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A semantic ontology-driven hierarchical consistency segmentation algorithm was proposed to solve the segmentation incon-
sistency of animation character models because of the changing of poses. e mapping between semantic labels and local
geometric features was extracted to form a segmentation ontology. In the process of segmentation, support vector machine (SVM)
and local geometric features were used to identify the semantic labels, and segmentation was carried out according to the semantic
label driving hierarchy to ensure the consistency of the segmentation levels of animation character models. Poisson equation was
used to de�ne contour lines for the equal perimeters of segmentation boundary because of the changing of poses. is opti-
mizationmethodmade the segmentation boundary smooth and consistent under the changing of poses. In the experiment part, all
kinds of animation character models under di�erent poses were veri�ed and analyzed, and the consistent hierarchical seg-
mentation e�ect was obtained. Compared with the existing methods, the proposed segmentation ontology can solve the problem
of adaptive selection of optimization parameters of di�erent classes of models, and improve the segmentation quality. With the
continuous development of deep learning, the use of image segmentation for animation, and human pose recognition will become
more and more important.

1. Introduction

In the �eld of computer graphics such as animation and
games, segmentation of animation character models is
necessary to obtain di�erent subparts to analyze their
motion characteristics. In addition, such segmentation re-
sults can be applied to 3D animation modeling, multiview
reconstruction, and other �elds. erefore, segmentation of
3D animation [1] character models has aroused wide interest
of researchers.

For animation character models, it is crucial to ensure
the consistency of segmentation results under pose changes.
ere are many research achievements in the �eld of
graphics for reference. ese studies can be classi�ed into
two main categories. One is to adopt geometric features
insensitive to pose changes. Geodesic distance has been
widely used in model segmentation due to its stability under
pose changes.e shape diameter function is to approximate

the axial distance of the 3Dmodel, which is also stable under
pose changes. ermonuclear signals are not only stable
under pose changes, but also provide a theoretical frame-
work for multi-scale analysis from local to global. e other
is the common segmentation of model sequences proposed
by researchers. In recent years, collaborative segmentation is
achieved based on the similarity of shape features of multiple
models to achieve consistency of segmentation. Although
these studies can improve the consistency of segmentation
results, the rationality of segmentation results is not con-
sidered. In order to ensure that segmentation results con-
form to users’ semantic perception, researchers consider
incorporating semantic knowledge into the segmentation
process [2].

According to existing studies [3], for segmentation of
animation character models [4], the consistency of seg-
mentation results in hierarchy can be e�ectively guaranteed
by prior knowledge [5]. However, the existing researches
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have not discussed how to construct a normative knowledge
structure to define the required parameters of segmentation,
which have a very important impact on the quality of
segmentation. -erefore, based on the existing studies, this
paper proposed the construction of segmentation ontology
and then formed the definition of ontology knowledge
suitable for the segmentation of animation characters. In this
paper, the definition of segmentation ontology was proposed
for animation character models, so that users can customize
the segmentation hierarchy, shape characteristics, optimi-
zation algorithm, optimization parameters of segmentation
boundary, and obtain the optimal segmentation effect. In
terms of the consistency of segmentation boundaries,
considering that the segmentation boundaries of 3D models
with different poses have equal perimeters, the method of
segmentation boundary optimization by Poisson equation
[6] was proposed, so as to make the segmentation bound-
aries more consistent.

2. Segmentation Ontology

In order to ensure the consistent results of 3D mesh model
segmentation under different poses [7], domain knowledge
at different levels should be used in the segmentation, in-
cluding the hierarchical structure definition of the model,
semantic labels of different subparts, segmentation algo-
rithm, boundary optimization algorithm, and optimization
parameter setting. By defining the segmentation ontology,
ontology representation of segmentation domain knowledge
is formed, and the following two problems can be solved
through standardized domain knowledge definition.

(1) Consistent hierarchy. -e geometry features of
models with different poses are different, so only
using shape features to control the segmentation
hierarchies will lead to inconsistent hierarchies. It is
necessary to control hierarchical results with prior
knowledge to ensure the consistency of segmentation
results.

(2) Approximately consistent location of the segmen-
tation boundary. For segmentation results with
consistent hierarchical structure, it is necessary to
consider how to ensure the consistency of segmen-
tation boundaries, because any segmentation results
need to adopt an optimization algorithm to obtain the
smooth boundaries. For different sequences of ani-
mation models, the optimization algorithm and
matching parameters should be effectively organized
to ensure that the optimal segmentation boundary of a
specific model is consistent.

According to the definition of ontology [8], segmenta-
tion ontology decomposes domain knowledge into two
parts: hierarchical structure features and shape descriptors
required for segmentation, as shown in Figure 1. -e two
parts of knowledge form “include” and “use” relations: the
“include” relation is used to represent the inheritance re-
lation of hierarchical structure in segmentation to ensure the
consistency of hierarchical structure in the segmentation
process. -e knowledge defines the hierarchical inheritance

relation of semantic labels to ensure the consistency of
hierarchical structure in different poses.

-e “use” relation is used for local optimization of the
segmentation process, defining shape feature descriptors
and segmentation parameters, including classifier definition,
shape feature definition, and optimization parameters re-
quired in segmentation optimization, so as to complete the
semantic label recognition and segmentation boundary
optimization, and obtain the optimal segmentation result.

Figure 2 shows the segmentation ontology definition and
segmentation results of the above knowledge structure. It
can be seen from this figure that segmentation ontology is an
extensible knowledge structure, which not only defines the
semantic label recognition method for object segmentation
but also defines different optimization methods. In this
paper, semantic knowledge is used as the segmentation
criterion.-e differences are as follows: (1) the segmentation
ontology defined in this paper adopted statistical classifi-
cation to replace the human body proportion knowledge.
Considering the clustering of geometric features of the same
subpart, the mapping relationship between geometric fea-
tures and semantic labels can be established through training,
but it is difficult to quantify this mapping relationship by
using parameters. So, this definition makes segmentation
ontology more general; (2) to solve the problem of parameter
setting required by segmentation boundary optimization, this
paper proposed to separate the optimization method and
parameter definition to form domain knowledge, so that the
personalized parameters can be defined for different models
and the optimal segmentation boundary can be obtained.

3. Semantic Ontology-Driven Hierarchical
Segmentation of Animation
Character Models

According to the above definition of segmentation ontology,
the following steps are adopted to complete the segmen-
tation of any model: (1) Extract external feature points and
obtain the first layer of rough segmentation based on ontology
knowledge; (2) Use a support vector machine (SVM) [9] to
identify semantic labels of different subparts; (3) Obtain the
hierarchical structure of the input model according to se-
mantic labels and external feature points; (4) Optimize the
segmentation boundary according to the optimization pa-
rameters defined by the segmentation ontology.

3.1. First Layer Rough Segmentation. Given that the sum of
geodesic distances of external structural points of the ani-
mation character model with very obvious structural features
has extreme value, the external structural points can be well
detected by the salience function, and these stable feature
points can be used to drive the first layer rough segmentation.
-e salience function is the integral of geodesic distance along
the surface of the 3D model [10], defined as

f pi(  � 

N

j�0
g pi, pj  , (1)
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where, pi and pj are model vertexes, I and j are index
numbers of model vertexes, g(pi, pj) is the geodesic distance
between 2 points, and N is the number of surface vertexes of
the 3D model. For the vertexes on the grid, if its salience
function value is greater than the neighboring vertex ψi, it
indicates that this is an external feature point. A series of

local maximum point li can be calculated, and the set of local
feature points is L, which is defined as follows:

L � li ∈ V, 1≤ i≤N1  , (2)

where, NL is the number of local maximum points and V is
the set of model vertexes. -e salience function is a feature
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③0.2, 0.5, 0.3//head, hand, leg ratio
④0.2//�e ratio of the blurred area
⑤Weighted average of the external

points//③④ distance reference method
⑥Protrusions//External feature point solution method
⑦SDF feature//Sample data usage characteristics

…
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Figure 2: Segmentation ontology-driven segmentation of human character model.(a) Abstract Ontology (b) Instantiate Object (c) get the
segmentation Sequence (d) Scored results.
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Figure 1: Concept diagram of segmentation ontology.
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point detection function that is very sensitive to geodesic
distance, thus leading to overdetection (many local salient
points are also detected, as shown in Figure 3). Here, it is
necessary to combine the number of subparts defined in the
segmentation ontology and adopt k-means clustering [11] to
obtainNE − 1 clustering set (the central point set has no salient
points, and NE is the number of external feature points of the
model). In the case of multiple local salient points in each
region, lm, the vertex with the maximum salience function
value in the region, was selected as the initial clustering point,
and the external feature points were defined as

ei � l, (3)

where, ei is the detected external feature point. So far, the set
of external feature points of the model is defined as E�

{ei ∈V, 0< i<NE}
Since each external feature point represents a subpart of

the model, this feature point can be divided into different
subparts by region growth. -e smaller the value of the
salience function, the greater the probability that the vertex
belongs to the rigid body part of the model. -erefore, the
priority queue is constructed according to the salience
function value of the model vertexes, and then the vertexes
are extended until the entire convex subparts are divided
into a series of disconnected regions, and the first layer of
rough segmentation is completed. In the implementation of
the algorithm, in order to avoid the high complexity of rigid
body extraction with multidimensional calibration, geodesic
paths between external feature points are constructed first,
and then vertex tracking is carried out on the geodesic paths
until the extracted rigid body region has effectively separated
different subparts, and the algorithm ends at this time.

3.2. Semantic Label Recognition. -e shape diameter func-
tion [12] is used to define the local geometric features of each
subpart. -e shape diameter function constructs a cone at the
midpoint of each plane, and then starts from the midpoint
and transmits light into the cone. -e light is screened by the
angle between the light and the inner vector and a certain
standard deviation. Finally, the weighted average value d is
calculated for a series of target light, and the set of the value is
denoted as D. -is method makes the shape diameter
function keep a stable value under pose change, rotation, and
other transformations. -e shape diameter function is based
on the distance characteristics of rays and does not have scale
invariance. -erefore, the SDF [13] normalized value of plane
FI is calculated by the following formula

d′ �
log(d − min(D)/max(D) − min(D) × z + 1)

log (z + 1)
, (4)

where, z is a standardized parameter, and logarithmic
transformation enlarges the normalized value of small SDF,
which can retain some details to the maximum extent.
-rough experimental analysis, set z � 4. For the subpart
where the feature point ei is located, combined with SDF
normalized shape eigenvalue, the histogram feature vector
can be constructed as follows:

Fi � μ1, μ2, . . . , μj, . . . , μt , (5)

where, the element μj is the number of SDF eigenvalues in
the interval ((j − 1)/t, j/t] (t is the number of equal divisions
of [0, 1.0]). In order to further illustrate the intra-class
clustering and interclass separability in the SDF histogram.
Figure 4 shows the histogram distribution of human arm
subparts and legs [14]. It can be found that in Figures 4(a)–
4(c), there are obvious changes in the human arms, but the
SDF histogram constructed is basically stable and has good
intra-class clustering. -is is mainly because the SDF feature
is due to the approximation of the diameter of the local area
of the model and is stable under the change of poses. For
another subsection, namely, leg, as shown in Figure 4(d), the
obtained SDF histogram and the arm have obvious differ-
ences, ensuring that the classifier can accurately distinguish
the semantic labels of different subparts of the human body.

According to the local histogram of the subpart of the
model, SVM is used to identify the corresponding semantic
label, and the next layer segmentation is driven according to
the semantic label. (Yi, Fi) indicates that the semantic label of
the histogram feature vector Fi is YI. -e binary classifier is
defined as

l Fi(  � sgn 
n

t�1
ytαtK Fi · Ft(  + b⎡⎣ ⎤⎦, (6)

where, K is the kernel function [15], b is the intercept, n is the
number of support vectors, t is the index corresponding to
each support vector, αt is the Lagrange multiplier [16], Ft is
the support vector, and yt is the semantic label. ℓ is simply a
binary classifier, and semantic label recognition is a mul-
tivalued classifier problem, thus, based on equation (6), the

Figure 3: Multiple local feature points on the horse head.
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multivalued classifier is formed by pairwise combination
[17]:

H Fi(  � ym, (7)

where, ym stands for the label with the most votes, and VT
stands for the number of votes belonging to label yi. First, the
binary classifier is used to obtain the decision result of the
SDF feature vector, and then the final semantic label is
identified according to the principle of the maximum
number of votes.

3.3. Equal Perimeter Boundary Segmentation Optimization.
-rough the above process, the segmentation result of hi-
erarchical structure based on ontology knowledge can be
obtained, but there is a major problem: the segmentation
boundary is rough and not smooth, which needs to be
optimized. In this paper, Poisson equation is used to define
the optimization algorithm according to the equal perimeter
characteristics of the character model under pose changes.
-e isoline theory used in Poisson equation can effectively
avoid the influence of local curvature noise on the seg-
mentation boundary, and the optimization parameters de-
fined by the segmentation ontology can solve the optimal
boundary. Figures 5(a) and 5(d) show the comparison of the
results before and after arm segmentation boundary
optimization.

3.3.1. Fuzzy Region Extraction. -e fuzzy region is defined
by the feature point eg and boundary vertex of a specific part,
and the farthest point is defined as

Pf � pi, max gd eg, pi  , pi ∈ BR, (8)

where, BR is the set of local area vertexes where eg is located.
For a given threshold parameter Tr, fuzzy regions can be
obtained, as shown in Figure 5(b). -e vertex pi in the fuzzy
region must meet the following conditions:

gd eg, pi  − gd eg, Pf 

gd eg, Pf 




≤Tr . (9)

3.3.2. Isoline Extraction. In the set of vertexes in the fuzzy
region, the set of vertexes on the upper edge far from eg is U,
and the set of vertexes on the lower edge close to eg is
K. Poisson equation is defined as

Δ ·Φ � 0, (10)

where, Δ is the Laplace operator. Boundary constraint is

Φ(x) � 1, x ∈ U;

Φ(x) � 0, x ∈ K.
. (11)

A series of adjacent smooth isolines {I1, . . ., Ii, . . ., Iz} are
obtained by solving linear equations, where z is the number
of segment lines.

3.3.3. Optimal Segment Line Selection. On the basis of
isoline extraction, the optimal segment line is obtained by
considering the position information and shape character-
istics. -e following optimal decision function is formed:

JU.i � exp − (i − z/2)
2/ 2τ2   ×

k R(k) 2ri − ri− k − ri+k(  

kR(k)
,

(12)

where, exp[− (i − z/2)2/(2τ2)] refers to position constraint
conditions, making the optimal segment line close to the
middle position; the second is the shape feature constraint,
which makes the optimal segment line in the concave region,
that is, the perimeter of the optimal segment line is smaller
than the isoline K of the adjacent region. ri is the local radius
of isoline Ii, ri �mi/(2π), where mi is the perimeter. R(k) is a

(a) (b) (c)

(d)

Figure 4: Intra-class clustering and interclass separability in the SDF histogram.
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Gaussian function used to punish isolines with a large pe-
rimeter, defined as

R(k) � exp
− (k − 1)

2

8
  . (13)

4. Experimental Analysis and Discussion

-e experimental data are from TOSCA database [18], in-
cluding animation character models of humans, horses,
lions, and centaurs. Firstly, the parameters and performance
of the classifier used for the semantic labels are analyzed.
Secondly, the stability of the algorithm is verified. Finally, a
comparative analysis is made with the existing similar
algorithms.

4.1. Classifier Parameter Selection and Performance Analysis.
-e kernel function is to map linear indivisible vector to
higher-dimensional space and then construct classification
surface in higher-dimensional space. Gaussian kernel
function with wide convergence domain, good performance,
and few parameters was selected in this paper [19]:

K F · Ft(  � exp − σ F − Ft

����
����
2

  . (14)

-e kernel parameter σ and error penalty parameter C
have important effects on the performance of the classifier.
-e grid search algorithm is used to find the optimal pa-
rameters, and the distribution of recognition accuracy of
classifier in step learning iteration is shown in Figure 6 in
[2− 10,210]. When (log2C, log2σ)� (− 1, − 5), the accuracy is
100%. In this way, the optimal parameters of the four types
of models are selected, respectively. Table 1 shows the
classifier parameters and recognition rates of different class
models:

τ �
RS

TS

× 100%, (15)

where, RS and TS are the correct sample number and test
sample number, respectively. In the test set, only the centaur
model had a classifier recognition rate of 92.59%, while the
other models all reached 100%, indicating correct recognition.
-e results show that semantic label recognition can be
achieved by statistical classification. -e main reason for the
misidentification is that the SDF shape does not distinguish
enough between the classes of the centaur legs and tail, which
leads to themisidentification of part of the tail. In the follow-up
study, it is necessary to consider the use of features with better
differentiation, so as to make the recognition accuracy higher.

4.2. Stability Analysis. Figure 7 shows the segmentation
results of various animation character models in different
poses. -e same gray level represents the same semantic
label. It can be found that the pose difference produced by
these character models in the process of movement is very
obvious (for example, in Figures 7(h) and 7(i)), but the
segmentation results are consistent. -is is because, on the
one hand, the shape diameter function has pose stability, and
the histogram representation is insensitive to local changes,
which enables SVM to correctly identify semantic labels. On
the other hand, the joint perimeter remained unchanged
during the pose change. -e algorithm in this paper adopts
equal perimeter features in boundary optimization, which
makes the boundary segmentation to have a good consistency.

4.3. Comparative Analysis of Segmentation Consistency.
To further verify the performance of the algorithm, the
segmentation quality of the proposed method is compared
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Figure 6: Classifier parameters and corresponding accuracy.

Table 1: Classifier parameters and recognition rates of different
class models.

Model
category

Training
samples

Log2C, log2
σ Ts Rs τ/%

Lift a horse 27 (5, − 5) 54 50 92.58
People 42 (− 1,− 5) 162 162 100.01
Horse 42 (5,− 7) 105 105 100.01
Lion 21 (3,− 7) 42 42 100.01

Farthest point

Feature points

Poisson equation
U

K

1

0UK

Rough segmentation Blurred area extraction

split line filter Contour extraction

Figure 5: Optimization process of equal perimeter boundary
segmentation.
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with that of the method in literature [17]. -e quality of
segmentation mainly depends on two aspects: (1) whether
segmentation results are globally consistent in the semantic
structure; (2) whether the segmentation boundaries of
model sequences are consistent. Let the segmentation result
of frame X be

Sx � Fx, Cx  , (16)

where, Fx is the plane index, and Cx is the segmentation
index corresponding to each plane. -e consistency simi-
larity of segmentation sequence YF is defined as (assuming
that the two models have the same number of points and
planes, and the point and plane indexes of the subparts of
any two models are also the same):

YF Sx, Sy  � 1 −
GT‖θ‖

GT Fx

����
����

, (17)

where, Cx-Cy represents the difference between the seg-
mentation results of the two models, and GT is used to count
the number of elements. -e segmentation consistency
between the two models can be well measured through
equation (17). -e larger the YF value is, the higher the
segmentation consistency is.-e similarity was calculated by
using M-frame model and reference segmentation result Sf,
and the average of M similarity is taken as the consistency
evaluation index ξ of the model:

ξ �
1

M


M

i�1
YF Sf, Si  . (18)

Table 2 shows the consistent segmentation results ob-
tained by using different models and reference models. It can
be found that literature [17] only uses the normal included
angle between planes as the optimization constraint condi-
tion, so it is difficult to ensure that the segmentation boundary
converges to the joint position. In this paper, the isoperimetric
line is used to extract the boundary, which is not only very
smooth but also has better consistency. In addition, using
human body proportion as semantic knowledge for semantic
label recognition has great limitations and can only be applied
to human body model. In this paper, a semantic label rec-
ognizer is constructed and hierarchical consistent segmen-
tation of different models can be obtained only by updating
the training data. In conclusion, this method has better
universality and applicability.

Figure 8 shows the comparison of segmentation results
obtained by the mentioned methods, in which SDF features
are directly used for clustering analysis. It can be found that
the SDF features have good clustering and have similar
segmentation results for character models with different
poses. However, this segmentation does not conform to the
semantic structure, as shown in Figure 8(c). -e method can
correctly identify the semantic structure features of human
body, but the algorithm uses human body proportion as
domain knowledge and has no generality. In addition, al-
though this method can also obtain relatively smooth
boundaries, its convergence positions are obviously incon-
sistent. For example, for the second layer segmentation of
human model legs, this method mainly adopts triangle angle

(a) (b) (c) (d)

(e) (f ) (g) (h) (i)

Figure 7: Consistent segmentation results of animation character models (a) Horse: Stance One (b) Horse: Stance Two (c) Horse: Stance
-ree (d) Centaur: Stance One (e) Centaur: Stance Two (f) Centaur: Stance-ree (g) Lion: Stance One (h) Lion: Stance Two (i) Lion: Stance
-ree.

Table 2: Calculation results of consistency evaluation indexes.

Model category Algorithm Traditional method
People 98.47 95.22
Horse 98.96 N/A
Centaur 94.90 N/A
Lion 95.83 N/A

Scientific Programming 7



as constraint condition, resulting in inconsistent convergence
boundaries. -e method in this paper basically converges to
the knee position, because the perimeter is adopted as the
convergence condition for the segmentation boundary in this
paper, and relatively consistent results can be obtained, as
shown in Table 2.

5. Conclusion

Experiments show that the segmentation quality can be
significantly improved by selecting the optimal parameters
through ontology. -e main shortcomings of this study are
that the proposed algorithm cannot be applied stably and
reliably to the animation character models with severe oc-
clusion, and the segmentation boundary needs further op-
timization. Further research is needed in the following two
aspects.

(1) Consistent segmentation of 3D dynamic data under
occlusion. For 3D data with partial occlusion, there
will be data loss. In this case, both local features and
subpart structure may change significantly. -ere-
fore, for this kind of data, it is necessary to propose
more stable local features based on existing studies
for semantic sub-label recognition and define the
rejection rate for removing unstable subparts.

(2) Collaborative boundary optimization. For boundary
consistency, the method in this paper does not
consider the correlation between models, although
the consistent segmentation results can be better
achieved by using equal perimeter. In the following

research, collaborative boundary optimization al-
gorithms can be defined for multiple models to
obtain more consistent segmentation boundaries
through clustering analysis.

Data Availability

-e datasets used and/or analyzed during the current study
are available from the corresponding author upon reason-
able request.

Conflicts of Interest

-e authors declare no potential conflicts of interest with
respect to the research, authorship, and/or publication of
this article.

Acknowledgments

-anks for the Project supported by the Fujian Province
Social Science Planning “Fujian Folk Animation Research”
(Grant no. FJ2021B195) and Sichuan Province Social Science
Key Research Base Sichuan Animation Research Center
“Sichuan Animation Industry Chain” (Grant no. DM2020002)
support.

References

[1] L. Kumarapu and P. Mukherjee, “Animepose: multi-person
3d pose estimation and animation,” Pattern Recognition
Letters, vol. 147, pp. 16–24, 2021.

(a) (b)

(c)

Figure 8: Comparison of human body segmentation results obtained by 3 different algorithms (a)-e method in this paper (b) the method
in this Literature [17] (c) the method in this Literature.

8 Scientific Programming



[2] X. Cheng, Y. Zhong, M. Harandi et al., “Hierarchical neural
architecture search for deep stereomatching,”Advances in Neural
Information Processing Systems, vol. 33, pp. 22158–22169, 2020.

[3] J. Hou, A. Dai, and M. Niebner, “3d-sis: 3d semantic instance
segmentation of rgb-d scans,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 4421–4430, Long Beach, CA, USA, June 2019.

[4] R. Li and Q. Peng, “Deep learning-based optimal segmen-
tation of 3D printed product for surface quality improvement
and support structure reduction,” Journal of Manufacturing
Systems, vol. 60, pp. 252–264, 2021.

[5] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Deep image
prior,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 9446–9454, Salt Lake City,
UT, USA, June 2018.

[6] D. Bochkov and F. Gibou, “Solving Poisson-type equations with
Robin boundary conditions on piecewise smooth interfaces,”
Journal of Computational Physics, vol. 376, pp. 1156–1198, 2019.

[7] G. Luo, Z. Deng, X. Jin et al., “3D mesh animation com-
pression based on adaptive spatio-temporal segmentation,” in
Proceedings of the ACM SIGGRAPH Symposium on Interactive
3D Graphics and Games, Montreal, Quebec, Canada, pp. 1–10,
May 2019.

[8] M. A. Haendel, C. G. Chute, and P. N. Robinson, “Classifi-
cation, ontology, and precision medicine,” New England
Journal of Medicine, vol. 379, no. 15, pp. 1452–1462, 2018.

[9] V. K. Chauhan, K. Dahiya, and A. Sharama, “Problem for-
mulations and solvers in linear SVM: a review,” Artificial
Intelligence Review, vol. 52, no. 2, pp. 803–855, 2019.

[10] S. Li, A.M Zhang, R. Han, and Q.Ma, “3D full couplingmodel
for strong interaction between a pulsating bubble and a
movable sphere,” Journal of Computational Physics, vol. 392,
pp. 713–731, 2019.

[11] M. Ahmed, R. Seraj, and S. M. S. Islam, “-e k-means algo-
rithm: a comprehensive survey and performance evaluation,”
Electronics, vol. 9, no. 8, 1295 pages, 2020.

[12] S. Chen, T. Liu, Z. Shu, S. Xin, Y. He, and C. Tu, “Fast and
robust shape diameter function,” PLoS One, vol. 13, no. 1,
Article ID e0190666, 2018.

[13] R. Chabra, J. E. Lenssen, E. Ilg et al., “Deep local shapes:
learning local sdf priors for detailed 3d reconstruction,” in
Proceedings of the Computer Vision - ECCV 2020 European
Conference on Computer Vision, pp. 608–625, Springer, Glas-
gow, UK, August 2020.

[14] K. Mayathevar, M. Veluchamy, and B. Subramani, “Fuzzy
color histogram equalization with weighted distribution for
image enhancement,”Optik, vol. 216, Article ID 164927, 2020.

[15] B. Zhu, S. Ye,M. Jiang et al., “Achieving the carbon intensity target
of China: a least squares support vector machine with mixture
kernel function approach,” Applied Energy, vol. 233-234,
pp. 196–207, 2019.

[16] Q. Cheng, C. Liu, and J. Shen, “A new Lagrange multiplier
approach for gradient flows,” Computer Methods in Applied
Mechanics and Engineering, vol. 367, Article ID 113070, 2020.

[17] Q. Chen, “Semantic knowledge-constrained 3D human fea-
ture point detection and segmentation,” Journal of Computer
Aided Design and Graphics, vol. 23, no. 6, pp. 1061–1068, 2011.

[18] F. Bogo, J. Romero, M. Loper, andM. J. Black, “FAUST: dataset
and evaluation for 3D mesh registration,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
pp. 3794–3801, Columbus, OH, USA, June 2014.

[19] B. Jin, L. Cruz, and N. Goncalves, “Deep facial diagnosis: deep
transfer learning from face recognition to facial diagnosis,”
IEEE Access, vol. 8, pp. 123649–123661, 2020.

Scientific Programming 9


