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Plane computer graphics are basic information carriers in many industrial scenarios, such as engineering simulation, automatic
control, and software design. Plane computer graphics are generally a kind of digital signals guided by mathematical symbols, and
each vertex of a plane computer graph forms a graph matrix. �erefore, linear matrix transformation serves as the most common
algorithmic unit to realize various information processing operations. To improve ease of graph matrix computing in practical
engineering scenarios, this paper proposes a theoretical scienti�c programming framework for application of linear matrix
transformation in plane computer graphics. Firstly, theoretical basis of linear matrix transformation in homogeneous plane
coordinates is displayed and analyzed.�en, the universal theorem about linear transformation of graph matrices is deduced, and
corresponding proofs are also given. Finally, a case study is set up to demonstrate the main work�ow of the proposed theoretical
scienti�c programming framework. �e simulative results reveal feasibility of the proposal.

1. Introduction

Geometric graphics transformation refers to some speci�c
graphics process operations [1, 2], including movement of
the de�ned graphics from one position to another [3],
change of size and shape for graphics, or generation of
complex graphics from existing graphics [4, 5]. And it is
also named as graphics transformation for short [6, 7].
Graphics transformation can help deduce required
graphics with the aid of two-dimensional or three-di-
mensional transformation operations [8, 9]. Figure 1 gives
a typical example of 2D linear matrix transformation in
plane space [10, 11]. Graphic transformation is usually
realized via matrix transformation, and matrices used for
transformation varies with di�erent scenes [12, 13]. With
the development of computer science and simulation
modeling, graphics transformation is usually implemented
by computer algorithms [14], forming the discipline of
computer graphics [15]. In order to enhance engineering
ease of digital signal processing in plane graphics [16], this
work concentrates the theoretical scienti�c programming

framework for application of linear matrix transformation
in plane computer graphics [17, 18].

Points are the basic elements of a graph [19]. In analytic
geometry, points are represented by vectors [20, 21]. For
example, points in two-dimensional space (plane) and in
three-dimensional space are separately represented by

P2d ∈ (x, y)′,
P3d ∈ (x, y, z)′.

(1)

A planar (two-dimensional) �gure or a spatial (three-
dimensional) shape can be represented by a set of points
(referred to as a set of points) [22, 23]. A planar graph can be
represented by a matrix as follows:

Mat2d �
x1 x2 · · · xn
y1 y2 · · · yn
[ ], (2)

where the set of vertices (x1, y1)′, (x2, y2)′, . . . , (xn, yn)′ are
included and a three-dimensional graph can be represented
by a matrix as follows:
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Mat3 d �

x1 x2 · · · xn

y1 y2 · · · yn

z1 z2 · · · zn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (3)

When the point set is represented by a matrix, the
transformation of the point can be realized by the following
linear transformation:

Ax � y, (4)

where x denotes the old point coordinates, A denotes the
transformation matrix, and y denotes the new point coor-
dinates. &ere is a one-to-one correspondence between
linear transformation and matrix.

2. Plane Graph Transformation in
Homogeneous Coordinates

First of all, it is supposed to illustrate four basic transformation
types which are shown in Figure 2: translation, scale, rotation,
and skew [24, 25]. &e commonly used transformation matrix
of plane graphics contains four types: proportional transfor-
mation, symmetrical transformation, rotation transformation,
and the translation transformation [26, 27].

Definition 1. &e proportional transformation is repre-
sented as the following format:

T �
sx 0

0 sy

⎡⎣ ⎤⎦, (5)

where sx and syare the proportional coefficient along the x-axis
and y-axis, respectively, and they satisfy the condition:
sx > 0, sy > 0. &e different value setting of sx and sy leads to
different scenes.

(i) When sx � sy � 1, it is a constant proportional
transformation, that is, the figure is unchanged.

(ii) When sx � sy > 1, the figure magnifies propor-
tionally along the two axes.

(iii) When sx � sy < 1, the figure shrinks proportionally
along the two axes.

(iv) When sx ≠ sy, the figure changes nonuniformly along
the two axes, and the result is graphic distortion.

Definition 2. &e symmetrical transformation is represented
as the following format:

T �
a b

c d
􏼢 􏼣, (6)

where a, b, c, and d are the symmetrical coefficients. &e
different value setting of a, b, c, and d leads to different
scenes.

(i) When a � 1, d � −1, b � c � 0, it is a symmetrical
transformation about the X-axis.

(ii) When a � −1, d � 1, b � c � 0, it is the symmetric
transformation about the Y-axis.

(iii) When a � −1, d � −1, b � c � 0, it is the symmetric
transformation about the origin.

(iv) When a � d � 0, b � c � 1, it is the symmetric
transformation about the straight line x − y � 0.

(v) When a � d � 0, b � c � −1, it is the symmetric
transformation about the straight line x + y � 0.

Definition 3. &e rotation transformation is represented as
the following format:

T �
cos θ −sin θ

sin θ cos θ
􏼢 􏼣, (7)

where θ is the angle rotated around the origin of the coordinate.
&e different value setting of θ leads to different scenes.

(i) &e value of this angle is positive (θ> 0) when it
rotates counterclockwise.

(ii) &e value of this angle is negative (θ < 0) when it
rotates clockwise.

Definition 4. &e translation transformation is represented
as the following format:

T �
x′ � x + m,

y′ � y + n,

⎧⎨

⎩ (8)

or the following format:

Figure 1: A typical example of linear matrix transformation in plane space.
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x′

y′
⎡⎣ ⎤⎦ �

x

y
􏼢 􏼣 +

m

n
􏼢 􏼣. (9)

As the translation transformation cannot be written in
form of Ax � y, it is not with the linear type. In order to
change translation transformation into linear transfor-
mation, we can uniformly use linear matrix operations to
study plane graphic transformation [28]. &e homoge-
neous coordinates are generated, in which n-dimensional
vectors are represented by (n + 1)-dimensional ones.
When the homogeneous coordinate of the vector
(x1, x2, . . . , xn)′ equals to (hx1, hx2, . . . , hxn, h)′, where h is
a real number, the homogeneous coordinate representa-
tion of a vector is not unique, and different values of the
homogeneous coordinate h represents the same point. A
homogeneous coordinate (8, 4, 2)′, (4, 2, 1)′ represents the
point (4, 2)′ on the plane. Hence, the following definition
can be deduced.

Definition 5. When h � 1, the homogeneous coordinate
(x1, x2, . . . , xn, h)′ is called as the normalized homogeneous
coordinate.

After the introduction of homogeneous coordinates,
translation transformation defined in Definition 4 can be
written as follows:

x′

y′

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

1 0 m

0 1 n

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x

y

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

x + m

y + n

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (10)

It is a linear transformation, and the different value
setting of a, b, c, and d leads to different scenes.

(i) When m> 0, the graph translates positively along
the X-axis.

(ii) When m< 0, the graph translates negatively along
the X-axis.

(iii) When n> 0, the graph translates positively along the
Y-axis.

(iv) When n< 0, the graph translates negatively along
the Y-axis.

3. Theorem and Proof for Plane
Graphics Transformation

Theorem 1. When the transformation matrix of the plane
graph is denoted as follows:

T �

a b m

c d n

0 0 s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (11)

the a b

c d
􏼢 􏼣 causes proportional, symmetric, and rotational

transformation of the planar graph, and m

n
􏼢 􏼣 causes the

plane graph to produce translation transformation.

Proof. Supposing that y � Tx, the following formula can be
deduced:

x′

y′

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

a b m

c d n

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x

y

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (12)

where y, x, and T are separately represented as follows:

y �

x′

y′

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �
Y

1
􏼢 􏼣,

x �

x

y

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �
X

1
􏼢 􏼣,

T �

a b m

c d n

0 0 s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �
T1 T2

T3 T4
􏼢 􏼣.

(13)

According to the matrix block method, the following six
formulas can be further deduced as follows:

Y �
x′

y′
⎡⎣ ⎤⎦,

X �
x

y
􏼢 􏼣,

T1 �
a b

c d
􏼢 􏼣,

T2 �
m

n
􏼢 􏼣,

T3 � (0, 0),

T4 � s.

(14)

Figure 2: Four basic transformation types: translation, scale, rotation, and skew.
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&en, the y � Tx can be rewritten as follows:

Y

1
􏼢 􏼣 � T

X

1
􏼢 􏼣

�
T1 T2

T3 T4
􏼢 􏼣

X

1
􏼢 􏼣

�
T1X + T2

T3X + T4
􏼢 􏼣

�
T1X + T2

T4
􏼢 􏼣.

(15)

Obviously, T1X is the basic transformation of two-di-
mensional graphics, thus translation transformation T1X +

T2 can be deduced as follows:

T1X + T2 �
a b

c d
􏼢 􏼣

x

y
􏼢 􏼣 +

m

n
􏼢 􏼣. (16)

To sum up, the transformation of plane graphics can be
represented by a unified matrix.

T �

a b m

c d n

0 0 s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (17)

&e proof for &eorem 1 is to be finished so far.
Points are often used in computer graphics, and if the

position of point changes, so does the figure [29]. &erefore,
if transform the graph, it is needed to change the point [30].
&e effect of the product of a matrix and a vector in linear
transformation provides a method of graphic transforma-
tion, which can be used to produce the effect of the graphic
change in the computer [31, 32].

For a closed figure in a plane coordinate system, it is
represented by a matrix x, and each column of x represents
the coordinates of a vertex of the graph. To close the graph,
the last column of x is the same as the first column [33]. In
order to realize the translation of graphics by using linear
transformation, a row with elements of 1 is added to matrix
x so that the shape of matrix [3 × n].

&e following two transformation matrices are given as

M �

1 0 m

0 1 n

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

R �

cos θ −sin θ 0

sin θ cos θ 0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(18)

for two transformation processes Y1 � MX and Y2 � RX,
they can be separately explained as follows:

(i) Y1 is the transformation result of X, in which m is
translated along the positive direction of the X-axis,

n is translated along the positive direction of the Y-
axis.

(ii) Y2 is the result of the inverse (clockwise) rotation of
the θ angle of the graph X with the coordinate origin
as the center.

&e letter A is moved 15 up, 30 to the left, the π/3
counterclockwise, and then 30 up, 20 to the right, then turn
counterclockwise by 3/4π, and the MATLAB software is
used to draw transformed graphics [34, 35]. &e graphic
matrix of the letter A can be constructed from Table 1. For
this example, X is deduced as follows:

X �

0 4 6 10 8 5 3.5 6.1 6.5 3.2 2 0

0 14 14 0 0 11 6 6 4.5 4.5 0 0

1 1 1 1 1 1 1 1 1 1 1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (19)

From the meaning of the question, it can be seen that
the transformation matrix of figure a moving up 15 and
moving left 30, which can be represented as the following
matrix:

M1 �

1 0 −30

0 1 15

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (20)

And the transformation matrix can be represented as

R1 �

cos
π
3

−sin
π
3

0

sin
π
3

cos
π
3

0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (21)

where rotating counterclockwise of graph A is π/3. &e
transformation matrices of moving figure A up 30, 20 to the
right, and 3/4π counterclockwise, respectively, are as
follows:

M2 �

1 0 20

0 1 30

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

R2 �

cos
3π
4

−sin
3π
4

0

sin
3π
4

cos
3π
4

0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(22)

So, these three transformation matrices are respectively
R1, M1, and R2M2, and one of them R2M2 is a combinatorial
transformation. □

4 Scientific Programming



4. Scientific Programming Demo for the
Case Study

Having analyzed basic linear matrix transformation theory
and proved its efficiency, this section manages to give a
practical scientific programming demo for the above case
study. Its pseudo codes reveal major workflow of the pro-
posed theoretical scientific programming framework, which
is illustrated in Algorithm 1. &rough such suggested the-
oretical scientific programming framework, it is expected to
facilitate engineering practice in relevant areas. &e pro-
posed scientific programming demo for the above case study
in MATLAB is given as follows:

>>close all;
>>X� [0,4,6,10,8,5,3.5,6.1,6.5,3.2,2,0;
0,14,14,0,0,11,6,6,4.5,4.5,0,0;
ones(1,12)];
>>plot(X(1,:),X(2,:));
% Draw the letter A figure hold on;
>>M1� [1,0,−30; 0,1,15; 0,0,1];
>>Y1�M1∗X;
hold on;
>>fill(Y1(1,:),Y1(2,:), “red”);
%Draw the figure after the translation of the letter A.
>>R1� [cos(pi/3), −sin(pi/3),0];
sin(pi/3),cos(pi/3),0;
[0,0,1];
>>Y2�R1∗X;
hold on;
>>fill(Y2(1,:),Y2(2,:), “blue”);

%Draw the figure after the letter A is rotated.
>>M2� [1,0,20; 0,1,30; 0,0,1];
>>R2� [cos(3∗ pi/4), −sin(3∗ pi/4),0];
sin(3∗ pi/4),cos(3∗ pi/4),0;
[0,0,1];
>>Y3�M2∗R2∗X;
hold on;
>>fill(Y3(1,:),Y3(2,:), “black”);
%Draw the figure after the letter A is translated and
rotated.

Running result of the above programming code leads to
the graph in Figure 3.

Table 1: Data sheet with letter A.

x 0 4 6 10 8 5 3.5 6.1 6.5 3.2 2 0
y 0 14 14 0 0 11 6 6 4.5 4.5 0 0

INPUT: X, M1, M2, R1, R2
OUTPUT: Y1, Y2

(1) while Each graph do
(2) for Dimension: 1⟶ 3 do
(3) Plot plane graph of letter A
(4) Define transformation matrix M1 for letter A
(5) Calculate transformation result Y1 for letter A
(6) Define transformation matrix R1 for letter A
(7) Calculate transformation result Y2 for letter A
(8) Define transformation matrices R2 and M2 for letter A
(9) Calculate transformation result Y3 for letter A
(10) Output graphics for letter A
(11) end for
(12) end while

ALGORITHM 1: Workflow of the proposed theoretical programming framework.

-30 -25 -20 -15 -10 -5 0 5 10 15 20
0
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10
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35
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Figure 3: Transformation diagram of letter A.
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5. Conclusion

Plane graph transformation mainly includes proportion,
symmetry, rotation, translation, and so on [36]. &ese
transformations are unified into linear transformations
under homogeneous coordinates and studied by the
matrix [37]. &is provides a unified transformation matrix
method for coordinate transformation of two-dimen-
sional, three-dimensional, and even high-dimensional
space of geometric graphics, and these transformations
can be easily combined [38]. &e complexity of the
transformation matrix is related to transformation steps,
that is, the more steps, the more transformation matrix,
which can produce the transformation of the complex
graph [39, 40].
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