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A running machine generates multi-frequency vibration signals which can be captured by accelerometers. Empirical mode
decomposition, wavelet decomposition, and wavelet packet decomposition are the commonly used methods to decompose the
multi-frequency signal. Quick fault classi�cation, accurate signal decomposition, and fault size detection are still a problem in
machines with rotary components. In the proposed work, fault diameter in rotary part of machine is detected and classi�ed using
the machine learning methods. In the �rst stage, we have employed empirical mode decomposition (EMD) for high-frequency
noise removal. Residue signal is obtained by removing �rst IMF from base signal considering �rst IMF as a high-frequency noisy
signal, followed by wavelet decomposition. Entropy of the wavelet coe�cient obtained from 3rd level decomposition of residue
signal is calculated which acts as an input parameter to the machine learning techniques to determine the diameter for fault.�ree
di�erent sets have been taken for inner race, outer race, and ball race correspondingly.�e proposed method classi�es and detects
the fault diameter up to 99.5%. �e proposed method can be used for di�erent types of continuous as well as discrete wavelets.

1. Introduction

�emain objective of maintenance department in industries
is to keep machineries running. Machine failure makes
unwanted downtime across the industries with high
maintenance cost. Rolling bearing is considered as a vital
component of rotatingmachines. Several kinds of faults exist
in bearings. �e faults in the bearing decrease the accuracy
and performance of the machine.

Bearing fault detection is done using various signal
processing techniques. Various available methods to analyse
the bearing fault signals are categorized in time-frequency
domain [1, 2], time domain [3–5], and frequency domain
[6–9]. Image processing techniques have also been explored
in works for diagnosis and detection of bearing fault [10, 11].

�e use of vibration signal in the analysis of bearing
faults is also reported in the literature. �ese vibration
signals are recorded using accelerometer which may have
noisy background. Kurtosis analysis is also one of the

methods applied for the early-stage detection of faults in
bearing. In earlier research studies, it is already proved that
for kurtosis value more than three, faults are present in the
vibration signal [12].

Wavelet transform (WT) is applicable for investigation
of non-stationary signals. Wavelet transform is used for the
decomposition of signal into approximation and detailed
coe�cient. Application of wavelet transforms in the de-
tection of bearing faults is also reported by Kumar Jha and
Swami [13].

Various statistical parameters extracted from the wavelet
coe�cients of vibration signals are utilized for di�erent
wavelet functions for fault detection [14].

Parey et al applied the combination of arti�cial Intelli-
gence methods with maximum energy to Shannon entropy
extracted from wavelet coe�cients for the ball bearing fault
classi�cation [15].

WT has been extensively used in signal denoising. In
[16], Ali Alnuaim et al suggested a procedure for rolling
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bearing fault diagnosis evolved from wavelet denoising.
Wavelet-based function is chosen from impulse response of
the bearing system. (e authors optimized damping factor
and central frequency of wavelet on the basis of kurtosis
maximization criteria. Simulated and real rolling vibration
signals were both used in [16] to judge the performance of
the proposed approach.

In [17], reshaping of Morlet wavelet is done by using
Shannon entropy. Li and Yin extracted a weak fault sig-
nature from rolling bearing from wavelet filter bank [17].
Singular value decomposition is utilized to obtain the pe-
riodicity of the signal in the proposed approach in [17].

Enhancement of impulsive features and suppression of
residual noise were achieved by Rafiee et al. using Morlet
wavelet for detection of bearing fault [18]. Jiang et al. op-
timized the wavelet filter by eliminating the interferential
vibration using differential evolution and retrieved the
characteristics of fault present in the signal.

In [19], Kankar et al. used genetic algorithm to enhance
the parameters of Morlet wavelet to maximize the sparsity
measurement value. (e optimal wavelet filter provides the
modulus of the wavelet coefficients which is used to pull out
the envelope. Finally, for enhancement of the visual in-
spection, the ability of bearing fault characteristic fre-
quencies of a non-linear function is utilized.

Faulty vibration signals recorded through accelerometer
for rolling bearings with respect to different fault condition
were preprocessed via Laplace-wavelet transform for feature
extraction by Shukla and Dixit [20]. Obtained characteristics
from time and frequency domains are utilized as an input to
artificial neural network for fault classification. A feedfor-
ward multi-layer perceptron neural network, which consists
of three layers, was used for the categorization in [20].

Lempel–Ziv complexity along with CWTwas utilized to
characterize the bearing faults in [21]. CWT was utilized to
find best location of faults and to remove interferences of
noise and irrelevant signal components. (e envelope and
high-frequency carrier signal are drawn from wavelet co-
efficient followed by Lempel–Ziv complexity value calcu-
lation for all.

(e hybrid CWT-SVM method was proposed by Qiu
et al. for bearing fault detection in induction motor in [22].

(e CWT with autocorrelation improvement was given
by He et al. in [23] to allow minor defect detection of
bearings. (e coefficients of CWT are calculated after re-
ducing dimensions of vibration signal. (e ratio of energy to
Shannon entropy was applied as a parameter to select the
base wavelet followed by extraction of the statistical feature
from wavelet coefficient. In the last stage, soft computing
techniques were applied to do the classification of bearing
faults [24].

(e detection of bearing fault using morphological
wavelet slicing was proposed by Tiwari and Shukla in [25]. Li
et al. proposed a multi-scale autocorrelation approach for
the analysis of the bearing fault. Fourier transform of
extracted temporal components is evaluated to view mor-
phological slices in frequency domain. Its three-dimensional
representation was reduced by the presence of noise. Hence,
autocorrelation function was used to produce a multi-scale

autocorrelation spectrogram to maximize the autocorrela-
tion values of all frequencies.

For non-linear and non-stationary signals, Peter and
Wang [26] suggested an EMD technique that overcomes
disadvantages of wavelet transform. Al Raheem et al. [27]
used the footprint of Hilbert plot as a metric to characterize
distinct ball bearing faults. (e suggested approach is esti-
mated to be 99.98% efficient [27].

(e polar diagram in [28] is used to improve the periodic
transient signals caused by bearing defects. In the method
proposed in [28], signal is represented in time scale domain
using CWT, and then it maps wavelet coefficient into polar
diagram. Transient characteristics would thus be synchro-
nously improved at a definite area if mapping time period
equals that of transient vibrations.

Stalin et al. proposed adaptive wavelet to improve im-
pulsive features generated due to bearing [29]. (e proposed
scheme enhanced the impulsive components and simulta-
neously depressed the noise.

Application of artificial neural network for the classifi-
cation of rolling bearing faults can be extensively found in
the literature [30–33]. In [30], Konar and Chattopadhyay
used PCA along with SVD for bearing fault detection. Li
et al. applied the EMD method followed by singular value
decomposition. Elman neural network is used in later stage
for classification of bearing faults. Classification of ball
bearing faults is also done using various artificial neural
network methods in [32, 33].

(e detection of fault size is still unexplored in the
literature. In the proposed work, EMD is used on bearing
signal to eliminate high-frequency noisy component. First,
IMF is measured to be a high-frequency signal; therefore, it
is removed from the bearing signal to get the residue [34].
(e three-level wavelet decomposition of the residue signal
is done. (e entropy of the third level wavelet coefficient has
been calculated which is further utilized as an input pa-
rameter for feedforward neural network to categorize
bearing signal into respective classes [35].

(is paper is organized as follows. In Section 2, EMD,
WT, and features based on entropy are discussed. In Section 3,
the proposed method is discussed. In Section 4, results and
discussion are given, followed by conclusion and future scope
in Section 5.

2. Theory

2.1. Empirical Mode Decomposition. Peter and Wang pre-
sented the decomposition of a signal through the EMD
method in [26]. (e EMDmethod decomposed a signal into
an IMF from high-frequency component to low-frequency
component. (ere are two necessary conditions for the
component to be IMF, written below:

(i) Number of zero crossing and number of extrema in
the each signal in the whole dataset essentially either
equal or differ at most by one.

(ii) At any point, the mean value of envelope explained
by local maxima and local minima is zero.

(e EMD algorithm is summarized below.
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Signal x (t) is subjected to calculate every probable ex-
trema. Lower and upper envelopes Xmin(t) and Xmax(t),
respectively, are obtained through interpolation among
minima and corresponding maxima [36]. (e mean value
a(t) of the envelope is determined using equation (1), which
is further deducted from signal x(t) to get h(t) using
equation (2).

a(t) �
Xmin(t) + Xmax(t)

2
, (1)

h(t) � x(t) − a(t). (2)

It is checked whether h(t) is an IMF. If it is an IMF, the
residual signal r(t) is drawn by repeating the above steps
using equation (3), or else replace x(t) with h(t), and do
entire process again.

r(t) � x(t) − h(t). (3)

IMF1(t), IMF2(t), IMF3(t), . . . , IMFN(t) are different
frequency components of x(t) from high-frequency com-
ponent to low-frequency component. Residual component
of a signal x is used to display its central tendency (t). By
combining all IMFs and residual r, the original signal x (t)
may be reconstructed (t).

2.2. Wavelet Transform (WT). (e wavelet is a progressive
research filed for the researcher in the engineering over last 20
years. Some of the researchers have contributed substantially to
the use of the wavelet transform in bearing fault identification
[37]. Wavelet transform is a mathematical tool that changes
signals from time domain to time-frequency domain. Wavelet
transform is broadly classified as CWT, DWT, and WPT [38].
Wavelet transform passes one-dimensional signal via filter bank
consisting of LPF and HPF. (e signal component passing
through the low-pass filter is recognized as approximation
coefficient (CA1) while the component extracted from the high-
pass filter is recognized as detailed coefficient (CD1).(is is one-
level wavelet decomposition, and achieved coefficients are
known as first-level wavelet coefficients [39]. Further, the ap-
proximation and detailed coefficient is passed again through

LPF and HPF to get second-order wavelet coefficients. In the
proposed work, three-level wavelet decomposition has been
done in order to get third-level wavelet coefficients [40].

(e structural outline for the wavelet decomposition step
is represented in Figure 1.

2.3. Features Based on Entropies. Entropy is used to measure
uncertainty in the signal [41]. (e unpredictability of time
series is estimated by entropy.

(e power spectrum of the signal was utilized by spectral
entropy to determine the regularity of time series.

Signal

LPF HPF

CA1 CD1

LPF HPF HPFLPF

CA2 CD2 CA2 CD2

Figure 1: Two-dimensional wavelet decomposition.
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Figure 2: Structural outline of the proposed work.

Figure 3: Test stand.
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Normalized Shannon entropy was used to evaluate the
spectral entropy [24, 34]. Spectral entropy is the parameter
to quantify spectral complexity of time series. Power spectral
density (PSD) is defined as the power distribution of signal
based on frequencies existing in signal. If the power level of
each frequency component is represented by Pf, the ratio of
the power level consistent to every frequency to total power
 Pf is called normalization of the power (npf) and can be
written as

npf �
Pf

 Pf

. (4)

Entropy is calculated by multiplication of power level
according to every frequency and inverse logarithm of equal

power level. Finally, spectral entropy (ShEn1) is calculated
by [41]

ShEn1 �  Pflog
1

Pf

. (5)

Table 1: Bearing specifications.

Bearing Inner diameter (inch) Outer diameter (inch) Ball diameter (inch)
Drive end bearing 0.9843 2.0472 0.3126
Fan end bearing 0.6693 1.5748 0.2656

Table 2: Result of the proposed algorithm at different decomposition levels of DWTs.

S.No. Wavelet Fault type Fault diameter Level 1 entropy Level 2 entropy Level 3 entropy
1

Daubechies

Inner race
0.007

4.99402 4.96648 4.6139
2 Outer race 4.39204 3.84301 3.19669
3 Ball race 4.68635 5.15762 5.58455
4 Inner race

0.014
5.44514 5.89579 6.25843

5 Outer race 4.61799 5.19792 5.78321
6 Ball race 4.51711 4.8739 5.13163
7 Inner race

0.021
4.67998 4.08159 3.42083

8 Outer race 4.49768 4.19176 3.81456
9 Ball race 4.9763 5.53878 6.09507
1

Haar

Inner race
0.007

4.96365 4.98041 4.59873
2 Outer race 4.45668 3.94193 3.26267
3 Ball race 4.61941 5.09147 5.5482
4 Inner race

0.014
5.45592 5.96977 6.26468

5 Outer race 4.56891 5.11679 5.71352
6 Ball race 4.47173 4.81214 4.98067
7 Inner race

0.021
4.733 4.19014 3.54017

8 Outer race 4.48865 4.14026 3.68452
9 Ball race 4.88952 5.41589 5.92838
1

Sym4

Inner race
0.007

4.9487 4.92179 4.49412
2 Outer race 4.3656 3.83343 3.14384
3 Ball race 4.61294 5.09549 5.49536
4 Inner race

0.014
5.44833 5.95235 6.20637

5 Outer race 4.64124 5.21861 5.7934
6 Ball race 4.47653 4.79758 4.98408
7 Inner race

0.021
4.68324 4.09673 3.44703

8 Outer race 4.49006 4.19583 3.70423
9 Ball race 4.94563 5.50294 6.02354
1

Coif1

Inner race
0.007

4.96341 4.97298 4.66752
2 Outer race 4.39677 3.89673 3.30127
3 Ball race 4.65655 5.11717 5.53661
4 Inner race

0.014
5.42136 5.948 6.2854

5 Outer race 4.62112 5.17604 5.83812
6 Ball race 4.44007 4.77809 5.02732
7 Inner race

0.021
4.66871 4.1003 3.44436

8 Outer race 4.50012 4.25786 3.71598
9 Ball race 4.95024 5.51563 6.0299

Neural Network

Input
Hidden Output

1
25 3

3

Output
w w

b b
++

Figure 4: Neural network design used for the proposed method.
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3. Proposed Method

(is paper presents a novel scheme according to various
entropy measures to classify the ball bearing fault. (e data
are randomly sampled to get different data size samples. (e
EMD has been applied to samples for the removal of high-
frequency noisy component [42]. (e high-frequency
component has been deducted from raw signal to eliminate
effectual noise. (e complex vibration signal has been
analysed in time-frequency domain for better accuracy of
classification [43]. (at raw signal is split into 23 subsignals,
i.e., 8 scales with 3 levels of decomposition. (e entropy of
wavelet coefficients has been calculated which is utilized as
feature for ball bearing fault’s classification.

3.1. Proposed Algorithm. Let r⟶ x(t), where x(t) is
sample comprising of population of vibrating data.

Sample space is arbitrarily picked from collection of
population, and EMD is performed. EMD divides the

signal into IMFs, which are monotonic frequency
components.

h(t) � EMD(r), (6)

where h(t) is a vector consisting of an IMF obtained using
the EMD of signal space r.

(e first IMF, i.e., the highest frequency component, is
deducted from raw signal to obtain residue using the fol-
lowing equation:

res � r − h(t) 1{ }, (7)

where res is the residue obtained after removing first IMF
[h(t) 1{ }], from signal space r.

Wavelet coefficients are obtained by transforming the
residue (res) into the DWT up to third level of decompo-
sition using equation (8). Equation (8) represents the
mathematical model to calculate the DWT of the residue
(res).

Table 3: Result of the proposed algorithm at levels 1, 2, and 3 for various continuous wavelet types.

S.No. Wavelet Fault diameter Fault type Level 1 entropy Level 2 entropy Level 3 entropy
1

meyr

0.007
Inner race 4.62044 4.56986 3.93129

2 Outer race 4.64571 3.89411 3.38638
3 Ball race 4.03286 4.49054 4.54296
4

0.014
Inner race 4.25968 4.61958 4.22894

5 Outer race 3.77234 4.29408 4.46133
6 Ball race 4.14535 4.5487 4.33351
7

0.021
Inner race 4.77644 4.03004 3.08791

8 Outer race 4.74821 3.99134 3.87167
9 Ball race 4.02679 4.4618 4.243
1

gaus1

0.007
Inner race 4.65305 4.67421 4.3627

2 Outer race 4.62621 4.6154 4.79962
3 Ball race 4.07647 4.07469 4.20235
4

0.014
Inner race 4.29213 4.41689 4.30321

5 Outer race 3.86109 3.84888 4.4136
6 Ball race 4.14574 4.18351 4.34164
7

0.021
Inner race 4.83451 4.77362 4.47731

8 Outer race 4.76385 4.56461 4.13111
9 Ball race 4.09455 4.13798 4.46649
1

morl

0.007
Inner race 4.61626 4.54568 3.84258

2 Outer race 4.58546 3.78241 3.33031
3 Ball race 4.02301 4.43336 4.25203
4

0.014
Inner race 4.01912 4.4764 4.52151

5 Outer race 3.7788 4.25778 4.44057
6 Ball race 4.12073 4.56879 4.17328
7

0.021
Inner race 4.78285 4.01478 3.20464

8 Outer race 4.73745 3.98008 3.30779
9 Ball race 4.00625 4.50274 4.29213
1

mexh

0.007
Inner race 4.65786 4.32452 4.22773

2 Outer race 4.63703 4.44181 4.23245
3 Ball race 4.09561 3.85489 3.7013
4

0.014
Inner race 4.29233 4.13797 4.2346

5 Outer race 3.83845 3.65736 3.79228
6 Ball race 4.15931 4.02797 4.18802
7

0.021
Inner race 4.81195 4.4722 4.11225

8 Outer race 4.78442 4.47225 4.1039
9 Ball race 4.08937 3.89522 4.12463
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dwtres �
1
√2j

 resψ∗
t − k2j

2j
 dt. (8)

(e entropy of the obtained wavelet coefficient (dwtres)
and maximum energy to Shannon entropy ratio are then
evaluated as

En � − 
j

P dwtres( logP dwtres( ,

ShEn1 � P dwtres( log
1

P dwtres( 
.

(9)

Calculated entropy for different set is utilized as an input
parameter to neural network for classification.

(e structural outline of the proposed technique is
presented in Figure 2.

4. Results and Discussion

(e data were obtained from Case Western Reserve Uni-
versity’s Bearing Data Centre, United States. Arrangement of
the machine is shown in Figure 3.

(e specification and arrangement details are available
in [35]. (e test bearings used for the setup are of SKF and
NTN make. (e bearing information is provided in Table 1.

In the proposed algorithm, EMD is employed for re-
moval of high-frequency noisy component. EMD decom-
posed a signal into IMF which varies from high frequency to
low frequency. Initial IMF (IMF1) is deducted from original
signal (r) to get residue signal (res). Discrete wavelet
transform of residue (res) is calculated up to 3rd level of
decomposition. (e entropy of the wavelet coefficient ob-
tained after the 3rd level decomposition is calculated which is
further utilized as a parameter to classify the ball bearing
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Figure 5: Confusion matrix for inner race fault set.
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fault diameter into different output classes. (e dataset has
been split into subsets by choosing arbitrary samples. (e
proposed methodology has been tested for various CWTand
DWT. (e feature sets (entropy values) obtained from 3rd
level wavelet coefficients are shown in Table 2 with respect to
various discrete wavelets.

Feedforward neural network is utilized with 25
neurons in hidden layer. In the proposed work, feed-
forward neural network has been used. Training of model
has been done using the scaled conjugate gradient-based
technique. Moller [36] developed the SCG algorithm, that
is according to conjugate directions but does not do a line
scan at every iteration like previous conjugate gradient
algorithms [44]. Increasing computational cost of system
[37]. SCG was created to eliminate the time-consuming
process of searching for lines. (e SCG method’s step size
is calculated by quadratic approximation of error func-
tion, making it extra robust and independent of user-

described parameter. (e proposed algorithm has been
tested over well-established dataset available online at
[35]. (e entire dataset has been separated into training
and testing sets. For training, 70% of the dataset has been
used and the remaining 30% is used for testing and
validation. (e accuracy of suggested algorithm is
achieved after 10-fold cross validation. To validate the
performance, cross entropy is used [45]. (ree different
sets for inner, outer, and ball race faults have been utilized
as input parameters to neural network. (e network has
to classify input set into various fault diameter classes.
(e diameters of faults are 0.007 inch, 0.014 inch, and
0.021 inch. Figure 4 shows the neural network used to
classify the input vector for the proposed method [46].

Tables 2 and 3 show the result of the proposed algorithm
with discrete wavelets and continuous wavelets, respectively.
(e results obtained using CWTare depicted in Table 3. (e
outcomes of Tables 2 and 3 state that variation between the
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Figure 6: ROC for inner race fault set.
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values of entropy with respect to fault diameter at various
wavelets can be applied as a criterion for analysis of ball
bearing fault diameter [47]. (e confusion matrix and ROC
for two sets are depicted in Figures 5–7. Figures 5 and 6
demonstrate confusion matrix and ROC for set obtained
through entropy of inner race fault for the classification of
fault diameter in bearings [48], and Figure 7 shows the
confusion matrix for set obtained from entropy of outer race
fault for classification [49] of fault diameter in the bearings.
It can be concluded from Table 2 that for any kind of wavelet,
when fault diameter changes from 0.007 to 0.014, in case of
inner race, the entropy increases in the range of 30–40%,
while for fault [50] diameter change from 0.014 to 0.021, the
entropy [51] was found to be decreased in the range of
40–50%.

In case of outer race, when fault [52] diameter changes from
0.007 to 0.014, entropy increases by the value found in the range
of 70–80%, while for 0.014 to 0.021 diameter change, entropy
value decreases in the range of 30–40%. In case of ball race,
when fault diameter changes from 0.007 to 0.014, entropy

decreases by the value found in the range of 5–10%, while for
0.014 to 0.021 diameter change, entropy value increases in the
range of 15–20%.

5. Conclusion

(is paper aims at determining the fault size and their correct
classification.(e authors present a new approach for diagnosis
of bearing fault size by applying multiple decomposition
techniques like EMD and wavelet decomposition. (e EMD
approach is utilized to divide original signal into monotonic
frequency components. High-frequency components are
deducted from the raw signal to get the residue whose wavelet
decomposition is performed later. (erefore, EMD is utilized
for the removal of high-frequency noisy component. (e en-
tropy associated with the third level wavelet coefficients of
residue is calculated which is used to classify the ball bearing
fault diameter into respective classes. (ree fault diameters
0.007″, 0.014″, and 0.021″ were considered. (e results of the
proposed technique as reflected in the confusion matrix prove
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Figure 7: Confusion matrix for outer race fault set.
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that the procedure used to classify the fault diameter size ismore
efficient than the empirical methods. With the proposed
method, the achieved classification accuracy is about 100%. It
can be concluded that when fault diameter increases from 0.007
to 0.014, inner race and outer race have increment in entropy
value in particular range, while ball race has decrement in the
value of entropy, whereas when fault diameter increases from
0.014 to 0.021, inner and outer race entropy has a decrement in
specific range, while ball race entropy has been increased.
Hence, on the basis of variation in entropy value for different
kinds of fault, fault type as well as fault size can be diagnosed
using the proposed algorithm.
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of sleep stages: a comparison between spectral and nonlinear
EEG measures,” Electroencephalography and Clinical Neu-
rophysiology, vol. 98, no. 5, pp. 401–410, 1996.

[46] Møller and M. Fodslette, “A scaled conjugate gradient al-
gorithm for fast supervised learning,” Neural Networks, vol. 6,
no. 4, pp. 525–533, 1993.

[47] A. Ali Alnuaim, M. Zakariah, A. Alhadlaq et al., “Human-
computer interaction with detection of speaker emotions
using convolution neural networks,” Computational Intelli-
gence and Neuroscience, vol. 2022, Article ID 7463091,
16 pages, 2022.

[48] L. Babani, S. Jadhav, and B. Chaudhari, “Scaled conjugate
gradient based adaptive ANN control for SVM-DTC in-
duction motor drive,” in Proceedings of the IFIP International
Conference on Artificial Intelligence Applications and Inno-
vations, pp. 384–395, Springer, Hersonissos, Crete, Greece,
June 2016.

[49] X. Yuan and T. Zhang, “fault diagnosis for rotating machinery
based on convolutional neural network and empirical mode
decomposition,” Shock and Vibration, vol. 2017, Article ID
3084197, 12 pages, 2017.

[50] D. Belmiloud, T. Benkedjouh, M. Lachi, A. Laggoun, and
J. P. Dron, “Deep convolutional neural networks for Bearings
failure predictionand temperature correlation,” Journal of
Vibroengineering, vol. 20, no. 8, pp. 2878–2891, 2018.

[51] R. Magar, L. Ghule, J. Li, Y. Zhao, and A. B. Farimani,
“FaultNet: a deep convolutional neural network for bearing
fault classification,” IEEE Access, vol. 9, Article ID 25189, 2021.

[52] S. Zhang, S. Zhang, B. Wang, and T. G. Habetler, “Deep
learning algorithms for bearing fault diagnostics—a com-
prehensive review,” IEEE Access, vol. 8, Article ID 29857,
2020.

10 Scientific Programming


