-couple subsets, and the number of axioms in O
bounds that of atoms. Because AD is based on LBMs, it
also has three types corresponding to the notions of locality
(⊥ bot, ⊥ top, and T⊥∗ nested).

2.5. Existing Ontology Visualisers. A number of software
provides developers with a standard ontology development
environment, such as Prote´ge´ [19], SWOOP [20], and
OntoTrack [21]. *ese tools can assist users in completing
ontology-related work in the text form. For humans,
however, the text is not as intuitive as images. Hence, with
the rise of ontology, ontology visualisation software has
received widespread attention as a method of giving in-
formation well-defined meaning.

In the last couple of years, with the popularity of on-
tologies, a variety of ontology visualisation tools have been
developed.*ere are mainly two ways to realise them: a plug-
in of the ontology editor Prote´ge´ and a standalone web
application. But visual tools for AD of ontologies are still

scarce, one of which is a tiny visual tool for AD; it is a part of
Nicolas Matentzoglu’s framework, named Katana [22]. It only
illustrates the AD as a graph without any further operation or
information. However, the image gives viewers an insight to
consider the structure of ontologies. Since AD is a modular
structure of an ontology, the characteristics of the visible
results of the software and the overall design concept of the
software can be learned and referenced in the AD visual-
isation tool. *e following are three representative software.

2.5.1. Graph Visualisation of Ontologies. *e graphs are
typically laid out in force-directed, radial or hierarchical way,
which usually produce appealing visualisations. However,
only a few visualisations show complete ontology informa-
tion. For example, KC-Viz [23], OWLViz [24], and OntoGraf
[25] showmerely the class hierarchy of ontologies. Numerous
works provide more comprehensive graph visualisations that
represent all critical elements of ontologies. For example,
TGViz [26] and NavigOWL [27] use easy to understandable
node-link diagrams where all nodes and links are in different
colours. Other than that, 3D-graph visualisations for ontol-
ogies, such as OntoSphere and Onto3DViz, provide users
with a multidimensional sight to view ontologies.

2.5.2. UML-Based Ontology Visualisations. Unified Mod-
elling Language (UML) is not new to most software engi-
neers. *e benefits of presenting ontology information in
that language form are obvious: engineers can easily un-
derstand and have familiarity with the tools. However, its
disadvantages cannot be ignored: on the one hand, it is
unfriendly to users who are not familiar with UML as some
basic knowledge of UML is required. On the other hand, it is
designed to associate objects in the field of software engi-
neering, and there are some limitations when it comes to the
knowledge presentation domain. For example, ontology
focuses on the description of relationships between classes,
while software engineering focuses on the description of
properties and methods of objects themselves.

2.5.3. Symbol-Based Ontology Visualisations. *e
OWLGrEd Ontology Visualiser (OWLGrEd) [28] is an
online visualiser for OWL ontologies using a compact UML-

Table 2: Comparison of syntaxes.

DL OWL Manchester

T
⊥ ConceptnameRole name
C ¬ C
D HD
HD
∃ r . C
∀ r . C
(≥n r . C)
(≤n r . C)
(�n r . C)

owl:*ing
owl:Nothing Class
Object property

ObjectComplementOf(C)
ObjectUnionOf(C D)

ObjectIntersectionOf(C D)
ObjectSomeValuesOf(C D)
ObjectAllValuesFrom(r C)
ObjectMinCardinality(n r C)
ObjectMaxCardinality(n rC)
ObjectExactCardinality(n rC)

owl:*ing
owl:Nothing

Class
Object property

notC
C or D
C and D
r some D
r only C
r min nC
r max nC

r exactly n C

4 Scientific Programming

based notation. OWLGrEd provides a “bird’s-eye view” of
the ontology to help developers debug ontologies. *e no-
tation of OWLGrEd is UML-style diagrams that most
software engineers are familiar with and easy to use.
OWLGrEd map OWL features to UML concepts, that is,
OWL classes to UML classes, data type properties to class
attributes.

Using defined symbols to explicit splitting rules, symbol-
based ontology visualiser specifies different elements in the
graph.*e visual representation of OWL ontology is a visual
language for ontology representation. It defines the
graphical descriptions of most elements of OWL, and these
are represented as forced graph layouts of visual ontologies
that replace text.

*e Visual Notation for OWL Ontologies (VOWL)
[29, 30] is a type of visual language for the user-oriented
ontologies representation. It provides graphical represen-
tations for elements of the OWL Web Ontology Language.
Not only domain experts but also beginners have the ability
to understand the content of OWL ontology with clearly
specified symbols.

3. Design and Implementation

3.1. Design. *is project aims to create an atomic de-
composition visualiser (AD Visualiser) for ontology en-
gineers to express the AD of large- and medium-sized
ontology intuitively and comprehensively. AD Visualiser
focuses on two parts of the visual representation: one part is
the hierarchical structure of classes and object attributes,
and the other part is the atoms and their relationships. *e
functional design of AD Visualiser is mainly based on the
three ontology-related tasks mentioned in Section 3, to help
users complete tasks-related tasks. AD Visualiser can parse
and display a graph for the AD of an OWL ontology in an
interactive way. For medium and large ontology, the way to
visualise AD is more direct and objective than using other
edit tools such as Prote´ge´, and it offers a method to find
the module related to a signature faster. Users can expe-
ditiously browse the ontology in a modular structure to find
and extract the modules they need. In the reasoning result,
users can quickly see classes, object property hierarchy, and
graphical AD. Users can detect the atom’s information
efficiently in the tool. *ey can recognise the notion of the
modular structure of an ontology, which has the potential
to help users comprehend, share, and maintain ontology.
Users can use it to guide their extraction choices, to un-
derstand its topicality, connectedness, structure, unnec-
essary parts, or differences between actual and intended
modelling. For example, ontology designers can inspect the
modular structure and observe unconnected parts that are
intended to be connected and modelled parts of their
ontology.

Figure 1 depicts the system flow chart. It illustrates the
possible results and corresponding logic of all operations
that the user may perform from the start of the software. In
addition, it also reveals how the tool guides users to explore
the ontology, and what functions the tool provides for users
to interact with the ontology.

3.2. Basic Building Blocks of AD Visualiser. AD Visualiser
uses the OWL API to underpin all ontology management
tasks, including loading, decomposing, and saving ontol-
ogies. *en, it uses Gephi API to draw the graph.

3.2.1. User Interface. Figure 2 shows the user interface (UI)
prototype diagram of AD visualiser that includes the menu
bar, search bar, classes (and object property) hierarchy, and
graphical AD.

*e visualisation of AD is one of the most significant
tasks of ADVisualiser.When displaying image-based AD, in
order to retain and display as many AD functions as pos-
sible, we set the following information conversion method
from text to image. *e features of AD determine the
structure of its graphical result. In the graph, each node
corresponds to an atom in the AD, and each arrow line
between a pair of nodes corresponds to a dependency re-
lationship between two atoms. Moreover, the graph layout
depends on the source data structure so that the graph of AD
can be easily generated. *e reason is that the result of AD is
a partial set, so the graph of AD is the type of directed acyclic
graph (DAG).

In an AD, an atom has many attributes. For example, an
atom’s size is determined by the number of its axioms; an
atom may be top or bottom atom according to its position
(an atom only have dependents may be at the bottom, and
the atom only have dependencies may be at the top); an atom
may have many types of labels (positive Boolean formula
(PBF) label is used in this project, which is a representation
of all seed signatures of the atom’s module with the only
union and intersection constructors). In the program of AD
Visualiser, every node is an object with multiple attributes to
represent the relevant atom’s attributes. *is system defines
a set of visual language systems to help users understand AD
in a visual language way. For example, the node’s size is
relevant to the atom’s size; the node’s position shows the
atom’s position in the AD; the node’s label corresponds to
the atom’s label; and much more. *e features of nodes in a
graph are more intuitive and easy to understand than the
information of atoms in textual AD.

Algorithm 1 shows the process of drawing DAG in AD
Visualiser.

Another important component in AD Visualiser is hi-
erarchy trees of classes and object properties.

Algorithm 2 shows the process of building a classes tree.

3.3. Colour Scheme. Colours play a significant role in
beautifying user interfaces. For example, in graphical AD,
colours are important from differentiating nodes’ positions
to finding the target node to identifying a module. Besides,
elements in the background and foreground of a screen have
to be different colours. If their colours are the same, it is
difficult to identify the foreground elements immediately.
Hence, colours that distinguish with each other are also
meaningful.

Figure 3 illustrates that even the colours of the small
square and background are different, it is still ugly, and
people may feel uncomfortable when looking at them. *e

Scientific Programming 5

reason is that the contrast ratio for the two colours is smaller
than 4.5:1 [31].

If the contrast ratio is higher, the screen looksmore legible
and readable. Moreover, human beings may have different
experiences with the same colour. Some of us have defects in
vision, called colour blindness, which is defined as the in-
ability to distinguish the same colour differences (the most
common ones are red and green or blue and yellow). It is

estimated that 1 in 12 men and 1 in 200 women have such an
unusual colour experience [31]. In order to make these people
have a better experience, AD Visualiser provides a colour
blind mode for users to choose. *e solution for these users is
still to increase the contrast of colours. By using high-contrast
colours, they can distinguish these colours no matter what
actual colours are used. Following these colour matching
rules, the colour scheme of this project is shown in Table 3.

Choose
Nodes′

Label Type

Choose
Nodes′

Label Type

Choose
Colour
Schema

Colour
blind
Mode

Relative Size

Save Graph

SVG/PDF File
NoYes

Yes
NoNo YesYes

Normal
Schema

Colourblind
SchemaAbsolute sizeRelative SizeSimple LabelPBF Label

PBF Label

Show
Entities

Explore
Neibougher

hood

Highlight/un
highlight All
dependencies

Explore
Module

Module
Signautre

No

YesYes

Show/Hide
Label

Collapse/
UnCollapse Exit Menu

The Node
in DAG

highlighted

Yes

Node PBF
is true

HighLight Related Node in
DAG

Choose Tree
List Render

TypeLabel
IRI

Prefix

The Node
Highlight

The Node
Highlight

The Node
Highlight

Task Menu
HideCollapseUncollapse

Collapsed

YesYes

NoNoShowed

ShowHide
Extract

Module with
Terms

Add more
Terms

The Module

unhighlight all
dependencies

unhighlight
all

Dependents

Highlight all
Dependents

Highlight all
dependenciesAtom′s Entities

Highlighted HighlightedNo

Search
Terms

DAG Node
has

Node
Highlight

DAG

Gephi API

AD (O)

Start

JAVA GUI

UI

Reload

Reload the
File

Choose an
Owl File

OWLOntology
(O)

Close

End

OWL API

Classes, Object Property
Data

Java GUI

Trees

Figure 1: *e system flow chart.

Figure 2: User interface design.

6 Scientific Programming

In this project, many types of highlights are used to
distinguish the target nodes from others. *e author shows
people’s possible different experiences with colours in the
picture below. *ese include deuteranopia (Figure 4; lack of
green affects about 5% of men), protanopia (Figure 5; red
defects affect about 2.5% of men), tritanopia (Figure 6; blue
defect affects about 0.5% of men), and grayscale (Figure 7;
luminance-preserving grayscale simulation).

3.4. Functionality Introduction. Users can view a graphical
ADof anOWLfile and then explore theAD around or target to
their interested module with a signature. As mentioned before,
amodule is a principal ideal of an atom a; each atom is a unique
set of axioms; and each node in the graph corresponds to an
atom. To quickly find a, every atom has two types of labels,

*e simple label containing all terms in the atom and
positive Boolean formula (PBF) label. Given the terms, the

Input: An Ontology O
Output: A DAG g
(1) ad←AtomicDecomposition(O);
(2) g←DirectedGraph(ad);
(3) graphNodes←0/;
(4) topAtoms←topatoms ∈ ad
(5) dep(atom)←atoms ∈ dependenciesofatom
(6) foreachatom ∈ topAtoms do
(7) graphNodes ← graphNodes ∪ atom;
(8) end for
(9) repeat
10 if atom/graphNodes then

(11) graphNodes ← graphNodes ∪ atom;
(12) endif
(13) if dep(atom)� 0/then
(14) for eachatomChild ∈ dep(atom)do
(15) if atomChild/graphNodes then
(16) graphNodes ← graphNodes ∪ atomChild;
(17) endif
(18) endfor
(19) endif
(20) until add all the atoms in graphNodes of ad
(21) repeat
(22) if ad.getDependencies(atom).size()!� 0then
(23) foreachatomChild ∈ ad.getDependencies(atom)do
(24) g.addEdge(atom, atomChild);
(25) endfor
(26) endif
(27) until draw all the edges
(28) show the result g;

ALGORITHM 1: DAG drawing algorithm.

Input: An OntologyO
Output: A DAGgraph
(1) supperClass ← owl: :ing;
(2) supper ← Node sup perClass;
(3) repeat
(4) if subClasses (supperClass) ≠∅&& owl : Nothing ∉ subClasses (supperClass)
then
(5) foreachsubClass ∈ subClasses(supperClass)do
(6) subNode ← subClass
(7) supperNode.addSubNode(subNode);
(8) supperClass ← subClass;
(9) endfor
(10) endif
(11) until add all the classes as nodes in the tree
(12) show the result tree;

ALGORITHM 2: Tree building algorithm.

Scientific Programming 7

tool calculates each atom’s PBF label and then highlights
true-result corresponding nodes. With a, users can explore
the genuine module and extract it until they feel satisfied.

*ese are three solutions to tasks mentioned in Section
3.2:

(i) Ontologists not only have a bird’s-eye view of an
ontology with a modular structure but also can
focus on a small part of an ontology. Additionally,
they have the opportunity to check each atom’s
information. Hence, we suppose this tool is helpful
for them to refine ontologies.

(ii) A feasible way to merge ontologies is to import
other ontologies from the web. After merging, de-
signers can find, and the term may be involved in
many small ontologies to check whether or not they
are intended in the final big ontology. Conse-
quently, we suppose this tool should be useful for
ontology merging.

(iii) Developers have the opportunity to explore an
ontology with terms and extract their interesting
modules from an ontology in AD Visualiser.

*at is pretty helpful for them to reuse the ontology
flexibly.

3.5. Implementation

3.5.1. User Interface. Figure 8 depicts the layout of AD
Visualiser’s user interface. It depends on the GridBagLayout
[32], a type of flexible layout manager provided by the Java
platform.

Figure 9 displays the grid for the user interface. As shown
in the screenshot, the grid has two rows and four columns.
All the components are in the grid except the menu bar fixed
at the top of the window. Particularly, the panel in the lower
right corner spans three columns.

Using juice ontology as an example, Figure 10 shows
how the DAG looks like in AD Visualiser in which grey
nodes are bottom nodes and the others are yellow.

Figure 3: Colour contrast [31].

Table 3: Colour schema.

Name Colour Application

Green Nodes below connected to a node

Cyan Nodes direct connected to a node

Blue Nodes have hidden subnodes

Yellow Nodes are not bottom nodes

Grey Nodes are bottom nodes

Red1 Nodes contain one term

Red2 Nodes contain two terms

Red3 Nodes contain three terms

Red4 Nodes contain four terms

Red5 Nodes contain five terms

Red6 Nodes contain more than five terms

8 Scientific Programming

Green
Cyan
Blue
Yellow
Grey
Red1
Red2
Red3
Red4
Red5
Red6

Name Colour Application
Nodes below connected to a node
Nodes direct connected to a node

Nodes have hidden subnodes
Nodes are not bottom nodes

Nodes are bottom nodes
Nodes contain one term
Nodes contain two terms

Nodes contain three terms
Nodes contain four terms
Nodes contain five terms

Nodes contain more than five terms

Figure 4: Deuteranopia.

Green
Cyan
Blue
Yellow
Grey
Red1
Red2
Red3
Red4
Red5
Red6

Name Colour Application
Nodes below connected to a node
Nodes direct connected to a node

Nodes have hidden subnodes
Nodes are not bottom nodes

Nodes are bottom nodes
Nodes contain one term
Nodes contain two terms

Nodes contain three terms
Nodes contain four terms
Nodes contain five terms

Nodes contain more than five terms

Figure 5: Protanopia.

Green
Cyan
Blue
Yellow
Grey
Red1
Red2
Red3
Red4
Red5
Red6

Name Colour Application
Nodes below connected to a node
Nodes direct connected to a node

Nodes have hidden subnodes
Nodes are not bottom nodes

Nodes are bottom nodes
Nodes contain one term
Nodes contain two terms

Nodes contain three terms
Nodes contain four terms
Nodes contain five terms

Nodes contain more than five terms

Figure 6: Tritanopia.

Green
Cyan
Blue
Yellow
Grey
Red1
Red2
Red3
Red4
Red5
Red6

Name Colour Application
Nodes below connected to a node
Nodes direct connected to a node

Nodes have hidden subnodes
Nodes are not bottom nodes

Nodes are bottom nodes
Nodes contain one term
Nodes contain two terms

Nodes contain three terms
Nodes contain four terms
Nodes contain five terms

Nodes contain more than five terms

Figure 7: Grayscale.

Scientific Programming 9

3.5.2. Search Terms. Figure 11 shows the feedback from AD
Visualiser to users when searching the term carrot.

3.5.3. :e Node Menu in Graphical AD. As shown in Fig-
ure 12, the implementation of the functions in the menu bar
is as follows:

(i) Show Entities. Figure 13 shows the entities of the
highlighted node.

(ii) Explore Neighbourhood. As shown in Figure 14, the
neighbours of the chosen node are cyan.

(iii) Explore All Dependencies. As shown in Figure 15,
the subnodes (all descendants) pointed to by the
selected node are in green.

(iv) Explore Module. As shown in Figure 16, the
“Module Signature” is the signatures obtained

through the seed signature pre-extraction module.
Related signature uses the characteristics of the
directed graph to extract the signatures contained in
the atoms corresponding to the node that is con-
nected to the selected node and the arrow points to
the selected node. When the user adds an atom to
the module, the author uses the same method to add
the signatures of its related atoms to a table, which is
convenient for users to view and operate.

(v) Show or Hide a Node Label. *e label of a node
shows or hides.

(vi) Collapse and Uncollapse a Node Chain through
Exploring All Dependencies. Nodes connected below
the selected node are obtained. As shown in Fig-
ure 17, hiding these nodes can remove these nodes
from the graph.

Figure 8: UI of AD Visualiser.

Figure 9: GridBagLayout.

Figure 10: DAG of juice ontology.

10 Scientific Programming

4. Testing and Evaluation

In the later stages of program development, testing and
evaluation are critical to measuring and improving system
performance. For this project, software testing is divided

into two parts. *e first part is the self-testing of the software
performance: whether it meets the functional requirements
mentioned in Section 3, the operating speed, and efficiency
of the software. *e second part is to invite experts to try the
software and then give the trial experience and opinions.

Figure 11: Search carrot.

Carrot, CarrotJuice

Figure 12: Node menu.

Figure 13: Show entities.

Scientific Programming 11

4.1. Test Design and Implementation. Test Cases Selection.
Since AD is more dependent on logical axioms, the
author deliberately selected some small (including 1,000
logical axioms), medium (including 1,000 to 20,000
logical axioms), and large ontologies (including more
than 20,000 logical axioms) for testing. *rough this
method, it is possible to test the visual results and
functional support of AD Visualiser for ADs of different
sizes ontologies.

Influence Factors. *e length of time to parse the
advertisement depends on the OWL API. Chiara Del
Vescovo, the inventor of AD theory, had tested 357
ontologies; the computing time for half of the ontologies
spend less than 1 second; 95% spend within 2 minutes;

and 99% spend no more than half and 1 hour. Besides, the
length of time for Gehpi API drawing graphical AD and
JTree drawing hierarchy trees depends on Algorithms 1
and 2, respectively. *e author tested six small ontol-
ogies, one medium ontology, and two large ontologies
and individually recorded the time spent in each stage
before the image was displayed. Table 4 illustrates the
performance of the AD visualiser when processing these
ten ontologies. Figure 18 shows the visualisation result of
pizza ontology as a representative of small ontologies.
Figure 19 presents the visualisation result of wbpheno-
type as a representative of medium ontologies, and
Figure 20 displays the visualisation of gene ontology as a
representative of large ontologies.

Carrot,CarrotJuice,Tomato,TomatoJuice

Carrot,CarrotJuice

Fruit,FruitJuice,Person,Vegetable,VegetableJuice,hasIngredient

Figure 14: Explore neighbourhood.

Carrot,CarrotJuice

Fruit,FruitJuice,Person,Vegetable,VegetableJuice,hasIngredient

hasIngredient,isIngredientOf

Figure 15: Highlight all dependencies.

Figure 16: Explore module.

Carrot,CarrotJuice

Figure 17: Collapse a node chain.

12 Scientific Programming

5. Results and Analysis

AD Visualiser fully supports small ontologies; the visual-
isation results are clear; and various functions are fully
supported. For medium-sized ontologies, the graphical ADs
are relatively clear, and users may have a little difficulty in
finding the highlighted nodes. However, users can view
nodes’ information and explore their neighbourhood at will,
and AD Visualiser is also very smooth to use. Moreover, for
large ontologies, the visualisation results are very poor. Users

may have a clear sense of lag in use, and users can hardly find
the highlighted nodes.

Table 4 depicts that the processing time of AD Visualiser
on the ontology increases as the number of logical axioms
(TBox in Table 4 points at the number of ontology’s logical
axioms) in the ontology increases. *ey are approximately
linearly related. Over the first 15 minutes, Uli Sattler in-
troduced the origin and principle of the theory of AD. *en
the author spent some time introducing and showing how to
use ADVisualiser to the audiences. DaveMcComb asked the

Table 4: Processing time.

Name Axioms TBox Atoms Type AD (s) DAG (s) Tree (s) Total (s)

juice 53 33
BOT 13 0.047 1.235 0.074 2.170
TOP 1 0.008 1.001 0.12 1.062
STAR 13 0.018 1.008 0.009 1.065

gfo-basic 479 212
BOT 75 0.080 1.159 0.124 2.183
TOP 2 0.010 1.002 0.032 1.126
STAR 90 1.090 0.039 1.019 1.290

Biblio 332 219
BOT 29 0.012 1.012 0.007 1.076
TOP 197 0.17 1.014 0.009 1.233
STAR 99 0.022 1.017 0.009 1.090

asdphenotype 1,434 283
BOT 283 0.010 2.019 0.022 2.127
TOP 77 0.012 1.004 0.030 1.094
STAR 283 0.010 1.007 1.078

pizza 801 322
BOT 89 0.045 2.030 0.220 2.380
TOP 1 0.011 1.002 0.145 1.215
STAR 91 0.088 2.023 0.118 2.286

gist 664 384
BOT 154 0.135 2.051 0.469 2.821
TOP 5 0.019 1.010 0.472 1.559
STAR 159 0.165 2.075 0.645 2.968

wbphenotype 20,255 3,939
BOT 2581 6.355 31.417 5.471 45.149
TOP 348 286.78 4.823 5.876 40.353
STAR 2774 8.348 25.168 5.179 39.438

fission-yeast 35,968 27,602
BOT 8281 47.143 216.667 190.65 285.153
TOP 20 6.282 1.975 30.7178
STAR 10464 70.385 475.906 182.37 565.964

cell-culture 53,297 33,235
BOT 20058 185.54 441.972 122.22 475.740
TOP 5 7.416 1.606 378.45 48.226
STAR 27481 38.209 435.993 42.804 518.325

gene 558,760 103,676
BOT 43652 1058.634 535.129 2004.321
TOP 1 8.766 1.390 441.792 465.306
STAR 63311 669.733 948.899 478.616 2112.548

Figure 18: *e test of pizza ontology.

Scientific Programming 13

author to extract a module about the term Person. *en, we
checked the personmodule in Protege.*e details are shown
in Figures 21 and 22.

*e result of module extraction surprised all of the
audiences. Even though they are designers andmakers of gist
ontology, they have never thought that so many terms are
related to the term person, and then heated discussions
began. To their surprise, they even wondered that if the
author opened the correct module just extracted. Haoruo
Zhao discovered that the module contains 41 disjoint ax-
ioms, which may be the possible reason for retaining some
much knowledge perhaps, which is attributed to logical
guarantees. *ey thought disjoint is a common and im-
portant relation between axioms, but they were not con-
vinced that this relation has such a powerful influence on the
term or the ontology.

DaveMcComb, the president and cofounder of Semantic
Arts, believes the visualisation of AD is less useful for him.
Instead, the important thing is obtaining a suitable module
from an ontology. He said “the presentation helped me think
a lot in this respect, it did not occur tome until this that there
would have to be some ‘explain’ function that could explain
why a given concept or axiom got included.” In terms of the
task of ontology reusing, he said most existing ontologies are
not reusable. As every OWL ontology has a domain and
range, once the module is extracted out from ontologies’

original context, they are not compatible with others.
Sometimes, ontologists even need to trim the module down
to make it compatible with new ontologies. He supposed
such a complex operation could not be accomplished by a
tool or algorithm automated.

Peter Winstanley, an ontologist in the Semantic Arts and
cochair of the W3C Dataset Exchange Working Group, said
AD Visualiser had stimulated a more in-depth revision of an
ontology, such as gist ontology. Its development tends to be
organic and driven by many stakeholders. He thought AD
Visualiser provides a new insight for his colleagues and him
for their daily work.

Michael Uschold, a senior ontology consultant at Se-
mantic Arts, is an internationally recognised expert with
more than two decades of experience in developing and
transitioning semantic technology from academia to in-
dustry. He pointed out that AD Visualiser cannot be used
immediately in his daily work. *is is because the super-
granularity makes the graphics huge, and then it is not easy
to see at a glance. Such a case is a significant obstacle to the
effective use of images. In this regard, he suggested that
images can be cut into small pieces so that users can see a
magnified view of a specific area. Regarding the functional
requirements of the tool, he hopes that the tool can achieve

Figure 19: *e test of wbphenotype on-tology.

Figure 20: *e test of gene ontology.

Figure 21: Ontology metrics of person module.

Figure 22: Classes hierarchy of person module.

14 Scientific Programming

excellent support for the input of a specific ontology with
hundreds of classes and object properties. After proper
processing, the output is a subset of the gist that should have
everything they need, and nothing else is superfluous.

More than dozens of people attended this online confer-
ence, and they are all experienced engineers working on on-
tology. Most of them are rather interested in AD Visualiser and
its functionality. ForDave’s negative feedback, itmay be because
the author only focuses on introducing the functionality of the
tool in a short period and neglected to introduce the charac-
teristics of visualisation. For example, users can intuitively see
the size of the atom and the relationship between atoms, quickly
find the top and the bottom atoms and exploremore simply and
quickly to extract modules.

6. Conclusion and Discussion

*is project is to develop a Java-based tool called AD Vis-
ualiser to visualise OWL ontology in a modular structure
based on AD theory. Unlike other existing ontology visual-
isation tools that focus on displaying ontology content with
image symbols, ADVisualiser paysmore attention to assisting
users in completing ontology-related tasks. AD Visualiser
allows users to interact with graphical AD in a variety of ways,
such as finding nodes related to terms, obtaining detailed
information about the terms contained in a node, and viewing
the dependency relationship of a node corresponding to the
atom. Its functional design is based on three tasks related to
ontology: ontology refinement, ontology merging, and
original use. At present, it has achieved two specific functions.
One of them is the visualisation of AD that better supports
medium-sized ontology (including 1,000 to 20,000 axioms).
*e ultrafine granularity of AD causes that when the body is
too large, the number of atoms in the imaged AD and the
dependence between atoms are too much, so the current AD
Visualiser’s display effect of its imaged AD is not good.
Another is the support of module extraction with some terms
from the ontology.*is module is encapsulated, which means
that it contains all the knowledge about terms and is inde-
pendent of the original body.

*e limitations have been identified and discussed in
Section 5 based on expert feedback. In the next version of
AD Visualiser, modifications and upgrades will be made
based on these issues.

First of all, it is most important to change the display
mode of the graphical AD. On the one hand, the author
plans to display AD containing less than 100 atoms directly.
For larger AD, take bottom AD as an example. In the be-
ginning, the graphical AD only displays bottom atoms and
then displays related nodes (including terms and the PBF
result is true), and all its dependencies based on the terms are
searched by the user. Besides, they can also explore the
neighbourhood of any node. In this way, AD Visualiser can
support the visualisation of large ontology AD. Users can
focus on the modules related to terms or freely explore AD
from the bottom to up. At the same time, it can also greatly
reduce the computer’s memory consumption and com-
puting time. On the other hand, in the graphical AD, the user
will be able to hide all the nodes above and connect to a node.

In this case, users can hide information they do not care
about. Additionally, a scale will be added to the lower left of
the graphical AD to assist users in zooming in and out.

Next, optimise the colour matching of the software user
interface to enhance the user’s visual experience. *e author
plans to convey the information using as few colours as possible.
*e nodes in the graphical AD are in yellow except the bottom
nodes that are in grey. When the user locates a node related to
the terms, the related nodes are in red. *e more the terms
contained, the darker the red. When exploring the neigh-
bourhood of a node, it and its neighbours are in blue. At the
same time, nodes with unshown neighbourhoods are no longer
in blue.When the node explored by the user has no neighbours,
AD Visuliser will prompt with a symbol and a red text message
next to it. In order to facilitate users to understand the meaning
of different colours, the author plans to record the colour in-
formation in the colour schema item in the help column of the
menu bar for users.

*en, optimise the details of the interface display during the
user module extraction process. When the user selects terms in
the hierarchy trees of classes or object properties or searches for
terms in the search bar, the colour of the icons of the selected
nodes in the hierarchy trees changes to red to show that they are
selected. When the user explores the module according to any
node, the user is allowed to go back and cancel the current
operation after adding a piece of content.

*e author also plans to improve the user experience of
AD Visualiser. One of them is to display a loading bar
between user operations to remind users of the estimated
waiting time, for example, when the user opens an OWL file
and waits for the image to load, when the user locates the
relevant node in the map through terms to refresh the image
content, when the user saves the explored module, and when
the user saves the image of the graphical AD. Althoughmany
tasks will be completed within a few seconds, the flashing
loading bar can also display a kind of feedback to the user’s
operation.

In addition to optimising the existing functions, AD
Visualiser will add new functions to meet user needs (on-
tology refinement, ontology merging, and original use). AD
Visualiser distinguishes the AD atoms of each ontology
referenced by the four colour map theorem with different
colours. Among them, the atoms belonging to multiple
bodies are in colour as a result of colour mixing. *is
function can help users view the status of each component
ontology in the merged ontology. In the future, AD Visu-
aliser may be used as a plug-in for Protege to help more
ontology engineers.

Data Availability

All data, models, and code generated or used during the
study appear in the submitted article.

Conflicts of Interest

*e author declares that there are no potential conflicts of
interest with respect to the research, authorship, and/or
publication of this article.

Scientific Programming 15

References

[1] N. F. Noy, Tools for Mapping and Merging Ontologies,
Springer, Berlin, Germany, 2004.

[2] M. Obitko and V.Marik, “Adding owl semantics to ontologies
used in multi-agent systems for manufacturing,” in Pro-
ceedings of the International Conference on Industrial Appli-
cations of Holonic & Multi-Agent Systems, Prague, Czech
Republic, September 2003.

[3] D. Fensel, “Ontology-Based Knowledge Management,” IEEE
Computer Society Press, vol. 35, no. 11, 2002.

[4] C. C. Albrecht, D. L. Dean, and J. V. Hansen, “An ontological
approach to evaluating standards in e-commerce platforms,”
IEEE Transactions on Systems, Man and Cybernetics, Part C
(Applications and Reviews), vol. 37, no. 5, pp. 846–859, 2007.

[5] S. Staab and R. Studer, “Handbook on ontologies,” Interna-
tional Handbooks on Information Systems, Springer, vol. 2,
pp. 227–255, Berlin Germany, 2004.

[6] K. A. Spackman, K. E. Campbell, and R. A. Cote, “Snomed rt:
a reference terminology for health care,” Proceedings A
Conference of the American Medical Informatics Association,
vol. 4, pp. 640–644, 1997.

[7] C. Rosse and J. L. V. Mejino, “A reference ontology for
biomedical informatics: the foundational model of anatomy,”
Journal of Biomedical Informatics, vol. 36, no. 6, pp. 478–500,
2003.

[8] B. Cuenca Grau, I. Horrocks, Y. Kazakov, and U. Sattler,
“Modular reuse of ontologies: theory and practice,” Journal of
Artificial Intelligence Research, vol. 31, no. 1, pp. 273–318,
2008.

[9] R. Kontchakov, L. Pulina, U. Sattler et al., “Minimal module
extraction from dl-lite ontologies using qbf solvers,” in
Proceedings of the 21st International Joint Conference on
Artificial Intelligence IJCAI, vol. 9, pp. 836–841, Pasadena, CA,
USA, July 2019.

[10] P. Klinov, C. Del Vescovo, and T. Schneider, Incrementally
Updateable and Persistent Decomposition of Owl Ontologies,
OWLED, 2012, http://webont.org/owled/2012/papers/paper_
7.pdf.

[11] C. Del Vescovo, B. Parsia, U. Sattler, and T. Schneider, “*e
modular structure of an ontology: atomic decomposition,” in
Proceedings of the Twenty-Second International Joint Con-
ference on Artificial Intelligence, Barcelona, Spain, July 2011.

[12] V. Geroimenko and C. Chen, “Visualizing the Semantic
Web,” Xml-Based Internet and Information Visualization,
Springer, London, UK, 2006.

[13] F. Baader, I. Horrocks, C. Lutz, and U. Sattler, Introduction to
Description Logic, Cambridge University Press, Cambridge,
UK, 2017.

[14] C. Del Vescovo, “*e modular structure of an ontology: atomic
decomposition and its applications,” PhD *esis, University of
Manchester, Manchester, UK, 2013.

[15] T. R. Gruber, “A Translation Approach to Portable Ontology
Specifications,” Knowledge Acquisition, vol. 5, no. 2, 1993.

[16] F. Baader, D. Calvanese, D. L. Mcguinness, D. Nardi, and
P. F. Patelschneider, “*e description logic handbook,”
:eory, Implementation, and Applications, Cambridge Uni-
versity Press, Cambridge, UK, 2nd edition, 2007.

[17] M. A. Harris, J. Clark, A. Ireland et al., “*e gene ontology
(go) database and informatics resource,” WCB/McGraw-Hill,
vol. 32, 2004.

[18] U. Sattler, T. Schneider, and M. Zakharyaschev, “Which kind
of module should i extract?” in Proceedings of the Interna-
tional Workshop on Description Logics, Oxford, UK, July 2009.

[19] H. Knublauch, R. W. Fergerson, N. F. Noy, and M. A. Musen,
:e Protege Owlplugin: An Open Development Environment
for Semantic Web Applications, Springer, Berlin, Germany,
2004.

[20] A. Kalyanpur, B. Parsia, E. Sirin, B. C. Grau, and J. Hendler,
“Swoop: A web ontology editing browser,” Journal of Web
Semantics, vol. 4, no. 2, pp. 144–153, 2014.

[21] T. Liebig and O. N. Ontotrack, “A semantic approach for
ontology authoring,” Web Semantics: Ence, Services and
Agents on the World Wide Web, vol. 3, no. 2, pp. 116–131,
2011.

[22] N. Matentzoglu, “Module-based Classification of Owl On-
tologies,” *esis, University of Manchester, Manchester, UK,
2016.

[23] E. Motta, S. Peroni, J. M. Go´mez-Pe´rez, M. D’Aquin, and
N. Li, Visualizing and Navigating Ontologies with KC-Viz,
Springer, Berlin, Germany, 2012.

[24] M. Horridge, “Owlviz,” 2020, https://protegewiki.stanford.
edu/wiki/OWLViz.

[25] S. Falconer, “Ontograf,” 2020, https://protegewiki.stanford.
edu/wiki/OntoGraf.

[26] H. Alani, “Tgviz,” hhttps://protegewiki.stanford.edu/wiki/
TGViz, 2020.

[27] K. L. Ajaz Hussain and A. T. Rextin, “Navigowl,” 2020, https://
protegewiki.stanford.edu/wiki/NavigOWL.

[28] R. Liepins, M. Grasmanis, and U. Bojars, “Owlgred ontology
visualizer,” in Proceedings of the 2014 International Conference
on Developers, vol. 1268, pp. 37–42, Riva del Garda, Italy,
October 2014.

[29] S. Lohmann, S. Negru, F. Haag et al., “Visualizing ontologies
with vowl,” Semantic Web, vol. 7, no. 4, pp. 399–419, 2016.

[30] D. M. M. Uschold, “Introduction to gist,” 2020, https://iaoa.
org/isc2014/uploads/Whitepaper-Uschold-
IntroductionToGist.pdf.

[31] P. Pierce, “How to boost usability with intelli- gent color
choices,” 2020, https://www.sitepoint.com/how-to-boost-
usability-with-intelligent-color-choices/.

[32] J. Zukowski, Java AWT Reference, OR´eilly & Associates, Inc.,
Sebastopol, CA, USA, 1997.

16 Scientific Programming

http://webont.org/owled/2012/papers/paper_7.pdf
http://webont.org/owled/2012/papers/paper_7.pdf
https://protegewiki.stanford.edu/wiki/OWLViz
https://protegewiki.stanford.edu/wiki/OWLViz
https://protegewiki.stanford.edu/wiki/OntoGraf
https://protegewiki.stanford.edu/wiki/OntoGraf
https://protegewiki.stanford.edu/wiki/TGViz
https://protegewiki.stanford.edu/wiki/TGViz
https://protegewiki.stanford.edu/wiki/NavigOWL
https://protegewiki.stanford.edu/wiki/NavigOWL
https://iaoa.org/isc2014/uploads/Whitepaper-Uschold-IntroductionToGist.pdf
https://iaoa.org/isc2014/uploads/Whitepaper-Uschold-IntroductionToGist.pdf
https://iaoa.org/isc2014/uploads/Whitepaper-Uschold-IntroductionToGist.pdf
https://www.sitepoint.com/how-to-boost-usability-with-intelligent-color-choices/
https://www.sitepoint.com/how-to-boost-usability-with-intelligent-color-choices/

