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*e resource release bugs are a common type of serious programming bug. However, it is hard to catch them by using static
detection for the lacking of comprehensive prior knowledge about the release functions. In this paper, a resource release bug
detection method is proposed by introducing analogical reasoning on word vectors. First, the functions of the target source code
are encoded into word vectors by the word embedding technique in natural language processing. Second, a two-stage reasoning
method is developed for automatically identifying unknown resource release functions according to a few well-known seed
functions. 3CosAvg algorithm is employed for the first stage, and a new algorithm is designed for the latter, called 3CosAd-
dExchange. Finally, the identified release functions are translated into static analysis rules to detect potential bugs.*e experiment
shows that the proposed method is effective and efficient for the large-scale software project. Five unknown resource release bugs
are successfully detected in the Linux kernel and confirmed by kernel developers.

1. Introduction

*e resource-release-related bug is a common type of
programming defect that can lead to improper references to
a released resource. Typical release-related defects include
use after free and double free. *e released resource may be
reallocated. Referencing or releasing again the released re-
source will cause a sensitive information leak or memory
corruption, and sometimes, it can result in more serious
consequences such as executing arbitrary code. In practice,
release-related bugs emerge frequently in various software
projects. For example, in 2020, 344 use-after-free vulnera-
bilities are included in the CVE (common vulnerabilities and
exposures) list [1].

Detecting release-related bugs is an important program
analysis task. In theory, as long as the resource release
functions are known, we can effectively detect release-related
bugs using traditional static analysis techniques, for ex-
ample, data-flow analysis. For example, in the Linux kernel,
the logic of many release-related defects is actually very
simple, and thus, they can be easily caught if we know the
relevant resource release functions. Unfortunately, except
for the well-known memory release functions such as free
and kfree, numerous application-specific release-related

functions in large-scale software are unfamiliar to the an-
alysts, for example, devlink_free in the Linux kernel. Gen-
erally, they are known by only a few developers. If the
functions are not configured into static analysis tools, it is
impossible to effectively detect the release-related defects
caused by them. Neglecting potential release-related func-
tions has become one of the main obstacles for detecting the
related defects.

In theory, it is possible to discover unknown release-
related functions by manual audit. However, manually
auditing real-world software projects requires a lot of human
effort. It is very difficult, if not impossible, to manually
identify unknown release-related functions in large-scale
projects. For this reason, how to automatically identify re-
lease-related functions has become an urgent problem to
solve.

In this paper, the word embedding technique, for ex-
ample, Word2vec [2], is introduced to address the problem.
Word embedding has become one of the most important
representation learning methods in natural language pro-
cessing (NLP). With the help of embedding, the high-di-
mensional one-hot word vector can be converted to a real
number vector of lower dimensionality to more effectively
support downstream tasks, for example, semantic search and

Hindawi
Scientific Programming
Volume 2022, Article ID 3518673, 9 pages
https://doi.org/10.1155/2022/3518673

mailto:wanglu@xidian.edu.cn
https://orcid.org/0000-0001-6481-7958
https://orcid.org/0000-0001-8414-4164
https://orcid.org/0000-0002-2975-7643
https://orcid.org/0000-0001-7882-7049
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3518673


sentiment analysis. In addition to direct word similarity
measurement, the embedded word vector can support an-
alogical reasoning, answering the questions such as “If man
is to woman, then king is to?” We can employ analogical
reasoning to get the correct answer. In fact, as shown in
Figure 1(a), we can effectively identify queen by calculating
VKing − Vman + Vwoman.

Our basic idea is to treat the programming language as a
special natural language and the functions as the “words” of
the language. *e function call sequences of the target
project can be used as the training samples (i.e., sentences) to
train a word embeddingmodel. Consequently, each function
can be encoded into a vector using the model. As shown in
Figure 1(b), by leveraging the analogical features of the
function vectors, we can infer the unknown resource allo-
cate-release function pairs (∗malloc and ∗free) from the
known function pairs (e.g., kmalloc and kfree in Linux
kernel). From the inferred pairs, the release-related func-
tions can be identified easily. It should be pointed out that
unlike the analogical reasoning in NLP, we will identify
potential unknown resource allocate-release function pairs
first, instead of reasoning the unknown resource release
functions directly.

In view of the above, we propose a resource-release-
related bug detection method based on analogical rea-
soning. First, the function call sequences from the target
project are extracted to train a word embedding model and
encode all functions as vectors. Second, with a small
number of well-known resource allocate-release function
pairs, the potential resource-release-related functions are
identified via a two-stage reasoning method. Finally, the
obtained functions are configured into the detection rule of
the static detection tool to find the resource release bugs
from the target project. *e proposed method has been
applied to the Linux kernel. *rough the two-stage rea-
soning, we identified hundreds of potential release-related
functions and successfully detected five unknown bugs,
which have been confirmed by the kernel developers. *e
experiment result shows that our method is effective and
efficient and can be employed for analyzing and detecting
large-scale software projects.

2. Methodology

As shown in Figure 2, the workflow of the proposed method
is composed of five main steps. (1) *e target project pro-
gram is sliced, and the function call sequences are extracted
from the slices to form a corpus for training an embedding
model. (2) *e frequent function pairs are mined from the
call sequence as the candidate allocate-release function pairs.
(3) A word embedding model is trained on the corpus, and
the project functions are embedded into vectors. (4) From
the known allocate-release function pairs (original seed
pairs), the secondary seed pairs are inferred, and the un-
known allocate-release pairs are identified subsequently in a
two-stage analogical reasoning way. (5) *e release-related
functions in the identified pairs are converted to the de-
tection rules of the static checker to check the target project
for discovering the potential resource release bugs.

2.1. Code Data Preprocessing. To train a word embedding
model, we must first prepare a corpus, which should possess
sufficient word sequences (sentences). In this study, we use
the function call sequence to construct the corpus. Naturally,
we regard each function implementation as a semantic unit
and extract the function call sequence from it. However,
there is not always a relatively close semantic relationship
among the function calls in a function. It is improper to
directly combine the calls to form a training sample. To this
end, we slice the target program and then extract the
function call sequences from the slices to construct the
corpus. As a result, there is a close relationship, for example,
data dependence, among the function calls in a training
sample.

Program slicing [3] is a common code preprocessing
technique that can obtain a closely related statement subset.
To highlight the data relationship among function calls, the
program is sliced based on the data dependence graph
(DDG). As done in [4], we use the LLVM compiler [5] to
parse the target code and generate the corresponding DDG
for each function implementation in the LLVM intermediate
representation (IR) level. *e parameters and variables in
the function are used as the slicing criteria to get the cor-
responding data-dependent slices. From a function, we may
get multiple slices. For each slice, we collect the function call
instances in it to get a sequence with a depth-first traversal.
By using program slicing, we can minimize the interference
of irrelevant function calls in a training sample, allowing the
word embedding model to effectively learn code semantic
features.

We implement the above operation as an optimization
pass of LLVM. By this means, LLVM can perform the slicing
and collect function call sequences while compiling the
target project. Hundreds of thousands of function call se-
quences can be obtained from a large-scale project such as
the Linux kernel. *ey can effectively support the subse-
quent frequent function pair mining and model training.

2.2. Frequent Function Pairs Mining. A large-scale software
often contains a large number of functions. For example, the
Linux kernel has about 300,000 functions. If we compare the
seed function pairs with the combinations of any two
functions, a combinatorial explosion will be triggered. To
avoid unacceptable computation overhead, the comparison
is limited to the function pairs whose two elements have a
data dependence relationship and appear together more
than a certain number of times. To this end, the frequent
pattern mining algorithm is leveraged to get the candidate
pairs from the extracted call sequences.

*ere are some on-the-shelf frequent pattern mining
algorithms, such as Apriori [6], Eclat [7], and FP-Growth [8].
Among them, FP-Growth is an efficient algorithm for mining
frequent item sets. It only needs to traverse the data set twice
to obtain frequent patterns that meet the predefined support
threshold. In this study, we choose FP-Growth to mine
candidate function pairs. After getting the frequent item sets,
the corresponding association rules can be easily derived from
them. For example, for frequent item sets {p1, p2}, we can
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obtain an association rule p1�>p2 and its confidence c, which
means that when p1 appears in the data set, the probability
that p2 also appears is c. With confidence, we can further rank
the candidate function pairs to obtain the most closely related
ones.

In this study, the frequent pattern length of FP-Growth is
set to 2, that is, only frequent function pairs are mined. *e
mined function pair (f1, f2) will have the following
properties:

(1) *e functions f1 and f2 have a data dependency
relationship

(2) *e functions f1 and f2 are called together at least 5
times in the slices

(3) At least half of the slices containing function f1 or f2
also contain the other one

In a large-scale project, the number of frequent function
pairs meeting the above properties may exceed 100,000. We
will employ analogical reasoning to identify the pairs of
interests from them afterwards.

2.3. Model Training. In NLP, the word embedding model is
trained with a great number of natural language sentences/
paragraphs from the corpus, such as the Google News data
set. In this study, the function call sequences in the slices are

used as training samples, like the sentences in the corpus, to
train a word embedding model for the program. It can
encode a function into a vector.

In recent years, a variety of word embedding models
have been proposed, for example, Word2vec [2], FastText
[9], and Bert [10]. Word2vec, the most classic model, can
effectively support many downstream tasks. However,
Word2vec has a significant drawback. Every word is
regarded as an indivisible semantic unit, and the semantics
of the subword is neglected. In other words, even if the two
words are very similar in spelling and have similar se-
mantics, such as “dog” and “dogs,” the model will treat them
as two unrelated words. In practice, functions with similar
functionality may have similar names. For example, in the
Linux kernel, both kfree and vfree are used to release
memory blocks, and their names have the same suffix. As a
new generation model, Bert has shown excellent perfor-
mance in a number of NLP tasks and can capture subword
semantics, but its training is significantly time-consuming.
In contrast, FastText supports subword embedding and can
be trained fast, making it applicable to large-scale software
projects. In this study, we choose to train a FastText model
for embedding functions.

FastText has two training modes: Skip-gram and CBOW.
In Skip-gram mode, the model is optimized by using the
target word to infer its context. On the contrary, the context
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Figure 1: Analogical reasoning on vectors: (a) king –man+woman≈ queen and (b) kfree – kmalloc + ∗malloc≈ ∗free.
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Figure 2: Workflow of bug detection.
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is used to infer the target word in CBOW mode. In general,
Skip-gram mode can provide better performance than
CBOW. We choose Skip-gram mode to train our model.

*e FastText algorithm implemented in the Gensim li-
brary is employed. *e model is trained to embed the
function name as a 300-dimensional vector with the default
algorithm parameters (training rounds as 5, context window
size as 5, etc.). *e training is very fast. For a large software
project with hundreds of thousands of function call se-
quences, for example, Linux kernel, the training can be
accomplished in a few minutes on a desktop computer.

2.4. Analogical Reasoning. With the trained model, the
function is embedded into a vector that can be used to measure
function similarity quantitatively. On this basis, the unknown
resource release functions are discovered via analogical rea-
soning on the function vectors. However, in practice, it is often
difficult to use a limited number of known allocate-release
function pairs (called initial seed pairs) to fully represent the
semantics of various allocate-release operations. If the ana-
logical reasoning is performed directly on the initial seed
function pairs, the obtained function pairs may be highly
homogenous. As a result, the potential allocate-release pairs
with some degree of heterogeneity may be missed. To this end,
we designed a two-stage analogical reasoning method. As
shown in Figure 3, some strongly confirmed allocate-release
function pairs (called secondary seed pairs) are first inferred
from the initial seed function pairs, which are expected to cover
more allocate-release semantics.With the secondary seed pairs,
the analogical reasoning is performed one more time to dis-
cover unknown allocate-release functions as many as possible.

In NLP, there are many classic analogical reasoning
methods on word vectors, for example, 3CosAdd [2],
PairDirections [11], and 3CosMul [11]. *ese methods can
start from just one known word pair (A, B) and a word C to
infer a related word D as shown in the following equations:

3CosAdd(A, B, C) � argmax
D∈V

cos vD, vC − vA + vB( ,

(1)

3CosMul(A, B, C) � argmax
D∈V

cos vD, vC( cos vD, vB( 

cos vD, vA( 
,

(2)

PairDirection(A, B, C) � argmax
D∈V

cos vD − vC, vB − vA( .
(3)

In practice, we can often get more than one pair of seed
functions from large software projects, such as (kmalloc,
kfree) and (vmalloc, vfree) in Linux. To make the best of seed
function pairs and introduce more prior knowledge, we
leveraged the idea of 3CosAvg [12] to perform analogical
reasoning on multiple pairs of seed functions in the first
stage. *e word D is inferred as shown in equations (4) and
(5), where A and B are two known word sets, whose sizes are
n and m, respectively. As demonstrated in [12], 3CosAvg

significantly outperforms the above three classical analogical
reasoning methods.

3CosAvg(A, B, C) � arg max
D∈V

cos vD, vC + vavg_offset , (4)

vavg offset � 

n

i�1

Ai

n
− 

m

i�1

Bi

m
. (5)

In addition, the allocation function paired with an arbi-
trary unknown release function is also unavailable, that is, the
word C in the above equations. To perform analogical rea-
soning, we extract the frequent function pairs from the target
software project and calculate the similarity between the seed
pairs and them one by one. Specifically, for a frequent
function pair (c1, c2) and n pairs of known seed pairs (alloc_1,
free_1) . . . (alloc_n, free_n), the analogical similarity between
them is computed as shown in the following equations:

sim(avg _offset, C) � max cos vc1, vC2 + vavg offset ,

· cos vc2, vC1 + vavg offset ,

(6)

vavg offset � 
n

i�1

vfree i

n
− 

n

i�1

valloc i

n
. (7)

Because who is for allocating or releasing resources in c1
and c2 is still unknown, we perform cosine similarity cal-
culations twice and take the higher one as the analogical
similarity between (c1, c2) and the seed pairs. *e target
function in the calculation with higher output is also
identified as the resource release function. For instance, if
cos(vc1, vC2 + vavg offset) is higher, then c1 will be recognized
as a release function, and vice versa. In this stage, the
function pairs with the highest analogical similarity are
selected as the secondary seed pairs (top 10 in this study) for
the second stage of reasoning.

Although 3CosAvg has been proven to gain better
performance, using it in the second stage may conceal the
unique semantics of some secondary seed pairs. For this
reason, we employ the idea of 3CosAdd to measure the
analogical similarity in the second stage. Besides, we also
introduced an axiomatic property of analogy, the exchange of
means, to optimize the similarity calculation. Using the
property can discover the latent semantics [12] more ef-
fectively. Formally, in the second stage, the analogical
similarity is calculated as shown in equation (8), where
( alloc, free) is a secondary seed pair. We call this similarity
calculation 3CosAddExchange.

sim(( alloc, free), (c1, c2)) � max cos v alloc
, vfree

+ vc1 − vc2 ,

· cos v alloc
, vfree

+ vc1 − vc2 ,

· cos vfree
, v alloc

+ vc1 − vc2 ,

· cos vfree
, v alloc

+ vc2 − vc1 .

(8)

As can be seen from the equation, four 3CosAdd simi-
larities are computed with different exchange forms for a

4 Scientific Programming



frequent function pair (c1, c2) and a secondary seed pair. *e
maximum of them is outputted as the analogical similarity
between the two pairs, and the potential release-related
function is also accordingly identified from (c1, c2). For each
secondary seed pair, the candidate function pairs are selected
according to their similarity with the seed. In our experiment
on the Linux kernel, the top 200 are selected for each secondary
seed pair. However, there may be some pairs that are also
similar to the seed but are not in the top 200. To investigate the
false negatives caused by the ranking threshold, we also ran-
domly select five pairs with similarities greater than 0.9 from
below the top 200 and take them as the candidate function
pairs. *e candidate function pairs derived from different
secondary seed pairs are merged to remove duplicates. Finally,
the potentially reliable resource release functions are identified
from them by manual auditing. Note that the number of
functions being audited in depth is limited with the help of
analogical reasoning. We can take just a few hours to identify
the true release functions. Such human efforts are completely
acceptable for the analysis of large software projects.

2.5. Bug Detection. After identifying the resource release
functions, detecting related bugs is not a difficult task. In fact, a
variety of Clang checkers have been implemented to detect
various C/C++ program bugs. Among them,MallocChecker is
able to detect use-after-free and double-free bugs. *e iden-
tified release functions can be easily added to its detection rules.
In this way, we can leverage MallocChecker to check whether
there are potential resource release bugs in the target project,
which are caused by the functions identified by our method.

3. Evaluation

In this study, the Linux kernel is chosen as the target of
evaluation. Due to the wide use of Linux, the resource release
bugs in the Linux kernel may result in serious security risks.
*erefore, detecting kernel bugs is an essential and re-
warding task.

3.1. Experiment Setup. *e experiment is conducted on a
laptop with 16GBmemory, a 4-core i7-8565U 1.8GHz Core
processor, 1 TB hard disk, Ubuntu 20.04 operating system,

and Python 3.8. *e version of LLVM/Clang used for code
analysis and bug detection is 12.0.0.

*e target project for evaluation is Linux kernel 5.13.7,
which contains more than 20,000 source code files.We chose
two pairs of well-known allocate-release function pairs,
(kmalloc, kfree) and (vmalloc, vfree), as initial seeds. *e two
pairs can be easily found in the classic Linux kernel books,
for example, [13].

3.2. Parameter Setting. In the proposed method, the two
hyperparameters of the mining algorithm, that is, support
and confidence, can lead to different reasoning results. To
study the impact of different parameters on performance, we
carry out an empirical experiment.

We collect the corresponding result of the first stage
under nine different support and confidence settings. Spe-
cifically, we tune three different supports (3, 5, and 10) and
three different confidences (0.25, 0.5, and 0.75). From Ta-
ble 1, we can see that the precision of the first stage is perfect
when the support is set to 5. All the top 10 pairs in the output
are true allocate-release ones and can be directly used as the
secondary seed pairs. On this basis, we fix the support to 5
and audit the top 200 of the merged output of the second
stage under the three different confidence settings. *e
precision is 78%, 91%, and 74%, respectively, for the con-
fidences of 0.25, 0.5, and 0.75.

When the confidence is 0.25, the function pairs with low
confidence can be top-ranked if they show similar patterns
with the seeds in the slices and are identified as similar pairs
according to the embeddings. Many such pairs, however, are
mismatched or even not correlated to allocation-release
operations, making a low precision. On the other hand, when
the confidence is set to 0.75, many interesting function pairs,
which are semantically close to the seeds but do not show high
confidence in the corpus, are eliminated. Hence, dissimilar
function pairs are top-ranked, leading to a lower precision.

According to the above empirical experiment, we choose
5 and 0.5 as the support and confidence, respectively.

3.3. Efficiency. In this section, we will discuss the efficiency
based on the time cost recorded for each step of our method
for the Linux kernel.

…

Merging
Auditing

Initial 
Seed Pairs

Secondary Seed pairs

Potential 
Resource 
Release 

Functions

3CosAvg

…

Candidate Functions Pairs

3CosAddExchange

Figure 3: Two-stage analogical reasoning.
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In the experiment, it takes about 22 hours to preprocess
the Linux kernel using Clang equipped with our pass of
slicing and function extraction. We obtained 874,295 slices
in total, which involve 290,276 different functions. Detecting
the resource release bugs takes about 20 hours with the
configured MallocChecker. Note that the steps need to be
done only once. For a large software project such as Linux
kernel, such time cost is completely acceptable.

Compared with code preprocessing and bug detection,
the other steps are extremely fast. About three minutes are
needed to mine frequent function pairs using the FP-Growth
algorithm, and 107,692 pairs are generated. It is worth
mentioning that if we employ Apriori instead of FP-Growth,
mining will not end even after several days. Training the
FastText model takes about 6minutes, and the size of the
obtained model is about 2.4GB. *e two analogical rea-
soning stages require about 5 and 11minutes, respectively.

It can be seen that a normal desktop computer is
powerful enough for analyzing large-scale projects with our
method.

3.4. Result Analysis. From the results of the first analogical
reasoning stage using (kmalloc, kfree) and (vmalloc, vfree) as
the initial seeds, the top 10 pairs with the highest similarity
are selected as the secondary seeds as shown in Table 2. We
manually audit the new seeds and confirm that all of them
are true allocate-release function pairs. In other words, the
precision of the secondary seed identification is 100%.

In particular, the identified (mlxsw_sp_vr_get, mlxsw_
sp_vr_put) is not a trivial resource allocate-release pair. *e
two functions are involved in the resource reference count.
When mlxsw_sp_vr_put is invoked, only if the reference
count of the target resource indicates that there is not any
reference to it, a resource release operation will be triggered.
Improperly using this type of function can also introduce
subtle release-related bugs. Identifying this type of function
as a release function is reasonable. It also shows from one
side that we can use word embedding to learn the deep
semantics of functions. Identifying such nontypical resource
release functions can provide more detection rules and can
hit more potential bugs.

In the second stage of analogical reasoning, by using the
secondary seeds, 10 groups of candidate function pairs are
inferred with the 3CosAddExchange reasoning. From each
group, 205 pairs are selected as mentioned in Section 2.4.
After merging and duplicate removal, 405 distinct potential
allocate-release function pairs are obtained. Among them,
363 pairs (89.63%) are confirmed to be true positives by
manual auditing. It is an encouraging result to precisely
identify hundreds of potential objective function pairs only
with very limited prior knowledge (2 seed pairs).

WithMallocChecker and the identified release functions,
eight suspicious bugs are found in Linux kernel. We have
reported them to the Linux kernel developers. Up to now,
five of them have been confirmed as real; two are waiting to
be confirmed; and the remaining one is a false positive. *e
confirmed bugs are shown in Table 3. *e release functions
involved in the bugs rank in the top 200 except for rai-
d5_release_stripe, which is randomly selected from the
candidate pairs below the top 200. However, a confirmed
unknown bug has also been found with it. *is suggests that
if the selection threshold is appropriately relaxed, we may be
able to find more potential bugs.

Figure 4 shows a confirmed bug in dr_rule_hand-
le_ste_branch. In its implementation, functionmlx5dr_htbl_
put is called with a pointer cur_htbl as the argument. If the
current reference count of the object pointed by cur_htbl is
one, this object will be released by the system. However, after
mlx5dr_htbl_put returns, cur_htbl will be referenced by
mlx5dr_err again. It is a typical use-after-free bug whose
logic is very simple. In theory, it is easy to detect this kind of
bug with static code analysis. However, even for such a naive
bug, detecting it is also difficult when we do not know that
mlx5dr_htbl_put is a resource release function. *e bug
illustrates that it is important for static analysis to effectively
identify the bug-related functions.

3.5. Comparison Analysis. We compared our detection re-
sult with that of the original MallocChecker, which is re-
sponsible for release-related defect detection in Clang. *e
experiment on the Linux kernel shows that the original
MallocChecker cannot detect any bugs found by our method.
By analyzing the source code of MallocChecker, we were
surprised to find that there are only four release-related
functions in its check rule configuration, that is, free, kfree,
if_freenameindex, and g_free. Such a poor configuration
cannot effectively support bug detection in the real world.
*e comparison further demonstrates the importance of the
identification of defect-related functions.

*e state-of-the-art study on discovering similar func-
tions pairs for bug detection is SinkFinder [14]. SinkFinder
takes about 1 hour to mine frequent pairs, learn the vectors,
and reason about the similar pairs with the given seeds. Our
work, in contrast, consumes about 20 minutes for mining,
embedding, and analogical reasoning, by employing a faster
mining algorithm (i.e., FP-Growth) and adopting only one
embedding model (i.e., FastText). Preprocessing and bug
detection cost much time in our experiments, but they are
not an essential part of our approach and can be replaced
with the other tools. In summary, our approach achieves
comparable efficiency with the existing technique. Besides,
we have also compared with SinkFinder on the aspect of

Table 1: Result of the first stage under different hyperparameter settings.

Confidence� 0.25 (%) Confidence� 0.5 (%) Confidence� 0.75 (%)
Support� 3 100 80 90
Support� 5 100 100 100
Support� 10 90 80 40
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identifying unknown interesting function pairs. From the
Linux kernel, SinkFinder discovers 237 true allocate-release
pairs, achieving a precision of 87.13%. Our approach reaches
a comparable precision of 90.26%and more true output (389
confirmed pairs). It is demonstrated that only using special-
designed analogical algorithms can also effectively identify
the functions of interest without requiring to train a
classifier.

4. Discussion

4.1. Other Types of Sensitive Functions. *e proposed
method is not limited to supporting release-related bug
detection. For example, if we can find a function similar to
the C library function execve or system, it can be directly used
to detect the command injection vulnerability. Unfortu-
nately, unlike the resource release function, the execve-like
function often does not have a fixed pairing function.
Consequently, analogical reasoning cannot be directly lev-
eraged to infer unknown execve-like functions. Although
word vectors naturally support the “one-to-one” similarity

measure, we found that it is not as good as the “pair-to-pair”
analogical reasoning. In fact, finding the unknown release
functions via one-to-one similarity comparison will produce
many false positives. *e main reason is that analogical
reasoning employing vector pairs can introduce more se-
mantic information, which is essentially a kind of con-
strained search in the vector space. For example, it is difficult
to accurately infer queen by king alone. However, ifman and
woman are introduced as the constraint relationship, queen
can be identified easily. Designing an analogical reasoning
method for unpaired functions, such as execve, is one of our
future works.

4.2. False Positives. We borrow MallocChecker of Clang to
detect bugs. However, the checker does not support field-
sensitive analysis, resulting in a number of false positives.
How to perform the field-sensitive analysis is beyond the
scope of this study. We believe that the kind of false positives
can be effectively mitigated by improving the static checker.
In addition, a suspect we found in the Btrfs filesystem of the

Table 2: Identified secondary seed function pairs.

Rank Allocation function name Release function name 3CosAvg similarity
1 mlxsw_sp_kvdl_alloc mlxsw_sp_kvdl_free 0.96307445
2 mlx4_mr_alloc mlx4_mr_free 0.95947766
3 mlx5_db_alloc mlx5_db_free 0.9594188
4 mlxsw_sp_counter_alloc mlxsw_sp_counter_free 0.954844
5 mlx4_db_alloc mlx4_db_free 0.9546761
6 nfp_port_alloc nfp_port_free 0.95387816
7 mlx4_buf_alloc mlx4_buf_free 0.95332044
8 devlink_alloc devlink_free 0.95299953
9 mlx4_pd_alloc mlx4_pd_free 0.9513632
10 mlxsw_sp_vr_get mlxsw_sp_vr_put 0.9465025

Table 3: Confirmed release-related flaws.

Buggy function name Release function name Bug type
amdgpu_cs_wait_all_fences dma_fence_put Use after free
raid5_end_write_request raid5_release_stripe Use after free
dr_rule_handle_ste_branch mlx5dr_htbl_put Use after free
of_link_to_phandle of_node_put Double free
drm_gem_prime_import_dev dma_buf_put Double free

Figure 4: An example of detected bugs.
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Linux kernel is eventually proved to be a false positive by the
developer. *e resource seems to be released twice in the
related implementation. However, the developer informs us
that the reference counts of some objects in Btrfs are
guaranteed to be at least two. As a result, only when the
reference count is reduced at least twice, the object may be
released. *e subtle operation logic is greatly beyond the
capability of the normal static program analysis technique.
In the future, we plan to investigate whether the special
operation logic is widespread. If it is not an isolated case, we
will try to explore targeted detection methods.

4.3. False Negatives. In this study, the confidence threshold
is set to 0.5 for mining frequent function pairs. If some
paired allocate-release functions are not frequently called
simultaneously by a caller, it may cause false negatives. In
addition, in the second reasoning stage, we mainly selected
the top 200 similarity function pairs, and a considerable
number of pairs with high similarity (over 0.9) were dis-
carded. *is can also lead to false negatives. In practice,
when human resources can support larger-scale auditing,
the confidence and similarity criteria can be relaxed. In this
way, we can detect more resource release functions and
related bugs.

4.4. Dynamic Detection. In addition to static analysis, dy-
namic testing is also a common bug detection method.
However, many release-related bugs refer to subtle logic and
are difficult to be triggered, especially for the ones involving
reference counting. Relatively speaking, as long as the release
functions are available, we can find potential release bugs
more easily with static analysis.

4.5. Stableness of Reasoning. For the proposed method, there
is some indeterminacy in training the embedding model. In
other words, although the same training set is employed in
multiple training instances, the resulting models may be
slightly different.*emain reason behind this is the negative
samples for training are selected randomly. However, such a
little bit of indeterminacy does not make a big difference in
detection results. In fact, we find that the allocate-release pair
sets identified with these models are almost the same, that is,
only a few pairs are hit by one model but missed by another.
In practice, we canmerge the results from themodels trained
with different training instances to improve accuracy as far
as possible.

5. Related Work

*e representative work of embedding code as vectors is
Code2vec [15]. It converts the code snippet into a vector to
predict the semantic information of the snippet. Code2vec
improves the performance of the function name prediction
task by 75%. In Code2vec, a neural network is designed to
learn the representation of the paths on the code abstract
syntax tree (AST) and integrate them into the function
representation. Code2vec learns function semantics from the

function implementation, while our method focuses on the
function context. Considering the diversity of the resource
release operation, using the calling context to identify similar
functions is more suitable.*ere are some studies focusing on
code structure embedding, such as encoding the code-related
graph structure as a vector [16–18] for matching vulnerable
code. In addition to high-level language programs, executable
code can also be embedded for binary code search [19].

Some existing studies have been carried out to auto-
matically discover the functions of interest. Rasthofer et al.
proposed SuSi [20] to identify taint source/sink functions in
the Android framework based on machine learning. Using
hundreds of known functions labelled manually and dozens
of predefined features, they trained a support vectormachine
(SVM) classifier and successfully discovered a number of
unknown taint source/sink functions. However, SuSi re-
quires a considerable number of training samples and relies
on feature engineering to determine the classification fea-
tures. *is may lead to over- or underfitting. *e closest
study is SinkFinder [14]. It employs analogical reasoning to
get a training set and trains an SVM classifier to identify
unknown sensitive functions. However, our study shows
that we can directly identify unknown functions of interest
by using the nontraditional 3CosAvg and 3CosAddEx-
change algorithms and without requiring to train a classifier.
In practice, for some target projects, it is difficult to directly
infer sufficient samples to support model training.

6. Conclusion

*e resource release bug is a common and serious pro-
gramming defect. *eoretically, static analysis is an effective
way to detect the bug. Unfortunately, it cannot work well due
to the lack of knowledge about release functions. To address
the issue, we propose an unknown release function identifi-
cationmethod based onNLPword embedding. By embedding
the functions as vectors, we design a two-stage reasoning
method to automatically identify unknown resource release
functions with a fewwell-known seed functions.*e identified
functions are finally configured in static detection rules to
detect vulnerabilities in the target system. We apply our
method to the Linux kernel and successfully detected five
confirmed unknown bugs. *e proposed method is proven to
be effective and efficient for large-scale software projects.
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