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�e combination of Spark distributed platform and High-Utility Itemset Mining can solve the problem of long running time
issue of High-Utility Itemset Mining. In the experiment, we conclude that Spark-based parallel D2HUP and EFIM al-
gorithms have a greater improvement in running time e�ciency than serial algorithms. �e existing research has shown that
the EFIM and D2HUP algorithms are the two best algorithms for High-Utility Itemset Mining. �is paper generates 118
datasets by generating and collecting the running time of the two algorithms in the real and simulated datasets, taking into
account the characteristics of each dataset’s length, sparse degree, and dataset size as characteristics with running time as the
prediction target and then establishing a model. �e accuracy of the prediction was evaluated through experiments, and a set
of rules based on decision trees was generated. According to the rules, the fastest algorithm between EFIM and D2HUP can
be predicted very well.

1. Introduction

Data mining (DM) is a term derived from Knowledge-
Discovery in Databases (KDD) [1], which is an important
step in KDD. Born at the intersection of computer and
statistics, it aims to show the valuable information and
concepts hidden in data to users in a more intuitive way
through statistical sampling, estimation test, pattern rec-
ognition, machine learning, distributed technology, visual-
ization, and other methods and means [2].

�e essence of data mining is a kind of deeper mathe-
matical analysis. Its main feature is to model the structured
data after cleaning and transforming the huge data in the
database and analyze the results to extract the key data,
which can help decision-makers make business decisions.

�e deep essence of data mining is a mathematical
analysis, whose feature is that after the cleaning and
transformation of the huge data in the database [3], the
obtained structured data will be modeled, the obtained

results will be analyzed, and the key data will be extracted to
help decision-makers make business decisions [4].

Data analysis methods commonly used in data mining
include classi�cation, regression, clustering, and association
rule analysis [5], which mine data from a di¡erent per-
spective. �e concept of association rule was �rst proposed
by Agrawal et al. in 1993, which is used to �nd meaningful
connections hidden in large datasets. �e discovered con-
nections can be expressed in the form of association rule or
frequent itemset. In the traditional frequent itemset mining
[6], the weight of each itemset is the same, and more at-
tention is paid to the degree of association between items
and whether itemsets frequently occur, which will result in
the loss of itemsets with low support but high utility value
[7].

In e�cient itemset mining, each item has the utility of
quantity and pro�t, and the combination of e�cient itemsets
that meet the user-set threshold is not necessarily frequent
[8], so the antimonotone feature in frequent itemset mining
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is no longer applicable [9]. Mining efficient itemsets is a
challenging task. With the increase in data volume, the
mining time of an efficient itemset increases exponentially
[10]. At present, there are few efficient itemset mining al-
gorithms based on the Spark distributed general framework.
.e combination of Spark and efficient itemset mining is
expected to better solve the problem of time-consuming in
the process of efficient itemset mining [11].

.e two-phase algorithm proposed in literature [12] is
the most classic efficient itemset mining algorithm. .e
algorithm is divided into two stages. In the first stage,
TWU (Transaction Weight Utility) is used to narrow the
search space and generate candidate itemsets. In the
second stage, the efficient itemset meeting the conditions is
selected as the final result. However, the upper bound of
the algorithm is not compact enough, and a large number
of candidate itemsets will be generated in the first stage. At
the same time, in the second stage of screening the final
results, the database will be scanned repeatedly, resulting
in low efficiency of the algorithm. .e D2HUP algorithm
[6] retains original transaction information by introducing
a more compact upper bound and a linked list structure
named CAUL and mining efficient itemsets by recursive
search. In addition, EFIM algorithm is one of the best
efficient itemset mining algorithms at the present stage,
which compresses the search space by merging transaction
databases and further improves the efficiency of pruning
through a more compact upper bound. In addition, many
new algorithms are constantly proposed. So far, the best
performing algorithms are EFIM and D2HUP.

2. Literature Review of Spark

2.1. Spark System. Spark is a general-purpose parallel
computing framework designed for processing large
amounts of data developed by the UC Berkeley AMP Lab in
2009 and made open source in 2010 [13]. Spark’s biggest
feature is that it is based on a memory-based parallel
computing framework, similar to Hadoop’s MapReduce
[14], but with advantages that Hadoop does not have. Spark
can store the intermediate results of running in memory,
reducing disk I/O and thus accelerating computing effi-
ciency. So Spark performs well in data mining and machine
learning algorithms that require iteration. In addition,
Spark supports Scala, Java, Python, and other language
interfaces. Developers can choose a language they are fa-
miliar with to implement. Spark also has a wealth of APIs
for developers to call, which makes it extremely easy to use
[15].

Spark is an ecosystem that provides solutions such as
flow operations, iterative operations, and graph operations,
as shown in Figure 1.

Spark SQL. It uses SQL expressions to do data query on
Spark to analyze big data query [16] and can also call user-
defined functions to combine query results with analysis
results to reuse data, thus improving query efficiency.

Sparking Streaming. It is a stream processing system that can
perform complex operations such as Map, Reduce, and Join
on real-time data and save the results to external file systems.

Graph X. It is an API provided by the Spark platform for
graph operation. It provides the concept and operation of an
elastic distributed attribute graph and uses its framework to
realize various operations based on the graph.

MLBase/MLlib. It is a component that can provide related
machine algorithms and utilities, including classification
algorithms, regression algorithms, clustering algorithms,
reduction and low-level optimization programs, as well as
testing and data generation. Four boundaries are defined,
that is, MLOptimizer, MLI, Machine Learning library
(MLlib), and parallel computing framework [17].

Tachyon. .is component is a distributed system that can
provide high efficiency, high fault tolerance, and high re-
liability calculation [18].

Spark. It is the core computing framework of the ecosystem,
which can be run independently or on a cluster [19]. Cluster
operation requires the management system to distribute
tasks to each node.

In short, the Spark system is based on RDD, and the
Spark framework is a memory-based parallel computing big
data platform, which can meet the computing needs of
different systems with different products.

2.2. Spark Distributed Cluster Setup. Spark can run com-
putations locally in a standalone mode or in parallel on a
distributed cluster.

.e mode of Spark operation is determined by the
Master of the environment variable Spark-Context and the
deployment mode of the cluster. .e common modes of
Spark are as follows:

(1) Standalone. Deploy Spark to Master and all nodes of
Worker.

(2) Yarn client: Yarn cluster operates on Executor and
Driver running locally.

(3) Yarn cluster: Executor and Driver operate on the
Yarn cluster.

Map Reduce

Spark
Streaming

Graphx
Graph-parallel

MLBase
MLlibSpark Sql

RDD FP

Spark Core

HDFS/Hadoop Storage
Tachyon

Figure 1: Spark ecosystem diagram.
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.e three operation modes are different in that they have
different resource allocation methods and different task
scheduling algorithms to perform computing tasks. But they
have the same workflow. Figure 2 is the workflow of Spark.

Each Spark program has its own Executor process, but
each Executor process has multiple threads corresponding to
it. .is parallel resource allocation and scheduling mode is
conducive to resource sharing between different Spark
programs and greatly improves execution efficiency.

Figure 3 shows that the program uses the action to
trigger the job. .e job builds the DAG graph based on the
dependencies of RDD, the built DAG graph is then resolved
and built into different stages by the DAG Scheduler, and the
dependencies between stages are calculated. .en, the Task
Scheduler assigns the Task Set to the work set and divides it
into multiple threads for parallel computation, and the
results are returned to the Task Scheduler and then to the
DAG Scheduler [20]. When the results are completed, they
are returned to the driver or saved in the external storage
system, and all resources are released.

3. The D2HUP and EFIM Algorithm
Parallelization Based on Spark

3.1. Parallel D2HUP Algorithm Based on Data Partition

3.1.1. Main Ideas. .e main design ideas for the paralleli-
zation of the D2HUP algorithm based on data partition are
as follows. First, read database D and minUtil, divide dataset
D intoN pieces on average, and distributeN pieces of data to
different nodes for calculation. .e minimum threshold of
each node is minUtil/n. If an itemset is not an efficient
itemset on all nodes, its total utility on all nodes must be less
than minUtil. .erefore, the D2HUP algorithm is used to
mine candidate efficient itemsets on different nodes si-
multaneously, and each efficient itemset appears in at least
one node..e second step is to rescan the database, calculate
the real utility value of the candidate itemset obtained in
each node, eliminate the itemset whose threshold value is
less than minUtil, and get the final result.

3.1.2. Algorithm Design. .e following steps are used to
implement the D2HUP algorithm based on data partition on
Spark:

Step 1: Read dataset D into RDD. Each row in the RDD
stores a transaction in dataset D.
Step 2: Partition the RDD. .e repartition() method is
called to group the original RDD, and the different
number of groups affects the parallelism of the
program.
Step 3: Execute the D2HUP algorithm in parallel. .e
D2HUP algorithm is executed simultaneously for the
grouped data obtained in the second step.
Step 4: Use broadcast() to broadcast the results.
Step 5: Iterate through the database, compare each
transaction with the candidate itemset, and use the

results reduceByKey(), adding the utilities of the same
itemset.
Step 6: Execute filter() to remove all unmet conditions
in RDD, and the final RDD is the final result.

3.2. 2e D2HUP Parallel Algorithm Based on Tree Structure
and Spark

3.2.1. 2e Parallelization Idea of the D2HUP Algorithm.
.e main design ideas of the D2HUP parallel algorithm are
as follows. First, the database D is read, the entire database is
compressed in CAUL, and each item satisfying the condition
in CAUL is prefixed to conduct efficient parallel itemset
mining. Because each prefix item contains a separate ex-
tension suffix, each item in the original CAUL can be
grouped for parallel mining tasks. Each prefix item in CAUL
is assigned to different compute nodes, and different
compute nodes simultaneously mine the efficient itemset of
different prefix items. After the mining task of each Worker
node is completed, the mined high-efficiency itemset will be
sent to the master node for collection. Each node is mined
independently, so this pattern does not have much com-
munication overhead.

.e essence of the D2HUP algorithm is a depth-first
search tree, as shown in Figure 4. In the process of mining
efficient itemsets of different prefix trees, each prefix item is
treated as a child node, and the child node and its sibling
nodes are independent of each other and do not affect each
other. In the mining process, there is no need to exchange
information, so the efficient itemset with different prefixes
will only appear once on all branches. .is is also an im-
portant reason for the parallel implementation of the
D2HUP algorithm.

3.2.2. D2HUP Algorithm Parallelization Based on Tree
Structure. Spark is a programming model based on Map-
Reduce, parallelization of the D2HUP algorithm is to
transform CAUL into RDD (Resilient Distributed Dataset),
and the associated transforms and actions are called to
parallelize efficient itemset mining. Implementing the
D2HUP algorithm on Spark has the following steps:

Step 1: Read the dataset and build the initial linked list
CAUL.
Step 2: Convert CAUL to RDD; because Spark operates
on RDD, you need to convert CAUL to RDD, where
each row stores a prefix item.
Step 3: According to the RDD in Step 2, divide the data
into partitions. .e number of partitions affects the
degree of parallelism of the task.
Step 4: Execute the D2HUP algorithm in parallel.
According to the grouping of Step 3, prefix items in
each partition are grouped for efficient itemset mining.
.e specific steps are the same as the serial D2HUP
algorithm. In the process of efficient itemset mining for
each group, only the efficient itemset of that group
needs to be generated because the prefixes allocated by
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different groups are different, and there is no influence
between prefixes.
Step 5: Aggregate the results. After the completion of
the fourth step, all the efficient itemsets of the prefix
branch are obtained for each node. .rough the ag-
gregation operation, the efficient itemsets of each node
are gathered together to get the final result.

3.3. 2e EFIM Parallel Algorithm Based on Spark. EFIM
algorithm is also a depth-first and efficient itemset mining
algorithm. After scanning database D and constructing
Primary (α) and Secondary (α) items about root node α, the
algorithm recursively calls Search() method for efficient
itemset mining. .is step has been tested to take most of the
program’s time, so consider parallelizing the Search()
method. In the Search() method called for the first time, each

item i ∈Primary (α) is a prefix. .e traversal of item i is
essentially a depth-first search tree, so the extensions con-
tained in each prefix are independent. .erefore, all items i
can be grouped, and multiple compute nodes can simul-
taneously mine the efficient itemset with item i as the root
node. Note that the term i assigned to different nodes is
different. After the efficient itemsets of all nodes are mined,
the results are summarized to the master node. .e result is
the final efficient term set.

Similar to the parallelization of the D2HUP algorithm, the
EFIM algorithm is also a depth-first search tree [21], as shown
in Figure 5. Each child of the root node is different and has
been sorted in TWU size..erefore, this child node and other
sibling nodes are independent and independent of each other.
Each candidate itemset can only appear once in the whole
depth-first search tree, so the efficient itemset of the child
node is the whole efficient itemset. .is is also an important
reason why the EFIM algorithm can be parallelized [12].

.e parallelization of the EFIM algorithm is mainly
concerned with the parallelization of the process of
searching the efficient itemset recursively. After the whole
database is scanned, the generated Primary (α) is trans-
formed into RDD and grouped, and Action and Transform
operators are called to perform parallel utility itemset
mining on each subnode. .e EFIM algorithm based on
Spark mainly includes the following steps:

Step 1: Read dataset D.
Step 2: Calculate the local utility of each item, and then
build the Primary (α) and Secondary (α).

Cluster Manager
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Spark
Executor

Worker

Spark
Executor

Spark Context

Driver Program

Figure 2: Spark workflow diagram.
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Step 3: Primary (α) is converted to RDD on the first call
to the Search() method, and there is a line in RDD for
each item i ∈ α.
Step 4: Partition the transformed RDD. .e number of
partitions affects the degree of parallelism of the
algorithm.
Step 5: Parallel EFIM algorithm is executed in each
partition. According to the grouping of Step 3, the
prefix item i of each partition is different, so the efficient
items contained are also different. .e specific steps are
the same as the serial algorithm of EFIM. After the
completion of this step, each group of efficient itemsets
prefixed with item iwill have unique grouping results of
different prefixes, so they will not affect each other.
Step 6: After the result aggregation is completed in Step
4, the high-efficiency items of each group obtained are
gathered to the master node and persisted to the hard
disk or printed out.

3.4.2eResult of the Experiment. .e parameters that have a
great influence on Spark-based efficient mining algorithm
are as follows:

(1) minUtil, that is the threshold value given by the user.
Different threshold settings affect the number of effi-
cient itemsets that meet the conditions finally mined.
.e threshold designed for the experiment in this paper
refers to the threshold set for datasets in literature.

(2) .e size of the dataset. In this paper, we use the
common open dataset of the mining domain of the
high efficient term set (Chess, Pumsb, BMS, Con-
nect, Accidents, Kosarak, and Chainstore) and four
simulated datasets. .e real datasets can be down-
loaded from the UCI or SPMF.

(3) .e influence of the Spark parameter. .ere are
several parameters that have a great impact on Spark.
.e total number of Executor processes in a cluster is
executors, the number of single Executor processes is
executor-cores, and the number of data partitions.
.e experiments carried out in this section aim at
these three parameters and perform performance
experiments by setting different thresholds.

3.4.1. 2e Influence of Partition Parameters on the Algorithm.
To study the effect of partition number on experimental
results, set other parameters in Spark to a fixed value, as
shown as follows: executors� 4, driver-memory� 100GB,
executor-cores� 10, and executor-memory� 100GB. .e
effect of different partition numbers on the running effi-
ciency of the program is shown in Figures 6–8.

Figure 8 shows the influence of partition parameters on
the running efficiency of the program, where the triangular
broken line is the parallel EFIM algorithm, and the dotted
broken line is the parallel D2HUP algorithm. As can be seen
from the figure, the running efficiency of parallel EFIM and
D2HUP programs is gradually accelerated as the number of

input: D: a transaction database
output: the set of high-utility itemsets
{
α�φ
Calculate TS ({}) for all items i ∈ I by scanning D;
CAULRDD� JavaSparkContext parallelize (Tscaul ({}));
PartitionRDD�MapPartitions (CAULRDD, partitions)
Foreach partitionRDD do
d2hupAlgorithm (prefix, prefixlength, CAUL, prefixSupport, minutil)
}

Output� prtitionRDD.collect ()
}

ALGORITHM 1: .e tree-structured D2HUP algorithm.
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Figure 5: .e EFIM algorithm structure based on Spark.
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partitions increases. It is worth noting that the threshold
value (minUtil) in the experimental process is user-defined
by the user, and the itemset larger than the threshold value is
regarded as the efficient itemset. .e threshold value is set
with reference to the dataset in reference [14].

3.4.2. 2e Influence of Executors Parameters on the
Algorithm. To verify the effect of executors on the running
time of the algorithm, set all parameters other than executor
to a fixed value: driver-memory� 100GB, executor-
cores� 2, executor-memory� 20GB, and partition� 16. .e
results are shown as follows.

Tables 1 and 2 show the impact of executors’ parameter
on the running efficiency of the program on different
datasets. It can be found from the above table that, with the
increase of executors, the running time of both algorithms
decreases to some extent.

3.4.3. 2e Influence of Executor-Cores Parameters on the
Algorithm. To verify the impact of executor-cores on al-
gorithm runtime, parameters other than executor-cores are
set as fixed values: driver-memory� 100GB, executors� 4,

executor-memory� 20GB, and partition� 16. .e results
are shown as follows.

Tables 3 and 4 show the influence of executor-cores on
the operating efficiency of programs on different datasets. It
can be found from the above table that, with the increase of
executor-cores, the operating time of both algorithms de-
creases to some extent.

3.4.4. Time Ratio of Parallel Algorithm to Serial Algorithm.
Under the same threshold condition, serial time and par-
tition parameter are set to 16 when both algorithms are
parallel program time, as shown in Table 5.

Parallelization D2HUP/EFIM represents the ratio of the
parallel time of two algorithms. From the above experi-
ments, when the dataset is small, the acceleration effect is not
obvious because the serial program consumes less time,
while the parallel program uses Spark for startup time and
other reasons. But when the dataset size increases, the serial
program consumption time increases. Compared with the
serial algorithm, the Spark D2HUP parallel and
EFIM parallel algorithms have greatly improved the running
time.

input: D: a transaction database
minutil: a user-specified threshold
output: the set of high-utility itemsets
{
α�φ
Calculate Primary (α) and Secondary (α) for all items by scanning, using a utility-binary; i ∈ I

itemsToExploreRDD� JavaSparkContext.Parallelize (item i ∈ primary(α))
partitionRDD�MapPartitions (itemsToExplorRDD, partitions)
for each partitionRDD do
Search (α, D, Primary (α), Secondary (α), minutil)
}

Output� partitionRDD.collect ()
}

ALGORITHM 2: .e EFIM algorithm based on Spark.

input: α: an itemset,
α-D: the α projected database,
Primary (α): the primary items of α,
Secondary (α): the secondary items of α,
minutil: threshold.
output: the set of high-utility itemsets that are extensions of α

(1) for each item i ∈ primary(α) do
(2) β � α∪ i{ }

(3) Scan α-D to calculate u (β) and create β-D
(4) if u (β)≥minutil, then output β
(5) Calculate su (β, z) and lu (β, z) for all item z ∈ Secondary (α) by scanning β-D once, using two utility-bin arrays.
(6) Primary (β)� {z ∈ Secondary (α)|su (β, z)≥minutil}
(7) Secondary (β)� {z ∈ Secondary (α)|lu (β, z)≥minutil}
(8) Search (β, β-D, Primary (β), Secondary (β) minutil);
(9) end

ALGORITHM 3: .e Search procedure.
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4. Design of Automatic Selection of the Most
Efficient Itemset Algorithm Based on Spark

4.1. Design of Algorithm. In order to realize automatic se-
lection of the fastest efficient itemset mining algorithm, this
paper adopts the data-driven method to carry out experiments.
First, different dimensional features of the dataset are

constructed, and these dimensional features are taken as at-
tributes of the classification algorithm. Second, all datasets were
tested on EFIM and D2HUP algorithms, respectively, and the
running time was recorded. Finally, the running results of
EFIM and D2HUP are taken as labels for prediction.

.e flowchart of the system algorithm is shown in
Figure 9.
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Figure 6: .e influence of partition parameters on the algorithm.
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Given a dataset D, build the following feature dimen-
sions of the dataset, which are shown in Table 6.

In this paper, the mainstream classification algorithm
logistic regression, C45, random forest, and SVM were used
to predict the constructed datasets, extract the classification
rules, and draw conclusions through analysis.

4.2. Design of Experiment. .e exposed datasets of the ef-
ficient itemsets are Accidents, BMS, Chess, Connect,
Foodmart, Mushroom, Chainstore, Pumsb, Kosarak, and so
on. However, due to the small sample size of the real dataset,
the following strategies were adopted to construct the
simulated dataset:

(1) Generate simulated datasets. Given the five param-
eters of maximum rows, maximum columns, item
number, and maximum utility value of the dataset,
19 simulated datasets were generated by dividing
them into fixed columns and random columns.

(2) Split nine real datasets in proportion..e real dataset
was split into 20%, 40%, 50%, 60%, and 80% and
divided into random percentage and fixed first few
hundredths to generate 90 split datasets

(3) .ere are nine real data sets.

According to the above two strategies, a total of 118
datasets were generated; the EFIM algorithm and D2HUP
algorithm were used for experiments in the above datasets to
record the running speed. If the EFIM algorithm is fast, the
tag is 1. If the D2HUP algorithm is fast, the tag is 0.

K-folded is a method of cross validation.
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Figure 8: .e influence of partition parameters on the algorithm.

Table 1: Different executive time of executors in the EFIM
algorithm.

Datasets 4 8 12 16
dh26 1410 (s) 1660 (s) 1423 (s) 1106 (s)
dh29 1233 (s) 1066 (s) 1000 (s) 842 (s)

Table 2: Different executive time of executors in the D2HUP
algorithm.

Datasets 4 8 12 16
dh26 233 (s) 228 (s) 170 (s) 120 (s)
dh29 543 (s) 438 (s) 448 (s) 440 (s)

Table 3: Different executive time of executor-cores in the EFIM
algorithm.

Datasets 4 8 12 16
dh26 2196 (s) 1411 (s) 1001 (s) 936 (s)
dh29 1246 (s) 1233 (s) 862 (s) 810 (s)

Table 4: Different executive time of executor-cores in the D2HUP
algorithm.

Datasets 4 8 12 16
dh26 270 (s) 233 (s) 180 (s) 173 (s)
dh29 553 (s) 543 (s) 548 (s) 536 (s)

Table 5: .e time acceleration ratio of serial to parallel.

Datasets D2HUP speed-
up radio

EFIM speed-
up radio

Parallelization
D2HUP/EFIM

Chess 2.97 0.24 8.97
Pumsb 2.74 1.03 16.70
BMS 1.51 0.36 544.13
Connect 2.23 0.68 27.32
Accident 2.26 1.06 50.54
Kosarak 2.95 11.64 20.08
dh26 3.10 9.48 0.17
dh29 1.45 4.18 0.71
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In general, we evaluate the generalization error of the
model through experimental tests so as to select the learner
with better performance. .e dataset was divided into a
training set and a test set, through which the machine

learning model was obtained, and the performance of the
model was evaluated. Due to the limited number of actual
samples, in order to reuse the data, this experiment uses the
k-fold cross-validation method.

Cross-validation refers to dividing the dataset D into k
mutually exclusive subsets of similar size. In the process of
dividing, each subset shall try to maintain the consistency of
data distribution. Each time, one subset of k− 1 is taken as
the training set and the rest as the test set. In this experiment,
k equals 10.

4.3.2eResult of the Experiment. .e obtained datasets were
trained on logistic regression, C45, random forest, and SVM,
respectively, and the experimental records were recorded
using 10-fold cross-validation. .e experimental results are
shown in Table 7.

Figure 10 shows the decision rules extracted from the
C45 classification algorithm generation model. Given a
dataset D, the user can decide how to choose the optimal
mining algorithm for a high-consumption itemset according
to the decision rules generated in Figure 10. First, if the
number of transactions with a length of 6–10 in databaseD is
no more than 490, then the EFIM algorithm is selected for
the experiment (tag 1). Otherwise, for further judgment, if

Construct data set
feature dimensions

Generate simulated
datasets

Split real datasets

9 real datasets

10-Fold and cross-validate
experimental data

Cross-dataSet
Experimental data

Figure 9: .e flowchart of the system algorithm.

Table 6: Construction of data dimensions.

D Transaction database D
I .e set of all the different terms in database D
dbTrans Total number of transactions in database D, |D|

dbItems .e total number of different terms in database
D, |I|

transMaxLen .e total length of the longest transaction in
database D

transMinLen .e total length of the shortest transaction in
database D

dbUtil .e sum of all transaction utilities in database D
sumItems .e total number of terms

itemsAvg .e average length of items in database D,
sumItems/dbItems

transLen1 .e number of transactions of length 1 in
database D

transLen2_5 .e number of transactions of length 2 to 5 in
database D

transLen100 .e number of transactions in database D with a
length greater than 100

itemWightAvg .e average weight of the utility of the item in
database D, totalWeight/sumItems

transAvg Average transaction length in database D,
sumItems/dbTrans

maxUtility .e maximum value of all utilities in database D
minUtility .e minimum value of all utilities in database D
fileSize Database file size
Density Database D sparse degree, transAvg/dbTrans

Table 7: .e result of the experiment.

Algorithm 10 Cross-validation accuracy (%)
Simple logistic 92.36
C45 (J48) 90.68
Random forest 90.68
SVM (SMO) 91.52
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the maximum transaction length (transMaxLen) in the
database is greater than 267, then the EFIM algorithm is
selected for the experiment (tag 1). Determine whether the
average length of items in the database (itemsAvg) is greater
than 3881.7. If it is greater than 3881.7, the EFIM algorithm
is selected; otherwise, the D2HUP algorithm is selected. It is
worth noting that, according to Figure 10, the important
parameters are the number of transactions with a length of
6–10 in database D (transLen6, 10), the average length of
items in databaseD (itemsAvg), and the length of the longest
transaction in the database (transMaxLen).

4.4. Cross-Dataset Experiment Result. In order to further
verify the classification model based on the Spark set of high
efficiency with the prediction accuracy of the parallel al-
gorithm, 118 will generate the dataset of eight datasets on the
Spark of the results as a test dataset (Chess, Pumsb, BMS,
Connect, Accidents, Kosarak, dh26, dh29, etc.) and the rest
of the dataset as the training dataset for training method
(left); the final classification results are obtained as follows.

.rough experiments, it can be concluded that the
classification algorithm model based on serial D2HUP and
EFIM algorithm also has a good prediction of the running
results of parallel programs.

In large-scale datasets, the efficiency of efficient itemset
mining is an urgent problem to be solved. .is paper
parallelizes the serial algorithm based on the Spark platform,
which greatly improves the running efficiency of the algo-
rithm. In this paper, parallel D2HUP and EFIM algorithms
are designed and implemented. .e parallelization of an
efficient itemset based on Spark is realized to reduce the
running time of the mining algorithm.

5. Conclusions

In large-scale datasets, the efficient mining of itemsets is an
urgent problem to be solved. In this paper, the serial al-
gorithm is parallelized based on the Spark platform, which
greatly improves the running efficiency of the algorithm. At
the same time, since the D2HUP algorithm and EFIM al-
gorithm have their own advantages and disadvantages in
different datasets, and their running times are greatly

different, it is a meaningful work to select an algorithm for
efficient itemset mining in a given dataset.

.e main work contents of this paper are as follows:

(1) By studying serial D2HUP and EFIM algorithms,
design and implement parallel D2HUP and EFIM
algorithms. Among them, the D2HUP algorithm
realizes two different versions based on data parti-
tioning and structure partitioning, and through
large-scale experimental comparative analysis, it is
concluded that the parallel efficient itemset mining
algorithm has a greater improvement in running
time efficiency than the serial algorithm.

(2) In this paper, 118 datasets were obtained by gen-
erating and sorting out the running time of the two
algorithms in the real and simulated datasets. .e
length, sparsity, and size of each data were taken as
the features, and the running time was taken as the
prediction target to establish the model. .e decision
rules are extracted from the model so that users can
better choose the fastest and most efficient itemset
mining algorithm to conduct experiments based on
the given rules.

In conclusion, the automatic selection efficient
itemset algorithm based on Spark has a fast running time
and the most accurate prediction.

Data Availability

.ere are commonly used Accidents in public data sets of
efficient use, such as BMS, Chess, Connect, Foodmat,
Mushroom, Chainstore, Pumsb, and Kosarak. However, due
to the small number of samples of real datasets, it is nec-
essary to build simulated datasets. Please refer to the ex-
perimental design for the construction of simulated data.
.e constructed simulated dataset was verified and com-
pared on Spark based the EFIM algorithm and D2HUP
algorithm, and the experimental dismissal was obtained.
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transLen6_10
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Figure 10: Extraction rule.
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