
Research Article
Map-Matching on Low Sampling Rate Trajectories through
Frequent Pattern Mining

Lei Yu ,1 Zhiqiang Zhang,2 and Rongtao Ding3

1School of Business Management, HangZhou Polytechnic, Hangzhou 314200, China
2School of Software Engineering, Tongji University, Shanghai 200092, China
3School of E-commerce, Zhejiang Business College, Hangzhou 310053, China

Correspondence should be addressed to Lei Yu; yulei@mail.hzpt.edu.cn

Received 7 December 2021; Accepted 26 February 2022; Published 21 March 2022

Academic Editor: Sheng Bin

Copyright © 2022 Lei Yu et al.)is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Map-matching, an important preprocessing task in many location-based services (LBS), projects each point of the global po-
sitioning system (GPS) within a trajectory dataset onto a digital map.)e state-of-the-art map-matching algorithms typically
employ Hidden Markov model (HMM) via shortest path computation. But the computation of the shortest path might not work
well on low-sampling-rate trajectory data (e.g., one GPS point every 1–5min), leading to lowmatching precision and high running
time. To solve the problem, this paper firstly identifies frequent patterns (FPs) in historical trajectories to capture meaningful
mobility behaviors, and then extracts mobile behavior criterion (MBC) of mobile users. Such a criterion generally represents the
route choice of mobile users on road networks. Moreover, the temporal information within trajectory data was employed to
estimate the speed of mobile users on road segments.)e identified FPs, coupled with MBC and moving speed, help to improve
the map-matching precision of low-sampling-rate trajectories. In addition, an FP-forest structure was proposed to index the
identified FPs.)e structure could greatly speed up the lookup of frequent paths for shorter running time. Furthermore, the FP-
forest structure was pruned to reduce redundancy with smaller space cost. Finally, experiments were carried out on real-world
datasets.)e results confirm that our FP-matching method outperforms state-of-the-art in terms of effectiveness and efficiency.

1. Introduction

Recent years bear witness to the proliferation of location-
based services (LBSs) on mobile devices, such as Uber
provides users with taxi service and Google Map provides
navigation services. Relying on global positioning system
(GPS) sensors, these LBSs record life trajectories of humans,
and generate massive trajectory data.)e data have been
utilized in many applications to understand human mobility
patterns, namely, activity recognition, hot route finder,
geographical social network, and urban planning.

Nevertheless, GPS trajectories often contain lots of
noisy GPS coordinates, owing to the inevitable errors of
GPS positioning [1–7].)ese coordinates deviate from the
true positions of mobile devices, calling for the important
preprocessing task of map-matching [8–15]. Map-
matching aims to project every recorded GPS point within

the trajectory data onto a digital map. It has applications
in satellites navigation, GPS tracking of freight, and
transportation engineering. In this way, the location point
recorded by GPS sensor can be corrected onto the road
network, even if their coordinates deviate from the true
values.

)e frequency of the GPS points of mobile users
recorded by mobile devices or third-party applications is
known as the sampling rate of GPS positions. Low-sam-
pling-rate trajectories with sparse GPS positions are ubiq-
uitous. So we need to study the map matching technology
when the trajectory is low sampling rate. For example, when
mobile users often switch off GPS sensors to save energy or
preserve privacy, their GPS trajectories will contain very
sparse GPS points with low sampling rate. LBS applications
like Foursquare maintain sparse check-in data of mobile
users. In addition, telecom operators like Telco/Cellular

Hindawi
Scientific Programming
Volume 2022, Article ID 3107779, 15 pages
https://doi.org/10.1155/2022/3107779

mailto:yulei@mail.hzpt.edu.cn
https://orcid.org/0000-0002-2220-6232
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3107779

could extract sparse GPS coordinates withinWeb logs, when
mobile users are using data services [16, 17]. All these sparse
positions will reduce the sampling rate of the trajectories.

It is a challenging task to design an accurate map-
matching algorithm for low-sampling-rate trajectories with
sparse positions [18–20].)e state-of-the-arts essentially
adopt the hidden Markov model (HMM) and its variants
[11, 12] to perform map-matching for low-sampling-rate
GPS trajectories, under the assumption that the path be-
tween two GPS points is the shortest path of a certain metric.
But the assumption does not necessarily hold in real life,
especially in the face of low-sampling-rate trajectories. Low
sampling rate only makes the position points in the tra-
jectory sparse, but it does not mean that the positioning
accuracy decreases. When the location points are sparse, the
distance between two continuous points is too large. At this
time, using the shortest path to represent its real path cannot
represent the real situation.

Take Figure 1 for example.)ere is a trajectory of six
GPS points, where P1 and P6 are the source and destination,
respectively. If map-matching is performed for the trajectory
based on the shortest path, the correct matching result is the
blue route P1⟶ P2⟶ · · ·⟶ P5⟶ P6. However,
when the trajectory is so sparse as to contain only two points
P1 and P6, the shortest-path-based map-matching will
converge to an incorrect result: the red route P1⟶ P6.

)e above example shows the difficulty in choosing
between the multiple optional routes between the sparse
GPS points on a trajectory. Each route could indicate the
preference of some mobile users, and could be the matching
result of the trajectory.)erefore, it is impossible to estimate
the mobile user’s long-term use habits, using the shortest
path solely based on one metric.

To tackle the issue above, this paper proposes a frequent
pattern (FP)-based map-matching technique for low-sam-
pling-rate trajectories. Firstly, the FPs were identified in
third-party data on historical trajectories.)en, the FPs that
best match the input low-sampling-rate trajectory were
identified, and linked as the map-matching result of that
trajectory.)ese FPs clearly reflect the mobility behaviors of
most mobile users among historical trajectories: each of
them is with the most familiar route, the fastest route, or the
shortest route, rather than with the shortest route alone. By
linking the multiple FPs, the map-matching result of the
input trajectory mixes various preferences, pushing up the
precision of map-matching.

Nowadays, almost all smartphones and vehicles are
equipped with GPS sensors to record trajectories. As a result,
there are many publicly available third-party trajectories,
such as those recorded by moving taxis and Open Street
Map. Some of these trajectories contain high-sampling-rate
GPS points. If FPs aremined from these trajectories, it would
be highly possible to design an accurate map-matching al-
gorithm for low-sampling-rate trajectories. For instance,
Zhu et al. [17] lowered the positioning errors with the help of
the third-party data on historical GPS trajectories of taxis,
and then realized more precise map-matching for the low-
sampling-rate trajectories of sparse locations within the big
data of Telco/Cellular.

Apart from the mined FPs, several other meaningful
factors were leveraged in this research. One of the most
important factors remains the selection of short and straight
routes. Firstly, two meaningful route features (length and
transition) were chosen to define the general mobile be-
havior criterion (MBC). Next, the temporal information
within trajectory data was employed to estimate the moving
speed on road segments, for people tend to stay close to the
speed limit of each segment. Based on the massive trajec-
tories moving on every segment, the overall speed distri-
bution was captured for different road segments. For each
input estimated speed, it is possible to infer the probability of
the speed truly moving on each segment. Finally, the
probability, together with the two route features (length and
transition), was adopted to derive the best route of con-
nected road segments, laying the basis for better matching
precision.

Besides the effectiveness of map-matching, the mined
FPs make map-matching more computationally efficient.
Specifically, an FP-forest structure was designed to index the
identified FPs.)e structure offers fast query response to
look up a certain pattern used by map-matching, allowing
the proposed FP-matching algorithm to converge quickly to
the matching result. To reduce the space cost of FP-forest,
the redundant road segments were pruned from the mined
FPs.

)e main contributions of this research are as follows:

(1) FP-matching, a novel map-matching algorithm, was
designed to capture the mobility behaviors of most
people. However, the state-of-the-arts use only one
metric, FP-matching effectively maps low-sampling-
rate trajectories onto a digital map, using FPs mixed
with multiple metrics, general MBC, and temporal
information.

(2) An FP-forest indexing structure was developed to
respond quickly to the lookup for a certain FP,
turning the raw GPS sequence to a road segment
sequence. In addition to matching effectiveness, our
FP-matching algorithm can thereby achieve high
computational efficiency, as evidenced by short
running time and low space overhead.

(3))e effectiveness and efficiency of FP-matching were
compared with those of the state-of-the-arts.)e

P2

P3

P4

P5

P6

P1

S 3

S 4

S5

S1

S2

Figure 1: An example of the failure of shortest-path-based map-
matching.

2 Scientific Programming

comparison shows that our method outperforms the
contrastive methods in both matching accuracy and
running time.

)e rest of the paper is organized as follows: Section 2
reviews the related work; Section 3 defines the problem and
overviews the solution; Section 4 describes the FP-forest
structure; Section 5 presents the FP-matching algorithm;
Section 6 verifies the proposed algorithm; Section 7 puts
forward the conclusions.

2. Literature Review

)is section mainly reviews the related work on map-
matching and FPs.

2.1. Map-Matching. Map-matching intends to locate a se-
quence of GPS points, consisting of timestamp, longitude,
and latitude onto a digital map. Over the past decades,
extensive research has been conducted on map-matching.
)e relevant works can be broadly classified into three
categories: incremental approach, global approach, and
geometrical approach [21].

2.1.1. Incremental Approaches. Quddus et al. [13] predicted
the road segment of a GPS point based on the previous
prediction of that segment, and decided which road segment
should the current GPS point be mapped to, taking into
account of two factors: the projection distance from the
current GPS point to its candidate segments; the difference
between the GPS heading and direction of the candidates.
White et al. [14] evaluated the performance of four incre-
mental algorithms, and found that all of them have a low
accuracy.)e reason is that the incremental approach selects
the best candidate for each sample at the current time stamp,
based on a small range of recent samples. However, the
selected candidate is not the global optimal candidate, and
only works well online.

2.1.2. Global Approach. Like the incremental approach, the
global approach searches for the candidates of each GPS
sample, and then computes a weight for each candidate.
Considering the entire trajectory, the global approach cal-
culates the aggregated weight of the candidate sequence, and
looks for the candidate with the largest weight. With the aid
of the HMM, Lou and Newson et al. [11, 12] calculated the
emission probability under the normal distribution of
projection distances between GPS points and segment
candidates. Lou et al. [11] also integrated spatial function
with temporal function to compute the transition proba-
bility, while Newson and Krumm [12] adopted an expo-
nential function of route distance and straight-line
distance to deduce that probability. However, the tran-
sition probability was calculated with a long running time,
due to the necessity to compute the shortest distance
between candidates.

2.1.3. Geometrical Approach.)e geometrical approach
frequently searches for the optimal path on a digital map by
geometric similarity measures, e.g., the Fréchet distance
[22], eliminating the need to find a candidate set for each
GPS point. For example, Alt and Brakatsoulas et al. [8, 9]
looked for the path with the minimum Fréchet distance to
the GPS sequence.

FP-matching, our map-matching algorithm, is a global
approach.)is paper compares our algorithm with the
HMM algorithms proposed by Lou et al. [11], Newson and
Krumm [12], and Zheng et al. [15], which were proved to
outshine other map-matching methods on low-sampling-
rate trajectories. Our algorithm differs from these HMM
algorithms in the following aspects:

First, our algorithm leverages the FPs mined from the
historical trajectories moving on at least two continuous
road segments to replace the transition probability of these
segments, and maps the GPS points onto a road map
through dynamic programming. Second, the FP-forest
structure was utilized to find the most frequent routes be-
tween two mapped segments, and all the routes were con-
nected to complement the entire trajectory. FP-matching
greatly reduces the running time by eliminating the com-
putation of the shortest distance.

Zheng et al. [15] presented a history-based route in-
ference system (HRIS) for map-matching based on reference
trajectories. Different from HRIS, our approach is grounded
on the mined FPs, which reflect the mobility patterns of
those historical trajectories successfully map-matched onto
road networks.)e accuracy and efficiency of our approach
are both better than those of HRIS, for the mined FPs are
with map-matching result, while HRIS is still with raw
trajectories.

2.2. FP Mining. FPs play an important role in many data
mining tasks, and contribute immensely to the solution of
practical problems [23]. Traditionally, FPs are mined in two
ways: sequence pattern mining, and association rules
mining.)e sequence pattern mining, represented by ex-
ample PrefixSpan [24] and generalized sequential pattern
(GSP) [25, 26], takes basis on divide-and-conquer algorithm,
and draws the merits of database projection pattern and
correlation algorithms.)e association rules mining, e.g.,
Apriori [1], FP-growth [27] and Eclat [28], is underpinned
by candidate set generation and test. For instance, sequential
pattern discovery using equivalent class (SPADE) [29] ex-
tends the Apriori algorithm into sequential FP problem. Lin
et al. [30] proposed a hybrid multilevel search algorithm to
mine long FPs. Prabamanieswari [31] invented the fuzzy-
based frequent itemset mining to reduce the number of
scanning database, and demonstrated that the method is far
superior to fuzzy Apriori [32].

While Apriori [33] faces high time and space costs, FP-
growth [27] builds a FP-tree structure from the database,
and recursively looks for frequent item sets by traversing the
FP-tree without explicitly generating redundant candidates.
In our FP-matching algorithm, FP-forest is adopted to index
the FPs. Despite some similarities, our FP-forest has some

Scientific Programming 3

significant differences from FP-tree. First, a long sequence of
road segments, i.e., the map-matching result of the input
high-sampling-rate trajectory, was split into multiple sub-
sequences, and an FP-forest was established on the multiple
FP-trees for these subsequences.)e FP-forest speeds up the
lookup of a certain sub-trajectory from a pair of source and
sink inputs (road segments). But the fast speed is realized at
the cost of many redundant FP-trees.)us, the redundant
segment identities (IDs) were pruned to save the space cost.
Second, more other items were introduced to the FP-forest,
including the speed histogram on each indexed segment,
trajectory count, and mobility behavior weight Wm, to
improve the effectiveness of map-matching.

3. Problem Definition and Solution Overview

)is section firstly defines the research problem and then
highlights our solution to the problem.

Let M � (V, S) be a digital map containing a set of
intersections (vertices) V and a set of segments (edges) S; T

be a GPS trajectory containing a sequence of GPS samples
(pi, ti), 1≤ i≤ |T|, each of which has a GPS position pi and a
timestamp ti. Position pi is a pair of GPS longitude and
latitude. Map-matching aims to project the GPS points
within the input trajectory T onto a sequence of consecutive
segments si ∈ S in M. In the example of Figure 1, a route of
connected segments s1⟶ · · ·⟶ s5 can be generated
through map-matching for the raw trajectory containing six
GPS points.

At a very low sampling rate, the trajectory T only
contains very sparse GPS points. In this case, it is highly
possible to project these points onto disconnected road
segments, i.e., the source and destination segments are not
connected.)e disconnections should be complemented
with a path in the digital mapM, such as to recover the entire
route of connected segments.

To match a sparse trajectory T, our general idea is to
exploit a third-party database containing historical high-
sampling-rate trajectories. Such a database is widely avail-
able nowadays. Any mobile device, namely, taxis and
smartphones, with GPS sensors can generate high-sampling-
rate trajectories. Hence, this paper relies on the said database
to optimize the map-matching of the input trajectory T.

Problem 1. For a historical trajectory database D containing
|D| high-sampling-rate trajectories T1 . . . T|D|, it is necessary

to identify a set of meaningful trajectory patterns from the
database, and derive from these patterns the most likely
route for a very sparse input trajectory T onto map M.

Figure 2 shows our solution to the above problem: a two-
phase map-matching framework. In the offline phase, an FP-
forest structure was maintained based on the historical
trajectory database. On the high-sampling-rate trajectories
in the database, a classic map-matching algorithm was
applied to find the sequence of matching segments, onto
which GPS points in those trajectories are projected. Next,
subsequences were extracted from the sequences of
matching segments.)en, all the sequences and subse-
quences were indexed by the FP-forest.

In the online phase, the digital map was traversed to find
the nearest candidate segments for the input trajectory of
very sparse GPS points. After that, the FPs containing these
candidates were found under the FP-forest structure, and the
path that best matches the input trajectory was identified
through dynamic programming.)e purpose of dynamic
programming is to select the best candidate for each GPS
sample according to the FPs obtained via the FP-forest.
Finally, the disconnected segments in the best matching
path, if necessary, were complemented to obtain the entire
route.

Overall, the offline phase attempts to maintain the FP-
forest based on the historical database D, and the online
phase seeks to evaluate the input trajectory T against the FP-
forest to generate the most likely route of connected road
segments.

In addition, a new FP-forest structure was developed to
improve the accuracy of map-matching. To reduce the space
cost, the FP-forest was downsized by an efficient method.
Our algorithm applies to the new FP-forest structure, be-
cause it is similar to the original FP-forest structure.

4. FP-Forest

)is section introduces the structure and generation of the
FP-forest, details the lookup operation, presents a simple
and efficient method to reduce the FP-forest, and finally
reconstructs the FP-forest.

4.1. FP-Forest. In the FP-forest, there are multiple FP-trees
rooted at the associated segment IDs. Each FP-tree is similar
to the tree in the famous FP-growth structure, whose root is

FP*-
Forest
Index

Dynamic
Programming

Trajectory
Complement

Matching
Result

Trajectory
Database

Sequence
of Matching

Segments

GPS Sample
Sequence

Subsequence
extraction

Search Candidate
Segments

Final Route
of Segments

Offline phase

Online
phase

Reduce FP-
Forest

Figure 2: Overview of our solution.

4 Scientific Programming

null. Every node inside an FP-tree contains two items: a road
segment ID (SID) and a counter (CNT) of trajectories, which
records the number of trajectories matching the current
segment. Besides, each FP-tree has an associated dictionary,
in which each key is an SID pointing to a list of tree nodes,
whose SIDs are equal to the key.

)e FP-forest in Figure 3 contains three FP-trees, rooted
at SIDs 1, 2 and 3, respectively. For the FP-tree rooted at SID
1, the dictionary maintains three keys 2, 3 and 5. Each key
points to a list of internal nodes in the FP-tree. For example,
key 2 points to the list of only one node with the pair <2, 2>,
key 3 points to the list of two nodes with the pair <3, 1>, and
key 5 points to the list of three nodes with the pair <5, 1>.

4.2. Generation of FP-Forest. Under the given FP-forest
structure, this subsection demonstrates how to generate an
FP-forest from historical database D.)e first step is to
identify the high-sampling-rate trajectories Ti in the data-
base D. After matching trajectories Ti onto map M through
classic map-matching [11, 12], the sequences of matching
segments are available: once a GPS point in Ti is mapped
onto a certain segment sj ∈M, we have a sequence of
distinct segments sj with respect to (w.r.t) Tj. After that, the
FP-forest structure in Figure 3 can be called to index all
segment sequences with respect to the high-sampling-rate
trajectories Ti.

)e generation of the FP-forest can be realized in two
steps: (1) extracting subsequences from each segment se-
quence after map-matching each high-sampling-rate tra-
jectory Ti ∈ D; (2) inserting the subsequences into the
FP-forest structure to enable fast lookup of the forest.

Step 1. Subsequence extraction:
)e following (k − 1) subsequences:

s2⟶ s3⟶ · · ·⟶ sk􏼈 􏼉, s3⟶ · · ·⟶ sk􏼈 􏼉, . . .,
sk− 1⟶ sk􏼈 􏼉 are extracted from the given sequence of
segments S � s1⟶ s2⟶ · · ·⟶ sk􏼈 􏼉.)is step gener-
ates a total of k subsequences, including the extracted
subsequences plus the original sequence S.)e 11

subsequences extracted from 5 sequences of segments are
presented in Figure 3.

Step 2. Subsequence insertion:
A new subsequence S � s1⟶ s2⟶ · · ·⟶ sk is

inserted into the FP-forest structure in the following
manner. First, it is necessary to check if the FP-forest
contains a tree whose root equals SID s1. If not, a new FP-
tree is built with s1 as the root ID, with the root counter set to
1. Otherwise, the counter of this root is increased by 1.

After that, the rest of sequence S, e.g.,
s2⟶ · · ·⟶ sk􏼈 􏼉, is processed by one of the two opera-
tions. One of the operations is to update the counter of an
existing node in this tree, and the other to create a new node
as a child of an existing node. Take consider a subsequence
si⟶ si+1􏼈 􏼉 for example. It is assumed that an existing node
with SID si has been visited just now.)en, it is necessary to
visit the segment node si+1. If node si contains a child with
SID si+1, then the counter of the child si+1 is increased by 1.
Otherwise, a new child node is created with the SID, and its
counter is increased by 1.

)e pseudocode of the above steps is given as Algorithm
1. Lines 1–14 provide the details on how to generate an FP-
forest. In Algorithm 1, each trajectory of the input da-
tabase D is with a sequence S ∈ D of connected road
segments S � s1 . . . s|s|􏽮 􏽯, which are obtained through
classic map-matching [11, 12]. Lines 15–18 search for a
specific FP-tree in FP-forest, and Lines 19–22 look for the
child of a given node.

)e complexity of Algorithm 1 can be evaluated as
follows: suppose each trajectory sequence S ∈ D contains at
most k segments.)us, the number of generated subse-
quences is no greater than k, i.e., the total number of op-
erations amounts to O(k) (i.e., findTree).)us, As shown in
Figure 4 the running time of Algorithm 1 is O(|D| × k),
where |D| is the number of trajectories in D.

)e Conclusions section should clearly explain the main
findings and implications of the work, highlighting its im-
portance and relevance.

1,2,3,5

1,2,5

1,3,5

2,3,4

2,3,5

1,2,3,5

2,3,5

3,5

1,2,5

2,5

1,3,5

3,5

2,3,4

3,4

2,3,5

3,5

Sequence

Subsequence

(a)

FP-Tree (rootID:1)

SID:3
CNT:1

SID:5
CNT:1

SID:5
CNT:1

SID:2
CNT:2

SID:1
CNT:3

SID:3
CNT:1

SID:5
CNT:1

SID:5
CNT:2

SID:3
CNT:3

SID:2
CNT:3

SID:4
CNT:1

SID:5
CNT:3

SID:3
CNT:4

SID:4
CNT:1

Idx

2

3

5

Idx

3

4

5

Idx

4

5

FP-Tree (rootID:2) FP-Tree (rootID:3)

(b)

Figure 3: An example of FP-forest.

Scientific Programming 5

4.3. FP-Forest Lookup.)is subsection introduces two
lookup operations on FP-forest: frequency lookup and
trajectory complementation.

4.3.1. Frequency Lookup.)e goal is to find the counter
(frequency) of trajectories passing from one segment sid to
another eid To this end, the returned frequency is initiated
as zero.)en, the FP-tree is looked for, whose root with
the SID equal to sid. After that, a list of tree nodes with the
SIDs equal to eid is found with the help of the dictionary.
For each tree node with the SID eid, if there exists a path
from the root (with SID sid) to the tree node (with SID
eid), the counter of such a tree node is added to the
returned frequency.

Here is an example for the frequency lookup from sid �

1 to eid � 5. Firstly, the FP-tree with the root ID 1 is looked
up. Next, it is assured that the associated dictionary contains
key 5 in the FP-tree. Key t points to the list of three internal
nodes with the pair <5, 1,>. For each node in the list, it is
necessary to judge if there exists a path from the root 1 to the
node with ID 5. After identifies all such paths, the counters
of these nodes are added up, and frequency 3 is returned.

Apparently, the frequency lookup is very fast, because
the operation only needs to check the connectivity of the
path from the root sid to each internal node with SID eid,
without any further pruning. Note that the fast lookup is
enabled by the above-mentioned subsequence extraction:
each extracted subsequence starting from sid is inserted to
the FP-tree rooted at sid.)at is why the lookup only needs
to check the connectivity from root sid to the node eid.)e
time complexity of the frequency lookup is O(|Tree|), where
|Tree| is the number of nodes in an FP-Tree.

4.3.2. Trajectory Complementation. If two segments are
disconnected, it is necessary to complement a route between
them, such as to linking up all the segments in the entire
route.)e main idea is to select the most suitable route, in
the light of FPs, general MBC, and speed limits. For this
purpose, the first step is to find the FP-tree whose root has
the SID sid.)en, the dictionary is looked up to find the list
of tree nodes whose SIDs are eid. Based on the found tree
nodes, the associated paths from the root to the tree nodes
are searched for.)en, the paths are sorted by counters and
weights, and the most suitable path is returned.

Algorithm 1: CreateForest(Trajectory Database D)

Output: FP-model F

foreach S Є D do
TREE t ← FindTree(F,S.s1); Node r = null;
if t! = null then {r = t.root; r.counter++ };
else r.SID = S.s1; r.counter = 1; t.root = r; add t to F;
Node curNode = r;
for i = 2; i ≤ |S|; i + + do

if n! = null then {curNode = n; n.counter++};
else

return F;
FindTree (Forest F, SID s)

if F contains a tree whose root has the segment ID s then
return the tree in F whose root is the SID s;

else return NULL;

else return NULL;
GetFreq (Forest F, SID sid, SID eid)

for Node n in t.index(eid) do f ← f + n.counter;
return f;

f = 0;Tree t ← findTree(F, sid); path p = [];

FindChild (NODE curNode, SID s)
if curNode has a child whose segmentId is s then

return the child of curNode;

n.counter = 1;
n.parent = curNode; curNode.addChild(n);
t.addIndex(n); curNode = n;

Node n ← FindChild(curNode, si);

F = Ф;1
2
3
4
5
6
7
8
9

10
11
12
13

14
15
16
17

18
19
20
21

22
23
24
25
26

Figure 4: Algorithm 1.

6 Scientific Programming

As shown in Figure 5, the trajectory complementation is
detailed in Algorithm 2, whose time complexity is
O(|Tree|∗ d), where d is the depth of an FP tree.

4.4. Redundancy Reduction. Recall that the FP-forest is
created based on historical trajectory data. All the subse-
quences of trajectories are indexed by an FP-forest index,
which could cause road segment IDs redundancy. To solve
this problem, we propose a set of techniques to optimize the
space cost of FP-forest. Our basic idea is to first extract no
branch paths from FP-forest, which the tree nodes only
contains one child node. Next, we mine the meaningful
patterns on the extracted sequences, and then encode a long
trajectory by the patterns in order to reduce the redundant
road segment IDs, leading to smaller space cost.

As mentioned before, the FP-forest is generated from the
data on historical trajectories. All the subsequences of tra-
jectories are indexed by an FP-forest index, which could
cause SIDs redundancy. To solve the problem, a set of
techniques were proposed to optimize the space cost of FP-
forest. Firstly, no branch paths are extracted from FP-forest,
where the tree nodes only contain one child node each. Next,
meaningful patterns are mined from the extracted se-
quences, and used to encode a long trajectory.)e redun-
dant SIDs are thus reduced, resulting in a decline in space
cost.

As shown in Figure 6, five no branch paths T1 . . . T5 can
be extracted from the FP forest in subgraph 4(a).)e paths
can be viewed as map trajectories. In subgraph 4(b), the
middle column presents the two patterns Pa and Pb mined
from the trajectories. Each of them, namely pa � 3, 4{ },
represents 2 consecutively connected edges, that is, a path, in
the road network 3⟶ 4.)us, the two edge IDs can be
represented by a single virtual SID Pa, thereby reducing the
space cost.)e rightmost column depicts the encoded
trajectories as patterns. For each trajectory, namely, T2, the
redundant edge IDs 3, 4{ } can be replaced by the segment Pa.
Next is an introduction to the search for meaningful
patterns.

)e FPs of subtrajectories indicates the redundancy of
partially connected segments.)us, it is natural to leverage
them to reduce redundancy. Inspired by Han et al. [34], a
simple and efficient approach was proposed to mine FPs
under the constraint of the road network. Considering the
adjacent edges in the network, the redundant candidate
patterns, i.e., those containing disjoint edges, are removed to

improve operating efficiency. Let M � (V, S) be the road
network; τ � T1, T2 . . . TN􏼈 􏼉 be the set of N trajectories from
the mobile objects traveling on M.)e following concepts
must be defined before finding the FPs.

Definition 1. Let P � TI/Ti(s) ∈ τ􏼈 􏼉 be the base pattern,
with s being the segment.)en, the trajectory containing the
base pattern can be denoted as Ti(s).

Definition 2.)e FP, denoted by FP � P1, P2 . . . Pn􏼈 􏼉, is an
ordered list of base patterns.

Definition 3.)e support sup(P) of pattern P is the number
of the trajectories containing pattern P.

)en, all the frequent subtrajectories can be found
through the following steps. Firstly, the segments are or-
ganized into base patterns from the map trajectories, and the
support of these base patterns (Definition 3) is calculated.
)en, the base patterns are sorted in descending order of
support.)us, the generation phase of base pattern outputs
an ordered list of base patterns, which serve as the building
blocks of FPs in the next phase. Secondly, the base pattern
with the maximum support in the said list is selected iter-
atively, and merged into FPs whose support is above the
given lower bound. (If the base patterns are picked ran-
domly, the merged FPs might be filtered out, due to their
small supports). After that, the selected base patterns are
connected into the FPs based on the road network, and all
the frequency subtrajectories are returned.

4.5. Reconstruction of FP-Forest.)is subsection improves
the effectiveness of FP-forest structure, creating a new
structure called FP-forest∗.)e improvement takes account
of the temporal information within trajectories, and the
general mobility behavior of users.)e FPs intuitively depict
the spatial patterns within the trajectories.)erefore, the FP-
forest∗ can represent the temporal information within
trajectories and the general mobility behavior.)e temporal
information, i.e., the timestamps within the trajectories, is
taken to estimate the moving speed of the users. Meanwhile,
length and transition features of each route are leveraged to
infer the general mobility behavior of the users.

As shown in Figure 7, FP-forest∗ has only two differences
from FP-tree: (1) each node in FP-forest∗ maintains an
additional attribute, i.e., the mobility behavior weight Wm
about the importance of the path from the current node to
the root node; (2))e dictionary record the speed proba-
bility distribution of each referred segment. For the FP-tree∗
rooted at SID 1, the node with SID 2 has a mobility behavior
weight of 0.94, and the item with segment SID 2 in the
dictionary exists as an equal-width histogram of moving
speeds on the associated segment. In this histogram, each
equal-width bucket is with a rate of those trajectories that
move on the associated segment within the speed interval of
the bucket. For simplicity, the same number of buckets (e.g.,
8 in Figure 7) is adopted for all histograms in FP-forest∗.

)e speed histogram is maintained through the fol-
lowing procedure. For each segment in the third-party

Algorithm 2: Complement (Forest F, SID sid, SID eid)
Output: BestPath
f = 0; Tree t ← findTree(F, sid);
pa = [];path = {};

pa.append(n.SID);

pa.reverse();
compute w(pa) by Equation(2);
path[w] = pa;

return max(path);

n ← n.parent();

for Node n in t.index(eid) do
while n ≠ NULL do

1
2
3
4
5
6
7
8
9

10

Figure 5: Algorithm 2.

Scientific Programming 7

database D, there is a set of high-sampling-rate historical
trajectories that can be projected onto that segment.)en, it
is necessary to compute the mean moving speed of each
trajectory passing through the segment. On this basis, a
speed histogram can be comfortably maintained based on
the moving speeds of all the trajectories passing through that
segment.

Once the speed histogram is available for a segment, the
probability for an input trajectory to match the segment can
be derived from the histogram. In the example of Figure 7,
an input trajectory is projected to the segment SID 2, and the
mean speed of the trajectory moving on the segment is
estimated as 6m/s. Referring to the speed histogram of SID
2, it can be observed that 6m/s falls in the bucket interval [4,
8), and the probability 0.2 of the input trajectory matches
this segment.

Next is to estimate the weight of mobility behavior.)e
mobility behavior weight of each node in the FP-forest∗ can
be computed intuitively. Since people generally prefer short
and straight routes, the mobility behavior should be
weighted according to the distance and transition angle
of the route. Let P � s1⟶ s2⟶ · · ·⟶ sk􏼈 􏼉 be the
route from a root node to a tree node in the FP-forest∗.)en,

the mobility behavior weight Wm of node sk can be cal-
culated by:

Wm �
Wlen + Wturn(􏼁

2
,

Wlen � e

− 􏽘

k

u�1
su.len/lmax

⎛⎝ ⎞⎠

,

Wturn � e
− 􏽘

k− 1

u�1
θu/θmax􏼒 􏼓

.

(1)

As shown in formula (1), Wm can be computed by taking
the average of the weight Wlen of route length and the weight
Wturn of the transition angle.)e weight Wlen of route length
is the sum of the length su · len of all segments su within
route.)e weight Wturn of the transition angle is the sum of
the transition angles θu from the preceding segments to the
current segment. Min-max normalization is performed to
unify the vastly different scales of the two sums. Here,
lmax(resp · θmax) indicates the maximal route length (resp.
transition angles) from a root node to a tree node within the
FP-Forest∗. Following the route weights defined above, a

SID:1
CNT:3

Wb:0.98

Idx SpeedpdIdx Speedpd

SID:2
CNT:3

Wb:0.97

SID:3
CNT:3

Wb:0.92

SID:4
CNT:1

Wb:0.88

SID:5
CNT:2

Wb:0.87

SID:3
CNT:1

Wb:0.91

SID:2
CNT:2

Wb:0.94
1 Hist1

2 Hist2

3 Hist3

5 Hist5

2 Hist2

3 Hist3

4 Hist4

5 Hist5

SID:3
CNT:1

Wb:0.82

SID:5
CNT:1

Wb:0.83

SID:5
CNT:1

Wb:0.71

SID:5
CNT:1

Wb:0.85

Figure 7: An example of FP-forest∗.

FP-tree(rootID:7) FP-tree(rootID:2)FP-tree(rootID:1)

SID:7
CNT:2

Trajectories T Patterns P Encoder Trajs T
H

T3: 2,3,5

T2: 3,4,5

T1: 2,3,5 Pa: 3,4; T'1: Pb
T'2: Pa,5

T'3: Pb
T'4: Pa
T'5: Pb,7

Pb: 2,3,5;

T4: 3,4

T5: 2,3,5,7

(b)

Idx

2

3

4

5

(a)

Idx

2

3

5

4

Idx

3

5

7
SID:5
CNT:3

SID:3
CNT:4

SID:2
CNT:4

SID:4
CNT:1

SID:5
CNT:1

SID:3
CNT:1

SID:2
CNT:2

SID:7
CNT:5

SID:2
CNT:3

SID:3
CNT:2

SID:5
CNT:1

v

v

SID:5
CNT:2

SID:4
CNT:1

SID:3
CNT:1

SID:5
CNT:2

SID:3
CNT:2

SID:2
CNT:2

SID:1
CNT:3

Figure 6: An example of redundancy reduction.

8 Scientific Programming

short and straight route can be selected by reducing Wlen and
Wturn, i.e., increasing Wm.

5. FP-Matching Algorithm

In this section, we will present the detail of the proposed FP-
matching algorithm with two matching steps: (1) candidate
search, and (2) finding a best route.

5.1. Candidate Search. For a given sequence of GPS points
P � p1⟶ p2⟶ · · ·⟶ pk􏼈 􏼉 , a set of candidate seg-
ments is searched for each point pi by a radius r (1≤ n≤ i).
As shown in Figure 8, GPS point pi is three segments S1/i,
S2/i, S3/i within the search radius r.)en, the distance from
pi to each candidate Sj/i(1≤ j≤ 3) can be calculated by
dist(pi, S

j
i) � min∀c∈Sj

i

dist(pi, c), where c
j
i is the nearest

point inside S
j

i to pi.
To find candidates efficiently, an R-tree index is built for

the whole digital map.)en, the top-k nearest segment to pi

can be found in two steps: the first is to search for a set of
candidate minimal boundary rectangles (MBR) nearest to pi.
Next is to scan the segments inside (or intersected by) the
MBRs. By exploring more MBRs and segments, it is possible
to select the top-k nearest segments as candidates.

5.2. Route Optimization. After finding the candidate seg-
ments with respect to a sequence of GPS points, it is nec-
essary to derive a route of candidates that best match the
entire sequence of GPS points.

Let S
j
i denote the j-th candidate segment of a GPS point

pi; pi and pi+1 be two neighboring GPS points; S
j
i and S

j′
i+1 be

the candidate segments associated with the two neighboring
GPS points.)en, the two candidate segments S

j
i and S

j′
i+1

might be directly connected or disconnected on the road
network. If they are disconnected, the two segments need to
be complemented by candidate patterns on FP-forest∗
(Subsection 4.3). If no FP is available for the complemen-
tation, the two segments need to be completed with the best
route, under the following weight. Up to now, all candidate
segments are linked into an entire route, such as tomaximize

the cumulative weight of the segments connected in that
route.)e route weight between two candidate segments, S

j
i

and S
j′
i+1, depends on four factors:

(1) Wd(S
j
i , S

j′
i+1) , the weight of the distance between pi

and candidate segment S
j
i (resp. the distance from S

j
i

to S
j′
i+1)

(2) Wt(S
j

i⟶ S
j′
i+1), the weight of the moving speed on

the route between S
j

i and S
j′
i+1

(3) Wf(S
j
i⟶ S

j′
i+1), the weight of the frequency be-

tween S
j
i and S

j′
i+1, which can be determined through

the lookup operation
(4) Wm(S

j

i⟶ S
j′
i+1), the weight of the mobility be-

havior on the route between S
j
i and S

j′
i+1 which can be

obtained in the FP-forest∗

However, the previous approaches [11, 12] only consider
weight Wd(S

j

i , S
j′
i+1), this paper compute the overall route

weight W(S
j
i⟶ S

j′
i) between two candidates S

j
i and S

j′
i′ ,

which combines all the four weights above:

W S
j
i⟶ S

j
i+1􏼐 􏼑 �Wf S

j
i⟶ S

j
i+1􏼐 􏼑∗Wd S

j
i , S

j
i+1􏼐 􏼑

∗Wr S
j
i⟶ S

j
i+1􏼐 􏼑∗Wm S

j
i⟶ S

j
i+1􏼐 􏼑.

(2)

Following Li et al.’s approach [11], the distance weight
Wd(S

j
i , S

j′
i+1) is computed under the assumption that the

distance between a GPS point and its real position obeys the
normal distribution N � (μ, σ2).)us, the probability of
candidate S

j
i being the correct mapmatch can be estimated by:

P S
j
i􏼐 􏼑 �

1
����
2πσ

√ e
− [Dist(i,j)− μ]2/2σ2

, (3)

where Dist(i, j) � Dist(pi, S
j
i) is the nearest distance be-

tween pi and its candidate segment S
j
i .)e route S

j
i⟶ S

j′
i+1

involves two candidate segments: S
j
i and S

j′
i+1.)us, a pa-

rameter β≥ 0 is arranged to mediate the factors with respect
to the two candidates S

j

i and S
j′
i+1, and the following weight is

defined:

Wd S
j
i , S

j′
i+1􏼒 􏼓 �

(1 + β)∗P S
j
i􏼐 􏼑∗P S

j′
i+1􏼒 􏼓

β∗P S
j

i􏼐 􏼑 + P S
j′
i+1􏼒 􏼓

, (4)

where β is the relative importance of S
j

i over S
j′
i+1 · β � 1.0

means the two candidates S
j

i and S
j′
i+1 are equally important

on the route between them; β< 1.0(resp.β> 1.0) means S
j
i is

less(resp · more) important than S
j′
i+1 on the route.

To compute Wt(S
j
i⟶ S

j′
i+1), it is necessary to estimate

the mean moving speed on the route between S
j
i and S

j′
i+1.

Here, two candidate segments S
j
i and S

j′
i+1 are given for two

neighboring GPS sampling points pi and pi+1, respectively.
With the aid of the FP-forest∗, it is possible to obtain the
route P∗ (S

j
i , S

j′
i+1) from S

j
i to S

j′
i+1. On this basis, the mean

speed V(i,j)⟶(i+1,j′)
of P∗ (S

j
i , S

j′
i+1) can be calculated by

Pi

S3
i

C3
i

C2
i

S2
i

S1
i

C1
i

Figure 8: Candidate search.

Scientific Programming 9

V(i,j)⟶(i+1,j′)
�

w(i,j)⟶ i+1,j′()

Δti,i+1
, (5)

where w(i,j)⟶(i+1,j′) is the traversed distance along route
P∗ (S

j
i , S

j′
i+1); Δti,i+1 � pi · t − pi+1 · t is the time interval

between pi and pi+1. Based on the mean speed](i,j)⟶(i+1,j′),
the probability P

S
j

i

(](i,j)⟶(i+1,j′))resp · P
S

j

i

(](i,j)⟶(i+1,j′)) of
mobile devices moving on S

j
i (resp · S

j′
i+1) with the speed

](i,j)⟶(i+1,j′) can be inferred from the speed histogram with
respect to the candidate segments S

j
i (resp · S

j′
i+1). After that,

the speed weight can be calculated by

Wt S
j
i⟶ S

j′
i+1􏼒 􏼓 � P

S
j

i

](i,j)⟶ i+1,j′()􏼒 􏼓∗P
S

j′
i+1

](i,j)⟶ i+1,j′()􏼒 􏼓.

(6)

Furthermore, the frequency weight Wt(S
j
i⟶ S

j′
i+1) can

be calculated through min-max normalization, such that the
frequency weight is linearly proportional to the frequency of
historical routes from S

j

i to S
j′
i+1, i.e., Freq(S

j

i⟶ S
j′
i+1):

Wf S
j

i⟶ S
j′
i+1􏼒 􏼓 �

Freq S
j
i⟶ S

j′
i+1􏼒 􏼓 − Freqmin

Freqmax − Freqmin
, (7)

where Freqmax(resp · Freqmin) is the maximum (resp. min-
imum) frequency from a root to a tree node within FP-
forest∗.

)e calculation of mobility behavior weight
Wm(S

j
i⟶ S

j′
i+1) is already detailed in the preceding

subsections.
Until now, the FP-matching problem is to find a route

with the highest overall route weight (e.g., the black line in
Figure 9), such that the sum of all edge weights is maximized
among all optional routes. Formally, the best matching route
P of segments can be defined as

P � argmax 􏽘
n− 1

i�1
W S

besti
i ⟶ S

besti+1
i+1􏼐 􏼑. (8)

Our purpose is to find one route with the highest overall
weight in a directed acyclic graph (DAG). As shown in

Figure 10 Algorithm 3 shows how to find the best route
through dynamic programming. After the algorithm outputs
the sequence of matching segments, it is necessary to judge
whether these segments are disconnected within the se-
quence. If some of them are disconnected, the full route must
be recovered through the complementation operation in
Algorithm 2.

Depending on the specific input DAG, the time com-
plexity of Algorithm 3 is O(n∗m2), where n is the number
of GPS points within the input trajectory, andm is the mean
number of candidate segments in DAG.

6. Evaluation

6.1. Datasets, Contrastive Algorithms, and Metrics. Our ex-
periments were carried out on two datasets.)e first dataset
is the digital map of Shanghai road network, extracted from
OpenStreetMap.)e dataset contains 146,804 vertices and
95,950 edges.)e second dataset, known as TaxiData, covers
92,602 taxi trajectories in one day. Each GPS sample con-
tains a timestamp, occupied/empty state, GPS longitude and
latitude, speed, and direction. For the taxi trajectories, the
GPS sampling rate is as high as 1 point per 10 seconds.)e
candidate segments were searched for mainly based on GPS
longitude and latitude. With help of the timestamp, GPS
points were sampled from the trajectories to simulate var-
ious sampling rates.

)e ground truth of the experiments, i.e., the routes
with high accuracy, was obtained by applying classic
map-matching algorithms to the original high-sampling-
rate trajectories. Based on the occupied/empty state, each
long trajectory of a taxi were divided into multiple short
subtrajectories, each of which represents one route of a
passenger.)e division makes sense, because the sub-
trajectories with passengers directly indicate the travel
route from sources to destinations.)en, a FP-forest was
established based on the subtrajectories. A total of
155,725 trajectories were randomly selected to build the
forest, and 337 were chosen to evaluate the map-
matching approaches. Note that historical trajectories
involve GPS points of high sampling rate; with help of

S1
1 S1

2

S2
1 S2

2

S3
1 S3

2

P1 P2 P3 Pn

Sm
1 Sm

2

S1
3

S2
3

S3
3

Sm
3

S1
n

S2
n

S3
n

Sm
n

Figure 9: Route optimization. Note: the solid black circles are raw
GPS points p1 . . . p4; the hollow black circles under the solid black
circles are candidate segments.

Algorithm 3: FindBestRoute (DAG: (S1
1...Sk

1) → ... → (S1
n...Sk'

n),
Forest F)

Output: Best Route P:S1
best1 → ... → Sn

bestn

Let f[] denote the route weight computed so far;
Let pre[] denote the previous of current candidate;
for i = 1; i ≤ k; i + + do f[Si

1] = 0;
for i = 2; i ≤ n; i + + do

for j = 1; j ≤ k; j + + do

for l = 1; l ≤ k; l + + do
temp = f[Sl

i-1] + W(Sl
i-1 → Sj

i);
if max ≤ temp then max = temp; pre[Sj

i] = Sl
i-1;

for i = n; i ≥ 2; i - -do{ P.append(cur); cur = pre[cur]};
P.append(cur); P.reverse();
return P;

f[Sj
i-1] = max;

max = -1;

p = []; cur = argmax
f[sx

n]
;sx

n

1
2
3
4
5
6
7
8
9

10

11

12
13
14

Figure 10: Algorithm 3.

10 Scientific Programming

the timestamp, this paper samples GPS points within
testing trajectories to simulate various sampling inter-
vals from 1 to 5 mins.

For comparison, our FP-matching algorithm was con-
trasted against three approaches: HMM-matching [12], ST-
Matching [11], and HRIS [15].)e performance of each
map-matching approach was evaluated against the following
metrics about matching accuracy and running time.

6.1.1. Accuracy by Number AN.)e accuracy by number is
the ratio of the number of correctly matched segments to the
total number of segments within the trajectories.

6.1.2. Accuracy by Length AL.)e accuracy by length is the
ratio of the length of matched segments to the total length of
all segments within the trajectories.

6.1.3. Route Mismatch Fraction (RMF). Let d+ and d be the
total length of incorrectly matched segments added to
that of the correct route d0 and the total length of in-
correctly matched segments subtracted from d0, re-
spectively.)en, the summation between d+ and d is the
total mismatched distance.)e RMF is defined as the
fraction of (d+ + d−)/d0, which quantifies the map-
matching error, i.e., RMF � (d+ + d−)/d0.

6.1.4. Minimum Fréchet Distance (MFD). To evaluate the
correctness of the matched path, the MFD was computed
between the true path and the matched path.)e smaller the
MFD, the greater the similarity between the two paths.

6.2. Baseline Experiment.)e baseline experiment aims to
evaluate the accuracy of five approaches, namely, FP∗-
matching, FP-matching, ST-matching [11], HMM-matching

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60
1 2 3 4 5

Sampling Interval (min)

ST
HRIS

FP*
FP
Newson

A
N

(a)

1 2 3 4 5
Sampling Interval (min)

ST
HRIS

FP*
FP
Newson

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

A
L

(b)

107

106

105

104

103

102

101

100

1 2 3 4 5
Sampling Interval (min)

Ru
nn

in
g

Ti
m

e (
m

s)

FP*
FP
Newson

ST
HRIS
Reduced FP*

(c)

Figure 11: Effect of sampling intervals: AN, AL and running time (from left to right).

Scientific Programming 11

[12], and HRIS [15] at various sampling rates. Note that FP∗-
matching (resp. FP-matching) indicates the map-matching
algorithm using FP∗-forest (resp. FP-forest).

As shown in Figure 11 (left and middle), the accuracy of
every algorithm declined with the expansion of the sampling
interval, i.e., the reduction of sampling rate. Among the five
approaches, FP∗-matching and FP-matching achieved the
best performance, while ST-matching and HMM-matching
exhibited similar trends. After the interval of 3mins, ST-

matching and HMM-matching witnessed drastic degradation
of accuracy, while FP∗-matching and FP-matching still
performed the best.)is means FP∗-matching works excel-
lently on very sparse GPS points. In addition, HRIS operated

Table 1: Effect of sampling intervals from 1, 2, 3, 4 to 5 (mins).

RMF MFD (m)
1 2 3 4 5 1 2 3 4 5

HMM [20] 0.21 0.29 0.35 0.43 0.5 354.03 383.37 436.35 495.09 569.61
ST [19] 0.16 0.28 0.36 0.44 0.49 314.91 398.03 477.64 517.34 586.18
HRIS [31] 0.25 0.32 0.31 0.39 0.45 379.42 427.48 411.32 458.46 534.42
FP 0.18 0.26 0.33 0.38 0.42 296.21 368.34 390.97 451.66 513.67
FP∗ 0.16 0.25 0.29 0.36 0.40 285.16 349.77 375.13 416.40 473.53

0.90

0.85

0.80

0.75

0.70

A
N

3 6 9 12 15
Trajectories (*104)

Sampling Interval (min)
1
2
3

4
5

(a)

0.90

0.85

0.80

0.75

0.70
A

N

3 6 9 12 15
Trajectories (*104)

Sampling Interval (min)
1
2
3

4
5

(b)

10

8

6

4

2

0

Sp
ac

e C
os

t (
*1

04K
B)

3 6 9 12 15
Trajectories (*104)

FP-forest*
Reduced FP-forest*

(c)

Figure 12: Effect of historical trajectories and sampling rate on map-matching accuracy and space cost (from left to right).

Table 2: Reliability of mobility behavior weight.

Distance (m) 200 400 600 800 1000 1200
Proportion 0.999 0.975 0.952 0.924 0.899 0.852

12 Scientific Programming

well on sparse trajectories, when the sampling interval was
greater than 3mins.)is is because HRIS can exploit his-
torical trajectories to improve themap-matching precision for
the input trajectories, even if the sampling rate is very low.

Next, the five map-matching approaches were compared
in terms of running time. As shown in Figure 11 (right), all
approaches realized a shorter running time, with the ex-
pansion of the sampling interval, i.e., the increase of sparse
GPS samples. Among them, HRIS had the longest running
time at any sampling interval.)e result is consistent with
the findings of Zheng et al. [15]. FP∗-matching generally
outperformed HMM-matching [12] and ST-matching [11],
for the latter two consume too much time in computing the
shortest path. Besides, FP∗-matching consumed a slightly
longer running time than FP-matching, for a few time is
required for the redundancy reduction in FP-forest∗.

Table 1 compare the map-matching effectiveness of the
five approaches in terms of RMF and MFD. With the in-
crease of sampling interval, i.e., the growing number of

sparse GPS samples, the RMF and MFD rose for all five
approaches. Among them, FP∗-matching and FP-matching
consistently outperformed the contrastive approaches.

6.3. Sensitivity Analysis.)is subsection analyzes the sen-
sitivity of FP-matching to several key parameters.

6.3.1. Effect of Historical Data.)e size of the historical
trajectory dataset D was varied from 3∗ 104 to 15∗ 104 to
test the effect of D on map-matching performance. As
shown in Figure 12, when the sampling rate was fixed, the
map-matching accuracy, as measured by AN and AL, in-
creased with the number of historical trajectories; when the
number of trajectories was fixed, better accuracy was
achieved with the reduction of sampling interval, i.e., the
growing density of GPS samples.

)e authors are also interested in the space of FP-forest
and the one by redundancy reduction. As shown in Figure 12

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60
1 2 3 4 5 6 7 8 9 10

Number of Candidates
AN
AL

Ac
cu

ra
cy

(a)

0.95

0.90

0.85

0.80

0.75

0.70
1 3 5

Sampling Interval (min)

A
N

β = 0.2
β = 0.4
β = 0.6

β = 0.8
β = 1.0
β = 10

(b)

0.95

0.90

0.85

0.80

0.75

0.70
1 3 5

Sampling Interval (min)

A
L

β = 0.2
β = 0.4
β = 0.6

β = 0.8
β = 1.0
β = 10

(c)

Figure 13: Effect of candidate segments, AN and AL at various sampling rates and β (from left to right).

Scientific Programming 13

(right), when the size D grew, the space cost of FP-forest∗
was clearly smaller than that of the original FP-forest.

6.3.2. Reliability of Mobility Behavior Weight. In Subsection
4.5, the mobility behavior weight Wm is designed for a tree
node in FP-forest∗, based on people’s preference for short,
straight paths within a certain distance. To verify the reli-
ability of this weight, 10,000 source-destination pairs were
randomly sampled from the GPS trajectory database at
different distances. For each sampled pair, the authors
calculated the trajectories that traverse the shortest and
straightest path as a proportion of all trajectories passing
through these two points.)e shortest path was measured
by Euclidean distance. As shown in Table 2, the said
proportion was greater than 0.92, when the two points
were less than 800m apart.)e proportion was still as
high as 0.852, when the distance between the two points
grew to 200m. Hence, the proposed mobility behavior
weight is rather reliable.

6.3.3. Effect of Candidate Segments. In subsection 5.1, the
candidate segments are searched for to perform map-
matching. Here, the number of candidate segments is varied
to test the matching accuracy of FP∗-matching. As shown in
Figure 13, more candidates led to a higher accuracy for both
AN and AL. As the number of candidates increased from 1 to
8, the map-matching accuracy surged up to the peak at 3
candidates, and remained stable thereafter.

6.3.4. Effect of Parameter β. In formula (6), the road distance
weight Wd employs a parameter β to tune the importance of
two neighboring candidate segments. As shown in Figure 13
(middle and right), when the β was fixed, the greater the
sampling interval (the more the sparse GPS samples), the
lower the map-matching accuracy; when the sampling
interval was fixed, the map-matching accuracy increased
with the decrease of β.)ese trends can be explained as
follows:

For example, taxi drivers decide the route mainly based
on the current position.)at is, they choose the next seg-
ments leading to the final destination, in view of the traffic
situation around the current position. As a result, it makes
sense for FP-matching to perform better at a smaller β,
which leads to a higher weight for the source segment in the
route S

j

i⟶ S
j′
i′
.

7. Conclusions

To solve the problem of map-matching for low-sampling-
rate trajectories, this paper mines the FPs out of a huge
amount of historical taxi routes, extracts the MBC, and
proposes a novel matching algorithm.)e proposed algo-
rithm has a high map-matching accuracy, as it incorporates
the weights of the distance from GPS points to road seg-
ments, moving speeds, trajectory frequency and mobility
behaviors on the segments. To speed up the map-matching,
the identified FPs were indexed by the FP-forest structure.

)en, redundant paths were pruned within the indexing
structure to save space. Comparative experiments demon-
strate that our algorithm outperformed existing HMM-
based and historical data-based algorithms in terms of
matching accuracy and running time.)e future work plans
to extend our algorithm online, and develop a map-
matching approach by the popular deep neural networks
(DNNs).

Data Availability

)e data used to support the findings of this study are
available from the corresponding author upon request.

Disclosure

A shorter conference version of this paper appeared in 19th
IEEE International Conference on Mobile Data Manage-
ment Conference.)e map matching algorithm in initial
conference paper is relatively simple, so there is still a lot of
room for improvement in the research method. Later, their
new team continued to further study the algorithm in the
paper and finally proposed a more advanced map matching
algorithm.

Conflicts of Interest

)e authors declare that they have no conflicts of interest.

Acknowledgments

)e authors thank the authors of the conference paper and
General Scientific Research Project of Zhejiang Provincial
Department of Education in 2020 (Y202043149).

References

[1] A. M. Pinto, A. P. Moreira, and P. G. Costa, “A localization
method based on map-matching and particle swarm opti-
mization,” Journal of Intelligent and Robotic Systems, vol. 77,
no. 2, pp. 313–326, 2015.

[2] X. B. Chen, L. Zhao, Y. Hao, L. H. Yu, and C. C. Lv, “An
evaluation algorithm for the interoperability of global navi-
gation satellite systems,” Traitement du Signal, vol. 37, no. 1,
pp. 137–144, 2019.

[3] J. Guo, X. Li, Z. Zhang, and J. Zhang, “Traffic flow fluctuation
analysis based on Beijing taxi GPS data,” Knowledge Science,
Engineering andManagement, in Proceedings of the Knowledge
Science, Engineering and Management - 11th International
Conference, pp. 452–464, KSEM 2018, Changchun, China,
August 2018.

[4] X. Li, J. Han, J. Lee, and H. Gonzalez, “Traffic density-based
discovery of hot routes in road networks,” in Proceedings of
the Advances in Spatial and Temporal Databases, 10th In-
ternational Symposium, SSTD 2007, pp. 441–459, Springer,
Boston, MA, USA, July 2007.

[5] L. Liao, D. Fox, and H. A. Kautz, “Hierarchical conditional
random fields for gps-based activity recognition,” in Pro-
ceedings of the Robotics Research: Results of the 12th Inter-
national Symposium, pp. 487–506, ISRR 2005, San Francisco,
CA, USA, October-2005.

14 Scientific Programming

[6] K. Zhao, M. Musolesi, P. Hui, W. Rao, and S. Tarkoma,
“Explaining the power-law distribution of human mobility
through transportationmodality decomposition,” Scientific
Reports, vol. 5, no. 1, p. 9136, 2015.

[7] A. Ali, M. Hegaze, and A. Elrodesly, “In-flight correction of
the satellite orientation parameter during target mode,”
Mathematical Modelling of Engineering Problems, vol. 6, no. 2,
pp. 249–262, 2019.

[8] H. Alt, A. Efrat, G. Rote, and C. Wenk, “Matching planar
maps,” in Proceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 589–598, ACM,
Baltimore, MD, USA, 12 January 2003.

[9] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk, “On
map-matching vehicle tracking data,” in Proceedings of
the 31st International Conference on Very Large Data
Bases, pp. 853–864, ACM, Trondheim, Norway, August
2005.

[10] Y. Huang, W. Rao, and Z. Zhang, “Frequent pattern-based
map-matching on low sampling rate trajectories,” in Pro-
ceedings of the 19th IEEE International Conference on Mobile
Data Management, pp. 266–273, IEEE, Aalborg, Denmark,
June 2018.

[11] Y. Lou, C. Zhang, and Y. Zheng, “Map-matching for low-
sampling-rate GPS trajectories,” in Proceedings of the 17th
ACM SIGSPATIAL International Symposium on Advances in
Geographic Information Systems, pp. 352–361, ACM-GIS
2009, Seattle, WA, USA, November 2009.

[12] P. Newson and J. Krumm, “Hidden Markov map matching
through noise and sparseness,” in Proceedings of the 17th
ACM SIGSPATIAL International Symposium on Advances in
Geographic Information Systems, pp. 336–343, ACM-GIS
2009, Seattle, WA, USA, November 2009.

[13] M. A. Quddus, W. Y. Ochieng, L. Zhao, and R. B. Noland, “A
general map matching algorithm for transport telematics
applications,” GPS Solutions, vol. 7, no. 3, pp. 157–167, 2003.

[14] C. E. White, D. Bernstein, and A. L. Kornhauser, “Some map
matching algorithms for personal navigation assistants,”
Transportation Research Part C: Emerging Technologies, vol. 8,
no. 1–6, pp. 91–108, 2000.

[15] K. Zheng, Y. Zheng, X. Xie, and X. Zhou, “Reducing un-
certainty of low-sampling-rate trajectories,” in Proceedings of
the IEEE 28th International Conference on Data Engineering
(ICDE 2012), pp. 1144–1155, Washington, DC, USA, April,
2012.

[16] F. Zhu, C. Luo, and M. Yuan, “City-scale localization with
telco big data,” in Proceedings of the 25th ACM International
Conference on Information and Knowledge Management,
pp. 439–448, ACM, Indianapolis, USA, October 2016.

[17] F. Zhu, M. Yuan, and X. Xie, “A data-driven sequential lo-
calization framework for big telco data,” IEEE Transactions on
Knowledge and Data Engineering, p. 1, 2019.

[18] Z. Li, K. Liu, Y. Zhao, and Y. Ma, “MaPIT: an enhanced
pending interest table for NDN with mapping bloom filter,”
IEEE Communications Letters, vol. 18, no. 11, pp. 1915–1918,
2014.

[19] Z. Li, L. Song, and H. Shi, “Approaching the capacity of k-user
MIMO interference channel with interference counteraction
scheme,” Ad Hoc Networks, vol. 58, pp. 286–291, 2017.

[20] Y. Liu and Z. Li, “A novel algorithm of low sampling rate GPS
trajectories on map-matching,” EURASIP Journal on Wireless
Communications and Networking, vol. 2017, pp. 1–5, 2017.

[21] H. Wei, Y. Wang, G. Forman, Y. Zhu, and H. Guan, “Fast
viterbi map matching with tunable weight functions,” in
Proceedings of the SIGSPATIAL 2012 International Conference

on Advances in Geographic Information Systems (formerly
known as GIS), pp. 613–616, ACM, Redondo Beach, CA, USA,
November 2012.

[22] T. Eiter and H. Mannila, “Computing Discrete Fréchet Dis-
tance,” Technical Report CD-TR 94/64, Christian Doppler
Laboratory for Expert Systems, TU Vienna, Vienna, Austria,
1994.

[23] J. Han, H. Cheng, D. Xin, and X. Yan, “Frequent pattern
mining: current status and future directions,” Data Mining
and Knowledge Discovery, vol. 15, no. 1, pp. 55–86, 2007.

[24] J. Pei, J. Han, and B. Mortazavi-Asl, “Prefifixspan: mining
sequential patterns by prefix-projected growth,” in Proceed-
ings of the 17th International Conference on Data Engineering,
pp. 215–224, IEEE, Heidelberg, Germany, 2 April 2001.

[25] F. Huang and N. Zheng, “A novel frequent pattern mining
algorithm for real-time radar data stream,” Traitement du
Signal, vol. 36, no. 1, pp. 23–30, 2019.

[26] R. Srikant and R. Agrawal, “Mining sequential patterns:
generalizations and performance improvements,” in Pro-
ceedings of the Advances in Database Technology - EDBT’96,
5th International Conference on Extending Database Tech-
nology, pp. 3–17, Avignon, France, March 1996.

[27] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, “New
algorithms for fast discovery of association rules,” in Pro-
ceedings of the Lird International Conference on Knowledge
Discovery and Data Mining (KDD-97), pp. 283–286, Newport
Beach, CA, USA, August 1997.

[28] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without
candidate generation,” ACM SIGMOD Record, in Proceedings
of the 2000 ACM SIGMOD International Conference on
Management of Data, vol. 29, no. 2, pp. 1–12, ACM, Dallas,
Texas, USA, May 2000.

[29] M. J. Zaki, “SPADE: an efficient algorithm formining frequent
sequences,” Machine Learning, vol. 42, no. 1-2, pp. 31–60,
2001.

[30] S. Lin, Y. Chen, D. Yang, and J. Wu, “Discovering long
maximal frequent pattern,” in Proceedings of the Eighth In-
ternational Conference on Advanced Computational Intelli-
gence, ICACI 2016, pp. 136–142, IEEE, Chiang Mai,)ailand,
February 2016.

[31] R. Prabamanieswari, “A combined approach for mining fuzzy
frequent itemset,” International Journal of Computer Appli-
cations, vol. 975, p. 8887, 2013.

[32] C. M. Kuok, A. Fu, and M. H. Wong, “Mining fuzzy asso-
ciation rules in databases,” ACM SIGMOD Record, vol. 27,
no. 1, pp. 41–46, 1998.

[33] R. Agrawal and R. Srikant, “Fast algorithms for mining as-
sociation rules in large databases,” in Proceedings of the
VLDB’94, Proceedings of 20th International Conference on
Very Large Data Bases, pp. 487–499, Morgan Kaufmann
Publishers Inc., Santiago de Chile, Chile, September 1994.

[34] B. Han, L. Liu, and E. Omiecinski, “Road-network aware
trajectory clustering: integrating locality, flow, and density,”
IEEE Transactions on Mobile Computing, vol. 14, no. 2,
pp. 416–429, 2015.

Scientific Programming 15

