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Aiming at the problem of low accuracy and efficiency of existing land use classification methods for high-resolution remote
sensing image segmentation, a land use classification method using improved U-Net in remote sensing images of urban and rural
planning monitoring is proposed. First, taking the high-resolution remote sensing images of different remote sensing satellites as
the data source, the remote sensing images in the data source are registered and cropped so that the pixels at the corresponding
positions represent the same geographical location.)en, the encoder of the U-Net model is combined with the residual module to
share the network parameters and avoid the degradation of the deep network. )e dense connection module is integrated into the
decoder to connect the shallow features with the deep features, so as to obtain new features and improve the feature utilization
rate. Finally, the depthwise separable convolution is used to process the spatial and channel information of the convolution
process separately to reduce the model parameters. Experiments show that the pixel accuracy, recall rate, precision rate, and
average intersection-over-union ratio of the proposed land use classification method based on improved U-Net are 92.35%,
80.56%, 83.45%, and 86.75%, respectively, which are better than the comparedmethods.)erefore, the proposedmethod is proved
to have good land use classification ability.

1. Introduction

Human beings’ excessive demand and consumption of land
resources have brought various problems, such as land
degradation, land desertification, sharp reduction of forest
land and grassland area, soil erosion, serious land pollution,
and so on. )ese problems directly lead to the paralysis of
some systems and the extinction of rare species [1]. If human
beings create value without paying attention to the pro-
tection of nature and blindly destroy it, the living conditions
will be greatly reduced and the future development will be
limited. )erefore, it is necessary to reasonably classify and
use land [2–4].

With the rapid development of high-speed imaging
sensors and remote sensing technology, the resolution of
remote sensing image can be as high as 0.41m. On the one
hand, the maturity of high-resolution remote sensing image
technology provides accurate information for understanding
the world; on the other hand, it brings great challenges to the

automatic and intelligent interpretation of remote sensing
image. How to make full use of these high-quality data is an
important research direction [5–8]. High-resolution remote
sensing images contain rich and complex surface infor-
mation and record more ground object details. )ey are
widely used in agriculture, industry, military, and other
fields. )e study of ground information through high-res-
olution remote sensing images can not only facilitate re-
source survey, disaster monitoring, urban planning, and
military defense but also contribute to the improvement of
intelligent technologies such as unmanned driving, crop
planting statistics, remote sensing mapping, and so on
[9–12].

Deep learning has strong feature fitting ability, so it is
widely used in remote sensing image scene classification.
)is method extracts image features layer by layer in an end-
to-end way, fuses them to form high-level features, and
finally generates the semantic description of the image, that
is, category label [13–17]. Due to the use of real semantic
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labels, deep learning can extract feature representations
highly related to image categories and achieve high classi-
fication accuracy [18].

)e widely used land use classification methods mainly
include visual interpretation, supervised classification, un-
supervised classification, and so on [19]. In recent years, with
the development of artificial intelligence, the deep learning
method has been gradually introduced into land use clas-
sification [20]. Zhang et al. [21] combined the advantages of
convolutional neural network andMarkov random field and
proposed a variable precision rough set (VPRS) model to
quantify the uncertainty in the classification of VFSR image
by convolutional neural network (CNN). Maggiori et al. [22]
proposed a CNN model for remote sensing image classifi-
cation. CNN was used to learn the contextual features of
image labels on a large scale. )is network was composed of
four stacked convolution layers. )e image was down-
sampled, and the relevant features were extracted. In order
to overcome the shortcomings of large-scale labeled remote
sensing image datasets, Scott et al. [23] proposed amethod of
combining transfer learning with deep convolutional neural
network (DCNN), which used TL to guide DCNN. )is
method retained the depth visual features learned from
image corpora in different image domains, so as to improve
the robustness of DCNN to remote sensing image data. Mou
et al. [24] proposed a full Conv-Deconv network for un-
supervised spectral spatial feature learning of hyperspectral
images, which could be trained end-to-end. Mou et al. [25]
proposed a hyperspectral image classification method based
on recurrent neural network, which used the newly pro-
posed activation function Pre-tanh to replace the traditional
tanh function for hyperspectral sequence data analysis.
Naushad et al. [26] proposed a land classification method
combining VGG16 and wide residual network and fine-
tuned the model with transfer learning. Considering pixel-
level classification and boundary mapping, Dong et al. [27]
proposed a new feature integration network (FE-Net), which
included two stages: multi-scale feature encapsulation and
enhancement. However, in the face of high-resolution re-
mote sensing images, the above methods are difficult to
effectively mine data features, and there are many model
parameters, which have the problems of low accuracy and
efficiency.

Aiming at the problem of low accuracy and efficiency of
existing land use classification methods for high-resolution
remote sensing image segmentation, a land use classification
method using improved U-Net in remote sensing images of
urban and rural planning monitoring is proposed. )e in-
novations of the proposed method are as follows:

(1) )e encoder is combined with the residual module to
share the network parameters and avoid the deg-
radation of the deep network. )e dense connection
module is used to cascade the upper features with the
deep features.

(2) )e convolution modules in the model are replaced
by depthwise separable convolution. )e spatial and
channel information of the convolution process are
processed separately. )e direct correlation between

spatial and channel is removed, so the amount of
parameters of the model is effectively reduced.

2. Construction of Dataset

2.1. Overview of Satellite Information Used in Datasets.
)e multi-temporal remote sensing images in the dataset
used in this paper come from different remote sensing
satellites. QuickBird series satellites were launched by
American company DigitalGlobe in 2001. It is one of the first
commercial satellites in the world to provide sub-meter
resolution. Its orbital altitude is about 450 km, its mass is
about 1018 kg, the regression cycle is 1 to 6 days, and the
corresponding actual area of a single image is about
272.25 km2. )e provided resolutions include panchromatic
0.61 to 0.71 meters and multi-spectral 2.44 to 2.88 meters.
)e sensor can detect four different bands: 450–520 nm blue
band, 520–600 nm green band, 630–690 nm red band, and
760–900 nm near-infrared band.

Landsat series satellites are led by NASA in the United
States to observe and study global change. At present, only
Landsat7 and Landsat8 are in service. Landsat7 satellite
carries enhanced thematic plotter sensors. Compared with
the original sensor device, the device significantly improves
the image resolution and positioning quality by setting
absolute calibration on the satellite. A single image covers an
area of 32375 km2. Landsat8 has an orbital height of about
705 km, an orbital period of 99 minutes, and a revisit period
of 16 days.)e satellite is mainly equipped with two different
sensors, namely, land imager and thermal infrared sensor.
)e two sensors provide 11 different bands, which can
provide richer synthesis schemes through different combi-
nations. )e effects of different band combinations are
shown in Figure 1, from which it can be clearly seen that the
natural color map is closer to the daily images, while the
vegetation analysis map focuses on the plant color, which
can clearly distinguish vegetation from the surrounding
environment. )e atmospheric penetration map can shield
some highlights to reduce the impact of light.

2.2. Detailed Introduction of Dataset. Most remote sensing
images in the dataset are central and eastern China and
contain a wide variety of changes, such as bare land changing
into roads, farmland changing into high-speed rail tracks,
wasteland changing into factories, urban building demoli-
tion, new buildings, mountain reclamation, river diversion,
ore mining, and so on. )e dataset contains 13680 pairs of
multi-temporal remote sensing images with a resolution of
256× 256, and the corresponding area of each image is about
2.5 km2. Some images do not come from the same satellite,
so first, each pair of images need to be registered and
cropped so that the pixels at the corresponding positions
represent the same geographical location. However, even
so, there is still the problem of angle deviation caused by
different satellite shooting angles of some buildings. For
example, Figure 2 shows images of the same building
obtained by different remote sensing satellites at the same
location. It can be seen from the figure that these buildings
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only have some angular deviation, but in fact, there is no
change in ground features. However, these deviations
cannot be adjusted by simple image registration and can
only be solved by using the recognition ability of the
algorithm itself.

3. Land Use Classification of Remote Sensing
Images Based on Improved U-Net

3.1. Technical Roadmap. Typical CNN models include
AlexNet, VGG, GoogleNet, etc., all of which contain the
most basic hierarchy. )e development of these networks is
characterized by complex networks, increasing parameters
and deepening layers. However, there is no evidence that the
number of layers of the network is directly proportional to
the accuracy of the model, nor it is directly related to the
image, region, and classification requirements. )erefore,
blindly deepening the network is not desirable. Moreover,
the deep layers of the network have high requirements for
hardware, which directly affects the efficiency. It is the best
situation to achieve a certain balance.

However, these networks are suitable for image recog-
nition. During the test, a picture is input into the network
and then a category label value is output, which cannot
classify each pixel. )e goal of this paper is to classify remote
sensing images at pixel level.

U-Net is the optimization of FCN, and the extraction
effect is significantly improved compared with FCN. Both
U-Net and FCN have encoder-decoder structures, which are
simple but effective. )e encoder is combined with the

residual module to share the network parameters and avoid
the degradation of the deep network. )e dense connection
module is used to cascade the upper features with the deep
features, which is conducive to extracting new features and
improving the reuse rate of feature information. )erefore,
the improved U-Net is used to classify land use. )is paper
first preprocesses the remote sensing image data and then
classifies the study area by deep neural network, including
sample making, model training, prediction, and classifica-
tion, as shown in Figure 3.

3.2. Improved U-Net Model

3.2.1. Basic U-Net Model. )e most noticeable feature of
U-Net is the integration of low-dimensional features and
high-dimensional features, making full use of the semantic
features of images. Figure 4 shows the schematic diagram of
U-Net structure. )e U-Net structure is symmetrical left
and right, and the images are input into the U-Net
structure. First, the high-dimensional feature map with low
resolution is obtained after several convolution down-
sampling operations through the encoder, i.e., compression
channel on the left side of the network. )e network
structure on the left side is a Gaussian feature pyramid
structure from low dimension to high dimension; then,
enter the decoder on the right side of the network, i.e., the
expansion channel, and the input feature maps are sub-
jected to a series of deconvolution upsampling operations
to generate the feature maps of the corresponding size with
the original pyramid step by step. Finally, a prediction
result map at the same pixel level as the input image is
output. )e biggest difference between U-Net and FCN
structure is that when decoding, the high-dimensional
features of this layer are fused with the low-dimensional
features in corresponding pyramid layer for upsampling,
which considers both the high-dimensional and low-di-
mensional features in the image.

3.2.2. Improved U-Net Model. )e proposed model consists
of an encoder, decoder, and connection block. )e encoder
is composed of 8 residual modules, 2 residual modules
constitute a network layer, and each residual module is
composed of two 3× 3 convolution layer and quick

(a) (b) (c)

Figure 1: Composite maps of different band combinations of Landsat8 satellite. (a) Natural color. (b) Extraatmospheric view. (c) Vegetation
analysis.

Figure 2: Comparison of angle deviation of buildings at different
times.
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connection. Each network layer of the encoder is connected
through the convolutional and max-pooling layers with step
of 2 and convolutional kernel size of 2× 2. )e image in-
formation is convoluted to extract local features, and the
quick connection operation of the residual module fuses the
input global information with local features, so that the
model can capture more abundant feature information, and
the network is not easy to degrade. Each layer of the decoder
consists of a dense connection module, which uses layer to
layer connection by transpose convolution with step of 2 and
convolutional kernel size of 3× 3. )e dense connection

module consists of four 3× 3 convolution layers. In addition,
the output of the residual module is combined with the
relatively symmetrical dense connection module by cas-
cading, so that the model integrates more shallow features.
)e connecting block consists of four 3× 3 convolution
layers. )e encoder output is connected to the decoder. In
order to obtain a lighter network model, less convolution
kernels than U-Net are used in each layer, and batch nor-
malization and ReLU activation functions are added after
each convolution layer to prevent overfitting. )e model
structure is shown in Figure 5.

Image data

Data preprocessing

Training sample making

Training set Validation set

Data enhancement

model training

Residual module

Dense connection 
module

Deep convolution 
separable

Prediction of the proposed 
model

Result classification

Figure 3: Proposed technology roadmap.
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Figure 4: Schematic diagram of U-Net structure.
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3.2.3. Depthwise Separable Convolution. )e general con-
volution is replaced by depthwise separable convolution to
reduce the amount of U-Net parameters. In Xception
structure, the convolution kernel is three-dimensional, in-
cluding width, height, and channel dimensions. )e tradi-
tional convolution process is the unified processing of spatial
and channel information, and the depthwise separable
convolution processes the spatial and channel separately to
remove the direct correlation between them. In this way, the
redundant processing process is removed, the model pa-
rameters are reduced accordingly, the network becomes
simpler, and the universality is strengthened. )e operation
of depth separable convolution includes first performing
spatial convolution in the depth direction (convolution on
each input channel, respectively), followed by a pointwise
convolution mixing of the output channels together. )e
pointwise convolution is with convolutional kernel size of
1× 1, which is applied to the second step of depth separable
convolution to expand the depth of the image.

Supposing that the size of convolution kernel is Dk × Dk,
the size of input data is Df × Df × M and the size of output
data is Df × Df × N, and the parameter quantity of general
convolution is

Dk × Dk × M × N × Df × Df. (1)

)e depth separable convolution parameters are ob-
tained by adding the parameter quantities of pointwise
convolution and depth separable convolution:

Dk × Dk × M × Df × Df + M × N × Df × Df. (2)

Using the property that depthwise separable convolution
can reduce the parameter quantity, some traditional con-
volutions are replaced by depthwise separable convolution
on the basis of U-Net. )e parameter quantity is reduced to
about 1/3 of the original parameter quantity, and the model
inference time is about 5/6 of the original time.

3.3. Loss FunctionDesign. )e fundamental principle of the
design criterion of loss function is to directly reflect the
network model according to the characteristics of func-
tion. In the field of deep learning, the loss functions
commonly used include Euclidean loss function, hinge
loss function, softmax cross-entropy, and contrastive loss
function. In order to be applicable to the proposed im-
proved U-Net structure as much as possible, log loss
function is used as the loss function in the experiment.)e
log loss function is the loss function corresponding to
sigmoid, and its formula is

L(Y, P(Y|X)) � −log P(Y|X), (3)

where L is the value of cross-entropy, X is the value of
sample data, and Y is the value of predicted data. In order to
facilitate network calculation, the log loss function is mainly
used for maximum likelihood estimation. Because the
derivation of maximum likelihood is very cumbersome, the
logarithm is first calculated, and then the derivative and
extreme points are calculated. As the name suggests, the loss
function is the sum of the losses of each type of sample. If the
result is negative, it is the minimum loss of maximum
likelihood estimation.

4. Experiment and Analysis

4.1. Experimental Setup and Evaluation Index. )e com-
puter system of the experimental environment is Win-
dows 10, and the programming language used is Python.
)e deep learning framework used in the experiment is
TensorFlow, and the high-level neural network API-Keras
is used in the construction of deep learning network
(graphics card: NVIDIA GeForce GTX 1060 6 GB;
memory: 16G).
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In this paper, pixel accuracy (PA), recall (RC), precision
(PR), and mean intersection over union (MIoU) are used as
evaluation indexes. PA is the most commonly used evalu-
ation index, which indicates the proportion of correctly
predicted pixels in all pixels. MIoU calculates the proportion
between the intersection and union of two sets. In the re-
mote sensing image change detection task, these two sets
represent the changed region and the unchanged region.)e
formulas are shown in (4) and (5):

PA �


k
i�0 pij


k
i�0 

k
j�0 pij

, (4)

MIoU �
1

K + 1


k

i�0

pij


k
j�0 pij + 

k
j�0 pji − pii

, (5)

where k represents the number of object categories; pij

represents the number of pixels that belong to the category i

but are recognized as the category j; and pii indicates the
number of pixels correctly identified.

Recall represents the proportion of the change area
correctly recognized by the algorithm in the change area of
the original image, and precision represents the proportion
of the number of pixels in the correct change area predicted
in the prediction map to the number of pixels in all the real
reference change areas.)e calculationmethods of these two
indicators are shown in formulas (6) and (7).

RC �
TP

TP + FN
, (6)

PR �
TP

TP + FP
, (7)

where TP represents the pixel marked as the change region in
the reference image, and the recognition result of the algo-
rithm for the region is also the pixel of the change region; FP
represents a pixel marked as an unchanged region in the
reference image, and the recognition result of the region by
the algorithm is a changed region; FN represents a region
marked as a change region in the reference image, and the
recognition result of the region by the algorithm is an un-
changed region; and TN represents the unchanged region
marked in the reference image, and the recognition result of
the region by the algorithm is also the unchanged region.

4.2. Loss Curve and Accuracy of Network Training Process.
)e loss function is used to evaluate the difference between
the predicted value and the real value of the model. )e
better the loss function, the better the performance of the
model. Figure 6 shows the loss curve and accuracy diagram
of the experimental training process of the proposed
method, including the loss curve and accuracy diagram of
the training set and the verification set. When the epoch is
20, the loss value and accuracy are stable, Train_loss and
Val_loss have converged, and the difference between them is
very small. Finally, Train_loss is stable at about 85, Val_loss
is stable at about 82, and accuracy is stable at about 0.74.

4.3. Comparative Experiments of Different Models. In order
to prove the performance of the proposed algorithm, the
methods in [26, 27] are compared with the proposed method
under the same experimental conditions. )e experimental
results are shown in Figures 7 and 8.

By observing the experimental results, the PA of the
method in [26] is only 91.24%, the RC is 65.33%, and the PR
is 72.76%. )e PA of the method in [27] is 91.87%, the RC is
71.24%, and the PR is 92.35%. )e PA, RC, and PR of the
proposed method are 92.35%, 80.56%, and 83.45%, re-
spectively. Compared with other methods, it can be seen that
the proposed method is the only model with more than 80%
in PA, RC, PR, and MIoU indexes. MIoU is 86.75%, 10.16%
higher than that in reference [26] and 4.30% higher than that
in reference [27]. )is is because the proposed method
combines the residual module with the encoder to share the
network parameters and avoid the deep network degrada-
tion. In addition, by combining the output of the residual
module with the relatively symmetrical dense connection
module in a cascade way, the model integrates more shallow
features and improves the ability of the model to mine data
features. )e core of the comparison method is to optimize
the model parameters, which cannot extract the deeper
information from the remote sensing image data. )erefore,
when dealing with the remote sensing image classification
task, the values of each index are lower than those of the
proposed method.

Figure 9 shows the comparison diagram of different
methods for land change detection and plant change de-
tection. Because the two models in [26, 27] cannot fully and
effectively integrate the information of different depths, the
edge information noise shown on the prediction map is
serious. Although the approximate change region can be
extracted, there is an obvious gap compared with the pro-
posed method. )e proposed improved U-Net model is
superior to the other two models in terms of edge infor-
mation and recognition integrity. )is is mainly due to the
residual module and dense connection module in the model,
which improves the ability of the model to mine data fea-
tures. In addition, the depth separable convolution is used to
process the spatial and channel information of the
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(a) (b) (c) (d)

(e) (f ) (g)

Figure 9: Comparison of different methods for change detection. (a) T1 time image. (b) T2 time image. (c) Reference change area. (d)
Change area range. (e) Literature [26]. (f ) Literature [27]. (g) Proposed method.
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convolution process separately to remove the direct corre-
lation between them, which can provide relatively inde-
pendent shallow information for fusion with the main
module while completing their respective tasks. )erefore,
experiments show that the proposed method is feasible and
efficient for land use classification in remote sensing images.

5. Conclusion

In view of the low accuracy and efficiency of existing land use
classification methods for high-resolution remote sensing
image segmentation, a land use classification method using
improved U-Net in remote sensing images of urban and
rural planning monitoring is proposed. By combining the
encoder and residual module of U-Net model and inte-
grating the dense connection module into the decoder, the
data mining ability of the model is improved, and the
depthwise separable convolution is used to process the
spatial and channel information of the convolution process,
respectively, so as to reduce the model parameters. Com-
pared with other methods, it can be seen that the proposed
method is the only model with more than 80% in PA, RC,
PR, and MIoU indexes. )e classification system in this
paper is not detailed enough and does not involve secondary
classes. In the future, a variety of data types can be integrated
for more detailed classification. In addition, how to use
multiple GPUs to train the network model at the same time
is also one of the focuses of future research.
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