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Computational thinking (CT) is an approach that applies the fundamental concepts of computer science to solve problems,
design systems, and understand human behavior, which can help students develop lifetime learning and generate new topics. It
has been the elements of competency expected of the next generation of talents. However, the current research on com-
putational thinking evaluation is still at a relatively weak stage. &e existing related evaluation research is still limited to
traditional curriculum evaluation methods. &erefore, the training effect of computational thinking cannot be well quantified,
and the characteristics of students cannot be further explored. In this work, we propose a three-way decision model for
improving computation thinking. We first developed a system of evaluation metrics, including five specific primary indicators
and several secondary indicators. Next, the weight of each indicator was determined by applying an expert similarity measure,
consequently getting the best metric sequence. We employ a grey correlation analysis to calculate the distance of each test result
from this optimal sequence. &en, we trisect the set of testers based on the distance to build three regions of high score
sequences, medium score sequences, and low score sequences inspired by the three-way decision. We can then exploit these
rules on target students in the relatively low regions to improve their computational thinking. An example analysis illustrates
the effectiveness and applicability of the method. &is article provides a solid theoretical basis for improving students’
computational thinking ability. Teaching administrators can conveniently formulate computational thinking teaching
strategies, and timely warning and intervention for students with poor computational thinking ability can effectively improve
students’ computational thinking ability.&e corresponding training measures are given to students of different ability levels to
achieve differentiated and personalized training.

1. Introduction

With the rapid development of artificial intelligence and
information technology, human thinking is experiencing
change, and computational thinking has become essential in
the information age. As a new method of the intelligent
information age, computational thinking is a kind of
thinking activity that can flexibly use computational tools
and strategies to solve problems. &e cultivation of com-
putational thinking can promote the comprehensive de-
velopment of people and benefit a lifetime.

Computational thinking has attracted widespread at-
tention in international primary education since it was
proposed in 2006 [1], and curriculum standards related to
computational thinking have been developed. &e U.S.

Computer Science Standards (CSTA) for grade K12, pub-
lished in 2011, has included computational thinking as a
critical element of the computer science curriculum. &e
British Ministry of Education issued the Computational
Learning Plans I–IV in 2013 to guide the development of
computational thinking skills for students in primary ed-
ucation in the UK. In 2015, the Australian Ministry of
Education released the Digital Technology Curriculum
Standards, emphasizing that people need computational
thinking literacy in a digital information society. China also
gradually pays attention to the development of computa-
tional thinking education. In 2010, the C9 University
Consortium emphasized that developing computational
thinking skills would be a significant, long-term, and
complex core task of primary computer teaching. In 2012,
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the Ministry of Education made the cultivation of compu-
tational thinking a priority. It pushed the reform of the
computer curriculum to improve the practical application of
computers and realize computer empowerment education.
In 2017, it included computational thinking in the General
High School Information Technology Curriculum Standards
as one of the four core elements of the subject.

&us, computational thinking education has gradually
become younger, and more teachers and parents are paying
more and more attention to cultivating computational thinking
skills from a young age. It has steadily practiced the cultivation
model of computational thinking and teaching strategies, but
how effective is the cultivation? Are students’ computational
thinking skills improved, and how are they being evaluated?
Without reliable assessment tools or methods, it is not easy to
make the best use of computational thinking when it is inte-
grated into educational curricula. Evaluation is crucial for de-
veloping computational thinking and is a prerequisite for
developing student’s computational thinking skills. Pedagogical
evaluation is a guide for developing computational thinking and
a guarantee of its sustainability.

Only by fully understanding the shortcomings in the
development of computational thinking, we can design a
scientific, reasonable, and perfect assessment system in a
targeted manner, thus well-developing student’s computa-
tional thinking skills. Computational thinking evaluation
research is still in its infancy. &ere is still a lack of pro-
fessional evaluation systems and evaluation methods that
can quantify the effect of developing computational think-
ing. Combining teaching practice with quantitative evalu-
ation of student’s computational thinking ability is the next
question researchers must consider. We can only facilitate
the research of the following cultivation strategies by fully
grasping student’s computational thinking ability. &ere-
fore, a scientific and reasonable teaching evaluation will have
a decisive influence on the cultivation of computational
thinking. By evaluating student’s computational thinking
skills, it is possible to grasp student’s abilities and thus give
different training strategies to students with unique char-
acteristics, thus meeting society’s demand for individualized
talents. &e evaluation results can explore the features of
students with varying levels of ability and then give corre-
sponding training to students with different levels of ability,
thus achieving differentiated and individualized training.
&erefore, a reasonable evaluation model and ability feature
mining research are significant for student’s personalized
computational thinking.

We organized the rest of this study as follows. In Section
2, we review the strategies for developing computational
thinking and measuring computational thinking. Section 3
proposes a computational thinking evaluation metric
framework. We employ the grey correlation between the
comparative sequence of the test taker and the optimal
reference sequence to construct three regions of high level,
medium level, and low level, according to two thresholds by
sorting them according to the correlation value. In Section 4,
we perform a three-way classification and determine the
final category. &en, the hidden association rule properties
behind the student evaluation results are mined based on the

Apriori algorithm. Section 5 gives a summary and planning
for future work.

2. Related Work

&is section will review computational thinking and its
related evaluation methods and then reviewmethods such as
grey correlation analysis and three-way decision.

2.1. Computational "inking Development Strategies.
Robotics and programming are crucial vehicles and avenues for
the development of computational thinking. Angeli and Val-
anides [2] studied the effect of educational robots on student’s
computational thinking of different genders.&e results showed
that boys benefited more from spatial orientation and ma-
nipulative activities, while girls benefited more from collabo-
rative writing activities.&is research contributes to the body of
knowledge about teaching computational thinking. &e results
can design lessons and classroom activities that focus on a
broader range of computational thinking skills. Chalmers [3]
studied how Australian elementary school teachers integrated
robotics and coding in their classrooms and its impact on
student’s computational thinking skills.&e results showed that
using robotic tools and activities for exploration can help
teachers build confidence and a body of knowledge. Relkin [4]
et al. studied changes in computational thinking skills in the
first- and second-grade students. &e results provide that
teaching young children to code can accelerate their compu-
tational thinking skills. Özmutlu [5] et al. studied the impact of
short-term, intensive coding and robotic training on the self-
efficacy of middle school students’ computational thinking
skills.

&ere would be many possibilities to explore the impact
of these experiences on elementary and students in the areas
of coding, robotics, mobile devices, Arduino-based appli-
cations, and game-based learning. Gadzikowski [6] designed
coding, robotics, and engineering course for young students
to learn knowledge, such as coding, robotics and engineering
concepts, and practice skills, such as creative problem-
solving, computational thinking, and critical thinking. Qu
and Fok [7] focused on student-robot interactions in robotic
education and attempted to cultivate student’s computa-
tional thinking skills. Chevalier et al. [8] discussed how
educational robotics fostered computational thinking skill
development and confirmed that robotic education is nec-
essary for specific teaching interventions.

Xiao and Yu [9] explored teaching computational
thinking in four stages one by one, from problem identi-
fication and decomposition, system abstraction and solution
design optimization, solution implementation, and problem
migration, with an engineering design perspective of
problem-solving. Vesikivi et al. [10] focused on teaching
computational thinking and the teaching methods and re-
search design under different types on the impact of the
development of computational thinking. Cui and Ng [11]
studied evidence-based directions towards enriching
mathematics education with computational thinking.
Grover et al. [12] tapped into the existing relationship
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between cognitive level and computational thinking through
student’s programming behaviors, thus showing the supe-
riority of programming instruction as a means of compu-
tational thinking development. Based on computational
review and app inventor characteristics, Ku [13] proposed
developing student’s computational thinking skills with the
teacher as the designer, organizer, guide, and app inventor
learning tool. &e method motivates students to actively use
computational thinking to analyze and solve problems
through teacher-student cooperation and student-student
cooperation as learning forms.

2.2. Computational "inking Evaluation Methods.
Existing computational thinking evaluation methods in-
clude programming task-based assessments [14, 15] and
scale assessments [16–19]. Automatic scoring systems based
on programming tasks automatically score the test taker’s
computational thinking skills by the learner’s programming
code situation. For example, an automatic scoring system
based on programming tasks automatically scores the test
taker’s computational thinking ability based on the learner’s
programming code. Another approach to programming-
based present assessment is the design of a computational
thinking assessment framework, which evaluates pro-
gramming items based on the computational thinking
concepts, practices, and perspectives involved in the pro-
gramming project.

&e scale assessment methods include the test-based
evaluation scale CT, which assesses computational thinking
through actual student project answers. &ere are also
evaluation scales based on the five factors of computational
thinking designed to evaluate student’s computational
thinking based on their behavioral data and an evaluation
scale based on self-efficacy, which evaluates the learners’
level of computational skills. Román-González et al. de-
veloped a multi-competency test-based evaluation scale,
CTt, to assess the computational thinking ability of the
subjects. Korkmaz et al. used the theoretical framework of
computational thinking proposed by ISTE as a basis to
design the computational thinking scale (CTS). In 2015,
Korkmaz et al. similarly designed and oriented the scale to
measure college student’s level of computational thinking
skills, which comprised 5 factors and 29 measures, and
validated the reliability and validity of the computational
thinking scale. It was later revised by Korkmaz et al., and the
scale was oriented to students at the K12 level. &e revised
CTS still contains the original five factors and 22 measures
with the same validity and reliability and focuses on mea-
suring different age groups. Kukul et al. developed the
computational thinking self-efficacy scale (TSES), through
which learners self-assess their level of computational
competence. Brennan et al. proposed a three-dimensional
evaluation framework and argued that assessment can be
carried out in terms of the concepts (e.g., sequence, loop, and
parallelism), practices (e.g., incremental and iterative, testing
and debugging, and reuse and recreation), and perspectives
(e.g., expression, communication, and questioning) of
computational thinking.

&e above assessment methods collect student data and
scores based on items or scales. &e subjective scoring of
learners for each task based on teachers’ experience is, first,
more subjective and, second, does not consider the evaluation
index levels and index weights. &e simple statistical method of
measuring the effect of computational thinking training cannot
tap into the deep relationships among students, which is not
conducive to proposing targeted training strategies. Analyzing
student’s data and exploring the hidden relationships between
student’s computational thinking levels are an urgent problem
to be solved. &e three-way classification has been extensively
investigated and applied in various situations.

2.3. "ree-Way Decision and "ree-Way Classification.
With the rapid development of massive data and artificial in-
telligence, decision-making has become increasingly prominent
[20, 21]. Instead of the traditional binary classification problem,
Yao first outlined a three-way decision theory [22], applied to
the classification problem by “thinking in three.” &e third
alternative of the boundary region is introduced, which is as-
sociated with deferred or indeterminacy decisions of the clas-
sification. &e three-way classification has been extensively
investigated and applied in various situations [23].

&e trisecting-acting-outcome (TAO)model of a three-way
decision encompasses three components: trisecting divides a
whole into three pairwise disjoint or weakly joint regionsP1, P2,
andP3.&e acting is to devise action strategies for three regions.
&e outcome evaluationmeasures the effect of the trisection and
action strategy [24–26]. &e TAO model has merged as a new
three-way decision model that promises to make the three-way
decision smarter.&emajor concern regarding the TAOmodel
is about the outcome that is the effectiveness of trisecting and
acting.

Using three-way classification in developing teaching
strategies is a significant experiment. &e framework for
measuring and improving the level of computational
thinking using three-way decision, especially the TAO
model in this study, is illustrated in Figure 1.

All students are assessed from a whole, as shown in “A
whole,” based on specific multilevel metrics, which may be
two levels. &us, we made three segments: high-level, me-
dium-level, and low-level regions. Students in the high-level
area have better marks on particular measures, while stu-
dents in the low-level area have worse impacts on specific
criteria. Analyzing these specific characteristics allows
teachers to design customized instructional strategies to
further develop student’s specific competencies to improve
their computational thinking. &ese instructional strategies
form the “strategies” node. We can obtain the benefits of
these two processes through the “outcome evaluation.”

3. Evaluation of Computational ThinkingUsing
Three-Way Decision

&is section first proposes a computational thinking evaluation
index system. It assigns weights to each index through expert
clustering, which fully reflects the contribution of different
experts to the index weight and avoids the disadvantages of
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being too single subjective. &en, through the weighted grey
correlation analysis method, the grey correlation degree be-
tween the comparison sequence of each testee and the optimal
reference sequence is thoroughly studied and analyzed. &e
degree of correlation is sorted according to the value of the
correlation degree. According to the set threshold, the students
can be initial classification. &e three regions of high level,
medium level, and low level were constructed according to two
thresholds by sorting them in order according to the correlation
value.

3.1. Computational "inking Evaluation Metric Framework.
Computational thinking has different components, according
to various scholars and research institutions. MIT’s NEET
program considers computational thinking to apply funda-
mental computational procedures, data structures, and algo-
rithms to other social systems, such as production and life.
Özgen considers computational thinking as a piece of
knowledge, skills, and attitudes that enables computers to solve
real-life problems. &e British School Computing Curriculum
Working Group [27] considers that the elements of compu-
tational thinking include logical, algorithmic, recursive, and
abstraction skills. Brennan and Resnick [28] think that com-
putational thinking comprises three major components:
computational concepts, computational practices, and com-
putational viewpoints, containing 16 areas of skills. Settle and
Perkovic proposed a conceptual framework of computational
thinking from the perspective of computer principles. ISTE
believes that computational thinking comprises five compo-
nents: creativity, algorithmic thinking, critical thinking,
problem-solving, and collaboration. Selby and Woollard [29]
argue that computational thinking comprises decomposition,

abstraction, generalization, algorithm, and evaluation. Kork-
maz et al. [17] argued that computational thinking includes
cognitive and application-based knowledge structures related
to computer science, e.g., problem representation and solving,
and abstraction. Many researchers have continuously explored
and refined computational thinking.

Since the concept was put forward from computa-
tional thinking, there has been a lot of research on the
interpretation of the connotation of computational
thinking and teaching. &ere has been a lot of research on
the interpretation of the connotation of computational
thinking, teaching methods, models, etc. However, there
are relatively few studies on the evaluation of compu-
tational thinking. &e existing evaluation methods of
computational thinking include table evaluation method,
work analysis evaluation method, interview evaluation
method, question evaluation method, and evaluation of
related computational thinking. However, most of these
evaluation methods focus on simple score evaluation, and
the evaluation indicators are not. Students’ computa-
tional thinking characteristics behind these achievements
are not deeply explored.&us, the weighted establishment
of evaluation indicators and the classification and mining
of student characteristics have become the focus of this
article. At the same time, the traditional student classi-
fication method classifies students as good or poor
according to their rank or total proportion. It does not
consider the relationship between multiple constituent
indicators and the hierarchical relationship. In particular,
for classifying middle school students, there is a problem
of inaccurate classification, and the problem of inaccurate
implementation of teaching strategies that follow brings
additional teaching costs.

Low

A whole

High

Medium

Strategies

Trisecting

Acting

Outcome evaluation

Figure 1: TAO model of trisecting-acting-outcome.
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We integrate the five significant elements to design a
computational thinking level evaluation metric based on the
principles, including scientificity, feasibility, comprehen-
siveness, and independence. It incorporates the evaluation
characteristics of programming education from the con-
notation and components of computational thinking and
takes programming as a fundamental approach to cultivate
computational thinking.

&is study’s evaluation metric framework of computa-
tional thinking contains five first-level indicators, including
problem decomposition, abstraction, pattern generalization,
algorithm, and evaluation. Moreover, on this basis, more
fine-grained two-dimensional metrics are established to
build a hierarchy of computational thinking evaluation
metrics, as shown in Figure 2.

3.1.1. Second-Level Evaluation Metrics. &e core of com-
putational thinking is the logical decomposition of signifi-
cant problems, thus breaking them down into smaller
modules that are easier to solve. &e indicator “decompo-
sition” (denoted as U1) includes two secondary measures:
the ability to analyze the material studied (denoted as u11)
and the ability to decompose the problem (denoted as u12).
&e former refers to understanding the material, organizing
and analyzing it logically, and clarifying the problem’s core.
&e latter refers to decomposing complex problems into
more minor problems, clarifying the relationships between
the smaller problems, and establishing a logical sequence of
the different parts.

“Abstraction” (denoted as U2) refers to extracting core
things or critical data from many transactions and ignoring
irrelevant details.&e final representation in a formal way is the
transformation of data or problems into a data structure or
formalmathematical model suitable for computer processing. It
comprises three secondary metrics: conceptual analysis
(denoted as u21), inductive extraction (denoted as u22), and
formal representation (denoted as u23). Conceptual analysis
refers to the ability to clarify the various concepts contained in a
transaction and to clarify each concept and the relationship
between concepts by means of comparison, judgment, and
reasoning; inductive extraction refers to the ability to extract the
common essential properties, methods, and rules of different
things and then to exclude the nonessential parts or irrelevant
details of the individuality of specific things. Formal repre-
sentation refers to the representation of a problem so that a
computer can solve it, thus forming an abstract representation
and a visual representation of the object.

“Pattern” (also called a generalization, denoted as U3) is
a general pattern for solving a class of problems. It is used to
summarize some specific problem-solving patterns by
continuously comparing abstraction and generalization of
problems and extending them to the solution of similar
problems. It includes three secondary metrics: model con-
struction (denoted as u31), structural specification (denoted
as u32), and stable operability (denoted as u33). &e model
construction shows the ability to summarize a pattern
through the current problem, clarify the type of pattern, and
be familiar with the things to be solved so that it can be

applied to the same type of things. &e structure specifi-
cation means that the structure of the pattern is hierarchical
and logical. &e elements represented by the pattern are
simple and can reflect the core and essence. Stable opera-
bility indicates that it can be appropriately applied to similar
problems by simple modifications and has high applicability.

“Algorithm” (denoted as U4) is a series of computer in-
structions for solving a problem, a collection of infinite rules.
Algorithmic thinking and computer systems can form a series of
automated solutions to problems. It consists of four secondary
indicators: data representation (denoted as u41), functional
refinement (denoted as u42), straightforward process (denoted
as u43), programming (denoted as u44), and debugging, re-
spectively. Data representation means that variables can be
extracted, their type can be determined, and the relationships
between the data can be analyzed. Finally, the appropriate data
structure was chosen according to the needs of the problem.
Function refinement means clarifying the program’s specific
functions, sorting out the logical relationships between func-
tions, and defining different functions. Clarifying the flow
means that a suitable structure can be built with flowcharts.
Programming and debugging mean choosing the proper
statements, translating the problem into a program, and
debugging the errors to build a well-readable program.

“Evaluation” (denoted as U5) is the process of using
practical steps and resources to arrive at the most appropriate
and suitable solution, procedure, or algorithm, by weighing the
pros and cons and finding an ideal solution that is most ap-
plicable. It consists of three secondary metrics, namely com-
pletion (denoted as u51), process optimization (denoted as u52),
and usability (denoted as u53). Completion indicates whether or
not the basic functionality can be accomplished as required and
allows the correctness of the solution to be assessed. Program
optimization refers to optimizing the program to make it
functionally richer. Usability means that the program has a
certain level of usability or better performance.

3.2. Establishing "ree Partitions Based on Weighted Grey
Correlation Analysis. Since the importance of metrics is
different, it is necessary to distinguish the role of each metric
in the overall evaluation, and determining the weight of
metrics is one of the core issues of evaluation. In this section,
the cosine similarity among experts completes the expert
clustering. &e intra-class weights and interclass weights of
experts are based on the information entropy and the ratio of
clustering numbers, respectively. Finally, the proportion of
each expert is calculated comprehensively. &en, the final
metric weights are obtained by combining the multiplicative
sum of the initial value of each expert-rated metric and the
proportion of each expert. &is method can reflect the in-
dividual expert weights and comprehensively consider each
expert’s contribution to the index weights.

3.2.1. Weighting Analysis Based on Expert Clustering.
Evaluation of computational thinking evaluates the com-
bined effect of multiple factors rather than a single evalu-
ation. On the basis of the evaluation metric framework for
computational thinking in Figure 2, we derived a final
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evaluation for each student and divided this evaluation into
three subdivisions, i.e., high-level area, medium-level area,
and low-level area. &e collection of the metrics includes the
following:

U1 � u1, u2 ,

U2 � u3, u4, u5 ,

U3 � u6, u7, u8 ,

U4 � u9, u10, u11, u12 ,

U5 � u13, u14, u15 .

(1)

Because each metric’s importance is different, to de-
termine the final evaluation outcome, we need to determine
the weights of each metric in the ultimate result. In this
study, we use the method of expert scoring. To avoid the
cumulative effect of experts with the same type or similar
background knowledge on the metric weights, we first
clustered the experts through the cosine similarity between
experts, and second, we calculated the different proportions
of each expert by calculating the intra-class weights and
interclass weights of the experts. &ey used the two
methods of information entropy and clustering number
proportion, respectively. Finally, the final metric weights
are obtained based on the multiply sum of the initial values
of the metrics given by each expert and the proportion of
each expert. &is method reflects the weight of individual
experts and considers each expert’s contribution to the
metric weights.

Assume there are n experts scoring the importance of m

metrics, and vij denotes the score of expert i scoring the
importance of metric j, which finally constitutes the im-
portance matrix V. According to the cosine similarity, we
calculate the similarity between experts as follows:

V �

v11 v12 . . . v1m

v21 v22 . . . v2m

⋮ ⋮ ⋮

vn1 vn1 . . . vnm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2)

sim �
A · B

|A||B|

�


m
i�1 Ai · Bi

���������


m
i�1 (Ai)

2


×

���������


m
i�1 (Bi)

2
 .

(3)

Assume ei is the information entropy of the metric
evaluation vector of expert i. &en,

ei � −
1

lnm


m

j�1
fij ln fij , i � 1, 2, . . . , n; j � 1, 2, . . . , m, (4)

where fij � Vij/
m
j�1 Vij is the weight of the importance of

the j th metric in the i th expert rating vector to the sum of
the evaluation of the m th metric.

Interclass expert weights: n experts are divided into l

classes, and there are uk experts in each class, and then, the
weight of each class is given by:

λk �
μ2k


l
k�1 μ

2
k

, k � 1, 2, . . . , l. (5)

Intra-class expert weight: the entropy weight of the j th
expert in the class is as follows:

φij �
e

−1
i


μi

i�1 e
−1
i

. (6)

Expert aggregate weights are defined by

τi � λkφij, i � 1, 2, . . . , n; j � 1, 2, . . . , m. (7)

Metric weights: after multiplying the weight vector of
experts with the standardized importance matrix, the sum of
columns of w(ij) is calculated; i.e., the terms of the same
subscript are added to obtain a 1∗m vector, which is the
metric weight vector and is given as follows:

ωij � τifij, i � 1, 2, . . . , n; j � 1, 2, . . . , m. (8)

σj � 
n

i�1
ωij, i � 1, 2, . . . , n; j � 1, 2, . . . , m. (9)

Based on the expert similarity matrix, finally, we com-
plete the clustering of experts. &e specific Algorithm 1 is as
follows.

3.2.2. Constructing a Tripartition. &e core idea of the grey
correlation analysis method is based on the similar program
pairing between the various sequences in the entire system.
&e degree of association between the sequences is analyzed.
&e model requires only a small amount of samples for data
analysis and has operational capabilities. It has the advan-
tages of a simple operation method, convenient operation,
and easy mining of data laws. &erefore, the grey correlation

Evaluation metric framework

Decomposition Abstract Pattern Algorithm Evaluation

...... ...u11 u1n u51 u5n

Figure 2: Evaluation metric framework.
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analysis model must perform simple operation analysis by
extracting a small amount of sample data in a system. &en,
the overall system can be analyzed. Development and change
trends provide a quantitative measure. It is essentially a
quantitative description of the dynamic development of the
object methods of analysis and comparison. &is method
calculates the comparison sequence and reference that can
reflect the behavior characteristics of the object. &e degree
of relevance between the sequences is used to sort and
analyze the objects and finally get the results of the pros and
cons of the objects.

&e main steps of the traditional grey relational analysis
model are as follows:

(1) Determining reference series and comparison series.
(2) Dimensionless processing of the sequence.
(3) Finding the grey correlation coefficient of reference

series and comparison series.
Suppose a reference series is denoted as X0, it has n

comparison series, denoted as X1, X2, ..., Xn, and
each comparison series Xi is associated with the
reference series X0 at various moments or under
different behavior characteristics. &e coefficient
V(X0(k), Xi(k)) can be calculated by the following
formula:

V X0(k), Xi(k)(  �
minimin0 X0(k) − Xi(k)


 + ξmaximax0 X0(k) − Xi(k)




Δi0(l) + ξmaximax0 Xil − X0l




, (10)

where minimin0|Xil − X0l| is the minimum differ-
ence in the second level, and maximax0|Xil − X0l| is
the maximum difference in the second level. &e
absolute difference is compared between each feature
point on the sequence Xi and each feature point on
the reference sequence X0, and it is recorded as
|X0(k) − Xi(k)|. In general, the resolution coefficient
ξ in the formula is generally 0.5.

(4) Finding the degree of grey relation c(X0, X1).
Each associated sequence and the selected reference
sequence are all sequences composed of different
moments or different characteristics. &e correlation
coefficient refers to the correlation degree value
between the comparison sequence and the reference
sequence at a particular time or feature. Usually,
there are multiple values. &ere is a correlation

Input: Initial scoring of metrics by experts V, n
Output: Weight of metrics W

(1) ∗ calculate expert similarity matrix ∗
(2) Sn×n←∅
(3) for i� 1 to n do
(4) for j� 2 to n do
(5) simij←

m
d�1 Vid · Vjd/

���������


m
i�1 (Vid)2



×
����������


m
i�1 (Vjd)2



(6) ∗ cluster similar experts ∗
(7) Gr←∅, Dr←∅ // Initialize the largest collection and class among experts.
(8) k � 0// Initialize the maximum number of similar classes among experts.
(9) if find Smax←S and Smax ≠ 0 then
(10) Gr←Smax corresponding two experts
(11) simAiBj←0
(12) Dr←Gr∪ Smax
(13) Repeat the above steps until S � ∅.
(14) C←∅ // Initialize the expert collection.
(15) for i� 1 to k-1 do
(16) for j� 2 to k do
(17) combine the collections containing the same experts in the pairwise clusters
(18) if unclustered experts then
(19) separate into a class
(20) λk←μ2k/

l
k�1 μ2k, k � 1, 2, . . . , l.// the weight of each class

(21) ei← − 1/lnm 
m
j�1 fij ln(fij), i � 1, 2, . . . , n; j � 1, 2, . . . , m.// the metric evaluation vector of expert i

(22) φij←e−1
i /

μi

i�1 e−1
i , j � 1, 2..., l.// the entropy weight of the j th expert in the class

(23) τi←λkφij, i � 1, 2, . . . , n; j � 1, 2, . . . , m.// expert aggregate weights
(24) fij←Vij/

m
j�1 Vij, i � 1, 2, . . . , n; j � 1, 2, . . . , m.

(25) ωij←τifij, i � 1, 2, . . . , n; j � 1, 2, . . . , m.

(26) σj←
n
i�1 ωij, i � 1, 2, . . . , n; j � 1, 2, . . . , m.// metric weights

ALGORITHM 1: Calculation of weights for expert clustering.
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coefficient under each time or each feature. Because
the information is too scattered, it is not conducive
to the overall comparison of objects. &erefore, it is
necessary to gather multiple correlation coefficients
into one value. &is value will be used as a quanti-
tative representation of the degree of correlation
between a comparison series and a reference series.
Generally, the average value of the correlation co-
efficients at each time or feature is obtained. It in-
dicates the degree of grey correlation, and the
calculation formula is as follows:

c X0, X1(  �
1
n



n

k�1
V X0(k), Xi(k)( , (11)

where the value range of c is [0, 1]. When the value
of c is closer to 1, the correlation between the two
sequences is better, and the similarity is higher. &e
closer to 0, the opposite is true.

(5) Relevance ranking
Comparing the degree of association between dif-
ferent sequences is mainly by calculating the grey
correlation value of n different comparison se-
quences to the same reference sequence and sorting
them from largest to smallest, forming an association
order, denoted as x{ }, association. &e sequence
reflects the pros and cons of each comparison se-
quence. If r0i > r0j, it is said that xi  is better than
xj  for the same reference sequence 0, which is
recorded as xi > xj ; r0i represents the charac-
teristic value of the i time comparison sequence to
the reference sequence 0.

&e study used the grey correlation analysis method to
perform a comparative analysis of student sequences. &e
authors [30] dealt with quantifying qualitative indicators
using an improved grey statistics-based approach. &ey
combined the approximating ideal solution method with the
grey correlation method to find out the weaknesses of
teaching training and improve the assessment of training
levels. &e contribution of the work in the literature [31]
solved the problem of weighting the evaluation indicators by
weighing the different importance among the evaluation
indicators through the correlation degree between the se-
quences.&e work [32] also used this method to evaluate the
weights of each evaluation index and, at the same time,
combined with the theory related to the cloud model to
complete the comprehensive evaluation of teaching quality.
&e literature [14] used the combination of grey correlation
analysis and hierarchical analysis method to determine the
weights of several factors.&e grey correlation degree among
each factor creatively established a hierarchical grey com-
bination evaluation model and then judged the grade of
internship teaching effect. &is section utilizes the grey
correlation analysis to construct the tripartition.

Assume there are n test samples, and the test result is
Xi
′ � (Xi1′ , Xi2′ , . . . , Xim

′ ), i � 1, 2, . . . , n, which represents
the scores of these n test samples on m metrics.

Normalization of Xi
′ yields Xi � (Xi1, Xi2, . . . , Xim),

where Xil is the ratio of the component Xil to the mean of Xi
′

in the sequence Xi. &at is,

Xil �
Xil
′

Xi

,

Xi
′ �

1
m



m

l�1
Xil.

(12)

&e optimal sequence is denoted as
X0′ � (X01′ , X02′ , . . . , X0m

′ ). In this study, the optimal value of
each metric, i.e., the maximum value, is selected as the value
of each component in the test data series and, after stan-
dardization, is noted as X0 � (X01, X02, . . . , X0m).

&e absolute value of the difference betweenXi andX0 at
the l th component is noted as |Xil − X0l|, and the minimum
value of the difference between the comparison sequence i

and the reference sequence 0 at m components is
min|Xil − X0l|, (l � 1, 2, . . . , m), and the maximum value is
max|Xil − X0l|, (l � 1, 2, . . . , m).

&e absolute value of the difference between the n

samples and the reference sequence is calculated separately,
and the minimum value of all the differences is
minimin0|Xil − X0l|, (l � 1, 2, . . . , m), abbreviated as Δmin,
and the maximum value of all the differences is
maximax0|Xil − X0l|, (l � 1, 2, . . . , m), abbreviated as
Δmax. &e formula to calculate the correlation coefficient
between the sample sequence Xi and the comparison se-
quence X0 is as follows:

εi0 �
Δmin + ρΔmax
Δi0(l) + ρΔmax

(l � 1, 2, . . . , m; i � 1, 2, . . . , n)ρ ∈ [0, 1].

(13)

From (11), it can be seen that the product of the dis-
criminant coefficient ρ and Δmax has a significant influence
on the final result of the whole equation. &e value of ρ
impacts the overall contribution of Δmax to the correlation
degree. In general, ρ is taken as 0.5.

Based on equations (4) to (9), the metric weights can be
calculated and denoted as σ(l), (l � 1, 2, . . . , m). &e
weighted grey correlation between the comparison sequence
i and the reference sequence 0 is denoted by ri0 and is
calculated as follows:

ri0 � 

m

l�1
εi0(l)σ(l). (14)

&e grey correlation values were between [0, 1]. Lager
value means that the students’ computational thinking skills
are more similar to the optimal reference sequence, i.e., more
excellent. To determine the percentage of students in each
category, we can define two variables, a and b, and sort the
students from largest to smallest based on the grey corre-
lation. &e top a% of students will be classified as excellent
category, the bottom b%will be the passing category, and the
rest will be medium.
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3.3. An Illustrative Example. In this section, an example is
given to verify the validity and reasonableness of the eval-
uation model. &e experimental data are obtained from an
online testing platform of a university. &e data consist of
two parts. &e first part is the importance ratings of com-
putational thinking indicators by six experts on a scale from
1 to 5, with higher values having the highest importance.&e
second part shows the test results of students in a school.
Each student’s test results for each metric were scored by
1–10. At the same time, a questionnaire was taken from the
students. Moreover, the students self-evaluated their per-
formance on each metric through self-awareness on a scale
of 1–10. &e final score matrix of the students was obtained

as the mean of the scores of the two parts, teacher evaluation
and self-evaluation.

First, the importance score matrix of the first-level
metrics was given by six experts as follows:

2 3 4 5 2

4 5 3 4 3

3 4 4 3 1

2 4 4 5 3

2 5 5 4 3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (15)

&e expert similarity matrix is calculated according to
Equation 3.

1. 0.92487961 0.93771549 0.95734135 0.98872959 0.96025331

0.92487961 1. 0.95397346 0.97989309 0.95229047 0.94837191

0.93771549 0.95397346 1. 0.95398325 0.93724670 0.96101729

0.95734135 0.97989309 0.95398325 1. 0.95714286 0.92786870

0.98872959 0.95229047 0.93724670 0.95714286 1. 0.98165819

0.96025331 0.94837191 0.96101729 0.92786870 0.98165819 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (16)

&e experts were clustered, and the clustering results
were [1, 5, 6] for the first class, [2, 4] for the second class,
and [3] for the third class. Next, the intra-class weights of
the experts were calculated as follows: first class:
0.34081814, 0.32816024, and 0.33102162; second class:
0.49323828 and 0.50676172; and third class: 1. &e weights
between classes are as follows: 0.64285714, 0.28571429, and
0.07142857; the weights of 6 experts are as follows:
0.21909738, 0.14092522, 0.07142857, 0.14478906,
0.21096015, and 0.21279961.

According to equations (8) and (9), each expert weight is
multiplied with the standardized metric importance vector,
and the metric values with the same subscript are summed
up. &e final weight of the primary metric is obtained as
[0.18465826, 0.23438986, 0.21356242, 0.2440862,
0.12330328].

Similarly, the secondary indicator weights can be cal-
culated, and then, the primary and secondary indicator
weights are combined to obtain the final secondary metric
weights. &e results are shown in Table 1. &e meanings of
some abbreviations in the table are as follows. FLM rep-
resents the first-level metrics, FLW represents the first-level
weight, SLM represents the second-level metric, the ISLW
represents the initial second-level weight, and FW represents
the final weights.

A student’s scores on each metric form a sequence that
contains m scores, and a sample of n students forms an n∗m

initial score matrix. Some of the student data are listed in
Table 2.

In this study, the top 30% of students were selected as the
excellent category, i.e., category A, the bottom 20% as the
average category, i.e., category C, and the rest as the medium

category, i.e., category B. &us, the initial category classifi-
cation of the evaluated subjects was completed. &e initial
classification of the three categories of students, that is, the
tripartition, is A� [10, 7, 24, 23, 20, 5, 6, 22, 18], B� [9, 19, 4,
25, 13, 8, 21, 12, 28, 11, 15, 3, 17, 14, 29], and C� [1, 26, 27,
16, 2, 0], respectively.

4. Association Rule Mining Based on Three-
Way Classification

&e evaluation system is gradually reformed, and the rating
system has been steadily promoted. Compared with the re-
fined scoring system, the rating is more conducive to pro-
moting the progress and development of the evaluation
objects. &e two-branch classification will cause a more
significant loss of misjudgment caused by the evaluation
object. Multibranch classification divides the evaluation ob-
jects into excellent, good, medium, average, poor, or more
fine-grained classification. &is classification method in-
creases a specific classification cost, and the teaching effect it
brings is also open to question. &e characteristics between
categories are weakened, which is not conducive to mining.
We are distinguishing features between categories. According
to the characteristics of students’ ability classification, this
study introduces the three decision-making theories into the
application of student ability classification, considering the
relevance of evaluation objects, classifies students into three
evaluation categories, and finally divides students into three
categories: good, medium, and general. &e correct classifi-
cation of students can effectively reduce teaching costs and, at
the same time, obtain more practical teaching effects.
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4.1. "ree-Way Classification Based on Computational
"inking. &e correlation between the metrics and the as-
sessment results in the high-level areas, or in the middle-
level areas, can be explored, which allows us to develop
specific courses for students in the low-level areas and thus
improve their computational thinking. &is section will give
the definition of three-way decision based on this example,
the definition of three-way rule mining, and the specific
example analysis process.

A three-way decisionmodel with an ordered relationship
is defined as follows.

Definition 1. Assume that O B is the set of students to be
tested. E: OB⟶ (L, < ) is an evaluation function on set
O B. For x ∈ O B, E(x) is an evaluation function value of x.
Given a pair of thresholds (α, β) ∈ V × V with β≤ α, we
divide O B into three pairwise disjoint regions:

P1 � x ∈ OB|e(x)≥ α{ },

P2 � x ∈ OB|β< e(x)< α ,

P3 � x ∈ OB|e(x)≤ β .

(17)

&e three regions satisfy the following two conditions:

(1) P1 ∪P2 ∪P3 � OB.

(2) P1 ∩P2 � Φ, P1 ∩P3 � Φ, P2 ∩P3 � Φ.

According to the evaluation function e(x), those objects
greater than or equal to the value of the function are divided
into a region P1. &ose objects less than or equal to the value
of the function are divided into a region P3, and objects in
between are divided into a region P2.

From the perspective of the TAO model, the division of
the three regions allows us to better focus on each region and
analyze each region’s characteristics. We can identify those

Table 1: Metric weight table.

FLM FLW SLM ISLW FW

U1 0.14935668 u1 0.45571734 0.0681
u2 0.54428266 0.0813

U2 0.23226924
u3 0.28472944 0.0661
u4 0.33603961 0.0781
u5 0.37923096 0.0881

U3 0.22308476
u6 0.33742035 0.0753
u7 0.37019938 0.0826
u8 0.29238028 0.0652

U4 0.25604126

u9 0.14758813 0.0378
u10 0.27935669 0.0715
u11 0.35463976 0.0908
u12 0.21841543 0.0559

U5 0.13924807
u13 0.31673079 0.0441
u14 0.3267404 0.0455
u15 0.35652881 0.0496

Table 2: Student test data.

u1 u2 u3 u4 u5 . . . u11 u12 u13 u14 u15

S1 7.75 8.00 7.75 6.25 7.00 . . . 6.75 5.50 6.25 8.25 4.25
S2 7.50 7.50 7.00 7.25 6.75 . . . 6.75 5.75 5.75 7.50 3.75
S3 8.75 7.50 7.25 6.25 7.00 . . . 7.25 6.25 5.75 8.50 5.25
S4 7.25 7.25 6.75 7.25 7.00 . . . 6.50 5.75 6.00 8.00 4.25
S5 7.75 7.50 6.75 7.25 7.25 . . . 7.25 6.00 6.75 8.00 4.75
S6 8.25 7.75 8.25 9.00 8.00 . . . 8.75 8.25 8.75 9.25 5.25
. . . . . .

S25 8.25 8.00 6.75 7.00 7.75 . . . 7.75 8.00 7.75 8.50 5.25
S26 7.75 7.75 7.00 8.25 6.00 . . . 7.50 7.25 8.00 8.25 6.00
S27 7.25 7.75 7.75 6.50 7.50 . . . 7.00 6.25 7.50 8.75 4.50
S28 6.50 7.50 7.25 6.25 6.50 . . . 6.00 5.50 5.50 6.75 4.00
S29 7.50 7.25 7.25 6.25 7.00 . . . 7.00 6.50 6.25 8.00 5.00
S30 8.25 8.50 7.50 6.50 7.75 . . . 7.00 7.50 7.25 9.00 5.25
&e weighted correlation between the sequence of n student samples and the optimal reference sequence is [0.5156, 0.5976, 0.5751, 0.6097, 0.6759, 0.7066,
0.6903, 0.7265, 0.6657, 0.6889, 0.7278, 0.6296, 0.6581, 0.6641, 0.6085, 0.6227, 0.5727, 0.6078, 0.6911, 0.6736, 0.7187, 0.6603, 0.6889, 0.7216, 0.7262, 0.6673,
0.5907, 0.5819, 0.6404, 0.6066].
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metrics that can be improved, moreover develop some target
strategies, and thus, we can improve the students’ compu-
tational thinking. &e direct outcome of the process is to
move the students from relatively low-level regions to
middle-level or high-level regions, that is, the movement-
based three-way decision model, which was proposed by
[22]. &e movement-based three-way decision introduced
actionable rules into the three-way decision, which means
that a user can mine actionable rules and then produce the
outcome of moving objects to generate benefits. &e model
aims to mine action strategy in three regions and move
objects from unfavorable regions to favorable regions.

Definition 2. A decision table is a tuple as follows:

S � OB, AT � As ∪Ah ∪Af ∪ d{ }, Va|a ∈ AT , Ia|a ∈ AT  ,

(18)

where OB is a nonempty finite set of objects, AT is a finite
nonempty set consisting of attributes composed by three
subsets, in which As is stable attributes, Ah is inert attributes
that do not change easily but do change, Af is flexible at-
tributes, d is a decision attribute, Va is a nonempty set of
values for every attribute a ∈ AT, and Ia: OB⟶ Va is a
mapping. For every x ∈ OB, attribute a ∈ AT, and value
v ∈ Va, Ia(x) � v means that the object x has the value v for
attribute a.

Definition 3. Assume that [x] and [y] are equivalence
classes in different regions. We can get two decision rules:

r[x]: ∧
s∈As

s � fs(x) ∧ ∧
f∈Af

f � ff(x) ∧ ∧
h∈Ah

f � fh(x) ⇒d � fd(x),

r[y]: ∧
s∈As

s � fs(y) ∧ ∧
f∈Af

f � ff(y) ∧ ∧
h∈Ah

f � fh(x) ⇒d � fd(y),

(19)

where r[·], ·∈ x, y , is decision rule, As is a set of stable
attributes, fs(·) is the value of attribute s, Af is a set of
flexible attributes, Ah is inert attributes, ff(·) is the value of
attribute f, and fd(·) is the value of decision attribute d.

Definition 4. Assume that [x] and [y] are equivalence classes
in different regions, where [x] is the equivalence class that is
located in relatively low-level regions, such as low-level region
and middle-level region, and the [y] is the target equivalence
class, which means that it is relatively high-level region. An
ideal strategy is to make the [x] equivalence class convertible
to or close to convertible to the [y] equivalence class; that is,

r[x]↑r[y]: ∧
f∈Af

ff(x)↑ff(y) ⇒fd(x)↑fd(y),

subject to ∧
s∈As

fs(x) � fs(y) ∧ ∧
h∈Ah

fh(x) � fh(y) ,

(20)

where r[x]↑r[y] is actionable rules from [x] to [y],
∧

s∈As

fs(x) � fs(y) means that [x] and [y] have the same

value of stable attributes, ∧
h∈Ah

fh(x) � fh(y) means that [x]

and [y] have the same value of inert attributes, and
∧

h∈Af

ff(x)↑ff(y) means that the value of flexible attributes
f is changed from ff(x) to ff(y).

&e reason for introducing inert attributes is to strip
away those attributes that do not change easily, even with
much training under the teacher’s strategic instruction, such
as the student’s IQ. &ese attributes may only change a little,
even after prolonged training.&ey may be genetic in origin.

Stripping these attributes may help teachers discover which
characteristics are susceptible to instructional strategies.

In the following work, we analyze the association rules
for the objects in the three regions. In particular, we use the
Apriori algorithm to analyze students’ computational
thinking test data. In doing so, we can discover some strong
association rule relationships among metrics and between
metrics and assessment results in a large number of students’
data. To reduce the cost of instructional strategy design, we
divided these rules into three regions based on their fre-
quency of occurrence: high-frequency rules, medium-fre-
quency rules, and low-frequency rules. In other words, each
area has three regions of rules. &en, teachers can choose
specific teaching strategies to teach according to specific
constraints, such as cost, so that students’ computational
thinking level can be improved and developed. &is process
is shown in Figure 3.

4.2. An Illustrative Example. By analyzing and mining the
association rules that exist for each category of students and
mining the association rules between indicators and test
results, we can analyze the characteristics of students with
different ability levels and can propose targeted improve-
ment strategies to discover the characteristics of more ca-
pable students, thus having some positive significance for
instructing weaker thinking students.

4.2.1. Test Data and Analysis. According to the test data, we
assume that all student ratings made a collection
I � i1, i2, i3, . . . , ik  and the collection I consists of k dif-
ferent items, consisting of all indicators taken and the final
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evaluation results. Each transaction T in the set
D � T1, T2, . . . , Tq  is a set of items in I. Ti is the set of
scores of student i on each indicator and the final evaluation
result.

&e continuous data scores are discretized based on the
student’s score on each metric, to represent the continuous
data scores, with 1–3 being a C, 4–6 being a B, and 7–10
being an A, resulting in all discrete grades, i.e., A, B, and
C. We refer to all test data for each student as a transaction.
Let us take the students of category I as an example and
perform student feature mining.

&e actual transaction data D are listed in Table 3. “TID”
represents the test questions, and “Test Items” represents the
grade on the five metrics and the final evaluation outcome.

&e dataset D is scanned and the candidate set C1 is
generated as shown in Table 4. &e item in C1 with support
less than the minimum support is removed, which in turn
generates L1. Correspondingly, support level is as follows:
“5B” is 0.889; “4A” is 0.889; “6A” is 0.778; “2B” is 0.778; and
“3B” is 1, respectively. &e set of items from the frequent
item set is aggregated into the candidate set C2. Items in C2
are removed with support less than the minimum support,
thus generating L2 as shown in Table 5. In a similar method,
we can obtain C3 and L3, and C4 and L4 as shown in
Tables 6–8, respectively. In this case, K� 5 is selected, and a
total of 4 item sets are generated, as shown in Table 9.

4.2.2. Rule Mining. &rough the analysis, we mined 63
strong association rules for the first category of students, that
is, category A students. For example,

(1) “4A”≥ “6A,” confidence: 0.75
(2) “3B,” “4A”≥ “6A,” confidence: 0.75
(3) “2B,” “3B,” “4A”≥ “5B,” confidence: 1.0
(4) . . .

&e association rule shows that when the algorithmic
ability is A, the level of computational thinking is A, and the
pattern level has little effect on the computational thinking
outcome. When the abstract level and pattern level are both
B, the computational thinking outcome is only B even if the

algorithmic test result is A.&erefore, when teachers instruct
students, they should not only focus on students’ algorithmic
ability, but also focus on abstract understanding and pattern
skill.

Similarly, we can analyze 16 strong association rules for
intermediate students and a total of 54 strong association
rules for average students. For example, the strong associ-
ation rules for middle-level students include the following:

(1) “2B”≥ “6B,” confidence: 0.769
(2) “5B”≥ “6B,” confidence: 0.769
(3) “2B,” “3B”≥ “5B,” confidence: 0.9
(4) . . .

&e correlation rule shows that when the abstraction
level is B, the corresponding computational thinking level is
also B; when the evaluation level is B, the computational
thinking level is also B, which indicates that both abstraction
ability and evaluation ability influence computational
thinking. In addition, the abstract level and pattern level
have a grade of B, and the evaluation result is also
B.&erefore, if we want to improve the evaluation ability, we
should also improve the abstract and pattern ability
accordingly.

For the average student, we found that:

(1) “2B,” “4B,” “3B”≥ “6C,” confidence: 0.799
(2) “3B”≥ “4B,” confidence: 1.0
(3) . . .

From the above rules, we find that when the levels of
abstraction, pattern, and algorithm are all rated as B, the
corresponding level of computational thinking is C. When
the pattern is B, the level of the algorithm is also B.&erefore,
there is a correlation between the level of pattern and the
level of algorithm. Moreover, the level of the algorithm
cannot be improved without the level of pattern, and the
level of computational thinking cannot be improved without
the level of abstraction, pattern, and algorithm.

By analyzing the association rules of students in different
level areas, teachers can change the level of some metrics.
&at is, specific teaching methods and strategies are adopted
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Figure 3: Rule mining based on movement-based three-way decision.
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Table 3: Rule mining based on a three-way decision.

TID Items
1 “1B,” “2B,” “3B,” “4B,” “5B,” “6A”
2 “1A,” “2B,” “3B,” “4A,” “5B,” “6A”
3 “1B,” “2B,” “3B,” “4A,” “5B,” “6A”
4 “1B,” “2B,” “3B,” “4A,” “5B,” “6A”
5 “1A,” “2A,” “3B,” “4A,” “5A,” “6A”
6 “1B,” “2B,” “3B,” “4A,” “5B,” “6A”
7 “1A,” “2A,” “3B,” “4A,” “5B,” “6A”
8 “1A,” “2B,” “3B,” “4A,” “5B,” “6B”
9 “1A,” “2B,” “3B,” “4A,” “5B,” “6B”

Table 4: Candidate set C1.

C1 Support level
1B 0.444
5B 0.889
1A 0.556
2B 0.778
5A 0.111
6B 0.222
6A 0.778
4B 0.111
2A 0.222
3B 1.0
4A 0.889

Table 5: Candidate set C2.

C2 Support level
“2B,” “6A” 0.556
“2B,” “3B” 0.778
“5B,” “2B” 0.778
“5B,” “3B” 0.889
“4A,” “5B” 0.778
“4A,” “6A” 0.667
“4A,” “3B” 0.889
“6A,” “3B” 0.778
“4A,” “2B” 0.667
“5B,” “6A” 0.667

Table 6: Frequent item set L2.

L2 Support level
“2B,” “3B” 0.778
“5B,” “2B” 0.778
“5B,” “3B” 0.889
“4A,” “5B” 0.778
“4A,” “6A” 0.667
“4A,” “3B” 0.889
“6A,” “3B” 0.778
“4A,” “2B” 0.667
“5B,” “6A” 0.667
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to change certain thinking skills, thus allowing students to
transform from a lower level of computational thinking to a
better level of computational thinking.

5. Conclusion

In this study, we explore research related to computational
thinking, including strategies for developing it and means to
measure it. We propose an evaluation model by combining
grey correlation analysis, association rule, and three-way
decision theory. &e first step is to develop computational
thinking evaluation indicators and then use a weighted grey
correlation analysis-based approach to evaluate student’s
computational thinking skills. &e weighted grey correlation
between the student samples and the optimal reference
sequence was considered, classifying tested students into
three levels. Based on the initial classification results, the
neighborhood of students was calculated based on the grey
correlation between the evaluation objects, and each cate-
gory of students was divided into positive, negative, and
boundary domains, respectively.

We envision the future work to include, first, enriching
and improving the evaluation indexes. Second, for the
feature mining part after student classification, this study
only applies the Apriori association rule mining algorithm.
How to improve the rule mining also needs further research.
Finally, the efficiency of this evaluation model and the
system’s performance also need to be improved. To analyze a
large amount of student data, the classification method and
the efficiency of feature mining need further research and
exploration.
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