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Feature pyramid network is widely used in advanced object detection. By simply changing the network connection, the per-
formance of small object detection can be greatly improved without increasing the amount of calculation of the original model.
However, the algorithm still has some shortcomings. �erefore, a new attention feature pyramid network (attention PFN) is
proposed. Firstly, an improved receptive �eld module is added, which can make full use of global and local context information.
Secondly, the connection mode of the pyramid is further optimized. Deconvolution is used to replace the nearest neighbor
interpolation in top-down up-sampling and a channel attention module is added to the horizontal connection to highlight
important context information. Finally, adaptive fusion and spatial feature balance are used for each feature pyramid, so that the
network can learn the weights of di�erent feature layers. Each pyramid layer contains more discrimination information. Attention
PFN is tested on Pascal VOC andMS COCO datasets, respectively. �e experiment results revealed that the proposed method has
better performance than the original algorithm. �erefore, the attention PFN is an e�ective algorithm.

1. Introduction

In recent years, object detection algorithms based on deep
learning have been widely used in various �elds, such as
face detection, vehicle-pedestrian detection, dangerous
goods detection [1], transmission line defect identi�cation
[2], and so on. �ese object detection algorithms can be
divided into two main categories. �e �rst type is a two-
stage algorithm based on a region proposal network, in-
cluding Faster R-CNN [3], R-FCN [4], and others. �e
other type is a regression-based one-stage algorithm, such
as YOLO [5], SSD [6], and others. However, no matter
which type of algorithm it is, it faces the di�cult problem of
poor detection for small targets. In order to solve the
problem of small target detection, the Feature Pyramid
Network (FPN) was proposed in literature [7], which has
been widely used in the two-stage detection algorithm
(such as Mask-RCNN [8]) and one-stage detection algo-
rithm (such as RetinaNet [9]).

Based on the structure of ConvNet, the FPN adopts a
top-down and horizontal connection method to transfer the
top layer semantic information to the low layer. However,

the top layer information will be lost. Features of di�erent
scales contain information from di�erent abstract levels, so
there are large semantic di�erences in direct addition, and
the formed pyramids at all layers are not further fused.
�erefore, various variants of the Feature Pyramid Network
have been proposed.

In literature [10], all information of a multilevel
structure was used to generate a multilevel contextual
features pyramid with multiple scales. In literature [11],
authors proposed a global information extractor and a local
information extractor as a framework for single-stage
object detection. Yang et al. [12] used a multilayer feature
map stacking method to fuse semantic information and
detailed features. PANet [13] added an additional bottom-
up path on the basis of FPN to transfer low layer location
information to high layer. Libra-RCNN [14] designed a
balanced feature pyramid; each layer of the pyramid has the
information of all layers. NAS-FPN [15] used neural
structure to �nd irregular characteristic network topology
and then repeatedly applied the same block, achieving
outstanding results. E�cientDet [16] used E�cientNet as
the feature extraction network to design the BiFPN, which
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has an efficient two-way cross-scale connection and
weighted feature fusion with a better precision and effi-
ciency trade-off.

*is paper proposes an improved feature pyramid
network based on the attention mechanism and receptive
field. *e improved receptive field module (ARFB) is added
to the top of the feature extraction layer to obtain global and
local context information. In the next place, we improved the
connection method of feature layers with different resolu-
tions. For the top-down up-sampling method, the decon-
volution method is used to replace the nearest neighbor-
interpolation for reducing information loss. In the hori-
zontal connection, a channel attention mechanism is added
to the feature layer of the backbone network before the 1× 1
convolution, which can reduce the secondary channel to
emphasize important channel information. Finally, the
spatial adaptive fusion and balance mechanism are adopted
for each layer of the pyramid. *e weights of the fused
features at all layers can be learned as well as information on
each layer of the feature pyramid is fully enhanced.

*e principal contributions of the paper are summarized
as follows:

(1) *e top of the feature extraction layer adopts the
ARFB module to obtain ample global and local
context information.

(2) Deconvolution is used for up-sampling to reduce the
loss of feature information. SEmodule is added at the
horizontal connection of the feature layer of the
backbone network to extract effective feature in-
formation and reduce the interference of noise
information.

(3) *e spatial adaptive fusion and balance mechanism
is applied to further refine the feature information of
each feature layer. It greatly improves the detection
ability of the network.

2. Fundamental Knowledge

FPN has two paths: the bottom-up path and the top-down
path. *e bottom-up path is the feed-forward calculation of
networks, such as ResNet [17]. *e output of each stage is
C1,C2,C3,C4, C5 , the width and height are halved in turn,
and the number of channels is {64, 256, 512, 1024, 2048}.

In the top-down path, the output C5 reduces the number
of channels to 256 by a 1 × 1 convolution, formingP5.
Subsequently, up-sampling is performed by the nearest
neighbor interpolation method, and C4 with the same
resolution is added to it after a 1× 1 convolution becomes
P4. Repeating the above operations, a top-down path
composed of {P5, P4, P3, and P2} is formed, and they all use
a further 3× 3 convolution to avoid the aliasing effect caused
by up-sampling. In addition, P5 performs max pooling
operation to obtain P6. When FPN is combined with Faster
R-CNN, a multiscale detection method is adopted. *e RPN
network searches for the prospect target proposed area in
{P2, P3, P4, P5, P6}, and according to the size of the ROI,

select the feature map in {P2, P3, P4, P5} to perform the Fast
R-CNN operation to obtain the specific target category and
more precise location.

However, the FPN has several drawbacks: (1) C5 is lo-
cated at the top layer. With the deepening of neural net-
works, the feature extracted by deep convolution has low
spatial resolution and position information that can be easily
recognized. P5 is formed by channel compression, and then
P5 is pooled to form P6, which will cause further loss of
characteristic information. (2) *e features of different
layers contain complex feature information. In the hori-
zontal connection, the direct addition of features at different
layers will contain a lot of background noises. It will result in
great semantic ambiguity. (3) *e formed pyramids at all
layers are not further fused effectively.

A novel neural network is proposed in this section called
attention FPN, the structure of which is shown in Figure 1.
*ere are three main improvements in the proposed
method: (1) An improved receptive field module is added
between C5 and P5 to obtain more context information and
supplement P5 and P6. (2) *e channel attention mecha-
nism is added to the horizontal connection to enhance the
effective position information in the feature map in the path
and suppress irrelevant background information. At the
same time, we also optimize the up-sampling method. (3)
*e pyramids at all layers have added the adaptive spatial
fusion and balance mechanism. *e weight of each layer is
learned by spatial attention, and the information of all layers
of the pyramid makes a more reasonable balance and
enhancement.

2.1. Improved Receptive Field Enhancement Module.
Dilated convolution comes from DeepLab [18], which can
increase the receptive field without reducing the scale of the
feature map and perform well in semantic segmentation.
Literature [19] designed a receptive field block RFB in the
SSD network, and this structure adopted the multibranch
idea of Inception-ResNet [20]. *ere are different convo-
lution kernels and expansion coefficients on different
branches, corresponding to various sizes of targets and
receptive fields; their combinations can make full use of
context information. As shown in Figure 2, the RFB module
can only obtain local context information, so the global
context information module GCM is introduced into it as a
branch so that global context information and local context
information can be well fused; the improved module is
named ARFB (augment receptive field block). *e specific
structure of GCM is shown in Figure 3. First of all, the
feature map is globally averaged and pooled to obtain the
global feature vector. *en, up-sampling is performed to
restore the original size and reduce the number of channels
to splice with other branches. In order to prevent infor-
mation loss, we added residual connections in the input and
output feature maps . C5 is connected to P5 through the
ARFB module, which can give P5 and P6 rich context in-
formation to overcome the deficiency of FPN in large target
recognition.

2 Scientific Programming



2.2. Improved Top-Down Path and Horizontal Connection.
As shown in Figure 4, for the top-down path, the original
interpolation method lacks flexibility and learning ability,
resulting in poor performance.*erefore, the deconvolution
method is used to replace nearest neighbor interpolation for
improving resolution. Moreover, the deconvolution can
adjust the training hyperparameter, which can better express
the relationship between different layers of features.

In the horizontal connection, the spatial attention SE
[21](Squeeze-and-Excitation Networks) module is intro-
duced, which is shown in Figure 5. On the bottom-up path,

the SE module is added to enhance the important infor-
mation in the channel, reducing each feature layer channel
to 256. *e SE module mainly contains two parts, the input
feature map is U � [u1, u2, . . . , uc], and each channel is
uc ∈ RH×W. First of all, the global average pooling is used to
obtain the global vector Z, and the calculation formula is
shown as follows:

Zc �
1

(H × W)


H

i



W

j

uc(i, j). (1)

*en, Z is encoded by using the fully connected network
to obtain the dependency between each channel and com-
plete the space compression. *e calculation formula is as
follows:

Zδ W1 W0(Z)( ( , (2)

where W0 ∈ Rc×c/2,W1 ∈ Rc/2×c, δ is the ReLU activation
function, Zc is obtained through the sigmoid activation
function, and the value range is adjusted to [0, 1], which is
multiplied by the input feature map to obtain the feature
after channel excitation:

USE � σ Z1 u1, σ Z2 u2, . . . , σ Zk uk , (3)

σ( Zc) can be regarded as the importance of each channel.
When the network is learning, this module is adaptively
tuned well to enhance important channels and suppress
irrelevant channels. *is module can merge with the feature
layer of the top-down path well. Due to the small amount of
calculation of the channel attention module, the increased
time cost is negligible.

2.3. Adaptive Spatial Feature Fusion and BalanceMechanism.
Different feature pyramids have different contributions to
various target recognition. Inspired by AugFPN [22] and
Libra R-CNN, we propose a spatial adaptive fusion and
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balance mechanism. *e mechanism is shown in Figure 6.
First, {P2, P3, P4, P5, P6} is integrated into the same scale by
adopting up-sampling and down-sampling. *ey were
merged into a branch through concatenation operation
subsequently. *e other branch remains unchanged. *e
combined features reduce the number of channels by 1× 1
convolution. It is performed by 3× 3 convolutions for fea-
ture extraction. *en, sigmoid is used to obtain the weight
on each channel. *e channels perform split operations. *e
weight of each feature layer is multiplied by the corre-
sponding feature layer to extract effective features. Finally,
obtained feature layer performs concatenation operation
and reduces the dimension through 1× 1 convolution. *e
subsequent steps are the same as Libra R-CNN. *e fused
features are, respectively, scaled to the original size, and the
corresponding original features are added to avoid the loss of
some detailed information. *e enhanced feature pyramid
{P2′, P3′, P4′, P5′, P6’} is formed. *e location information
and semantic information of each feature layer have been
fully enhanced. It is conducive to the detection of multisize
targets.

3. Experimental Results and Analysis

*e environment configuration of these experiments is
presented as follows: CPU model is Intel Sliver 4210; GPU
model is NVIDIA GTX 2080Ti and a total of 4 blocks. *e
operating system is Ubuntu16.04; the acceleration library is
CUDA 10.0 and cuDNN 7.6.5. Based on the deep learning
framework of PyTorch 1.4 and the implementation network
of python 3.7, experimenting them is carried out separately
on the PASCAL VOC dataset and MS COCO dataset.

3.1. PASCAL VOC Experiment Results. *e PASCAL VOC
datasets have a total of 20 categories of targets. We use the
training validation sets including 16551 pictures of PASCAL
VOC 2007 and PASCAL VOC 2012 for training and the
testing set of PASCAL VOC 2007 including 4952 pictures.
Stochastic gradient descent (SGD) is used for training,
momentum is set to 0.9, the input image is re-sized to
1000× 600, the batch size is set to 16, the weight attenuation
coefficient is set to 0.0005, the initial learning rate is set to
0.02, and the maximum number of iterations epoch is 5. At
epoch 3, the learning rate is multiplied by 0.1.

*e results of our algorithm on the VOC2007 testing set
are shown in Table 1 (with ∗ indicating the reimplemented
version of PyTorch). We use Faster R-CNN+ FPN as the
baseline. It can be seen from the result that when ResNet-50
and ResNet-101 are used as feature extraction networks,
respectively, we use attention FPN (abbreviated as AFPN in
the table) to replace FPN, which not only increases mAP by
2.8% and 1.9%, respectively, but also has a small speed loss.
*e accuracy of ResNet-50 exceeds that of most algorithms
in the table, while the recognition accuracy of ResNet-100 is
the highest among all algorithms. Table 2 shows the specific
results of 20 categories. Our model obtains the best ac-
curacy in multiple categories. Compared with FPN, at-
tention-FPN has an obvious improvement effect on small
targets (such as monitors, water cups, bottles, cows, sheep,
and so on).

In order to further study the influence of the added
module on the detection effect of the algorithm, we do an
ablation experiment. As shown in Table 3, all experiments
were carried out on FPN (ResNet-50). *e mAP of the
original FPN could achieve 79.4%. *e RFB module was
embedded in the benchmark network for training and
testing.*emAP of 80.7%was obtained.*e RFB is replaced
by the proposed ARFB. *e map can reach 80.9%. It proves
that ARFB further expands the receptive field and improves
detection abilities. *e SE module is added to the network
based on the embedded RFB. *e mAP is improved by 0.6%
compared to the embedded RFB only. *e SE module can
extract effective features and reduce the impact of back-
ground information. Next, the spatial adaptive fusion and
balance mechanism continue to be added to the network.
*e mAP can reach 81.8%. *e experimental results dem-
onstrate that the spatial adaptive fusion and balance
mechanism can significantly intensify the connection be-
tween different feature layers and enhance the detection
ability. *en, the deconvolution operation is used to replace
the nearest neighbor for up-sampling. *e improvement
effect is not obvious. *e possible reason for this phe-
nomenon is that deconvolution will blur the feature of the
input. It leads to the gain brought by deconvolution being
limited. Lastly, the enhanced receptive field module ARFB is
used to replace RFB.*emAP is further increased by 0.3% to
82.2%, which also proves the effectiveness of global context
information.

Global Average
Pooling C×1×1

C×H×W C×H×W

C×1×1C/2×1×1

Conv1×1
Conv1×1
Sigmoid

× +

Figure 5: Squeeze-and-Excitation Networks.
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Figure 7 shows the qualitative results of the comparative
experiment. *e left side of each picture is the detection
result of FPN (ResNet50), and the right side is the detection
result of attention FPN (ResNet50). It can be seen that the
improved network has fewer redundant frames in terms of
large targets because the expanded receptive field makes the
ARFB module supplement effective global information for
P5 and P6, so the detection of large targets is more accurate.
In terms of small targets, ours has a higher recall rate, thanks
to the fact that the attention mechanism filters out irrelevant
information, giving the feature fusion mechanism more
detailed information and semantic information at the
bottom.

In order to directly reflect the advantages of the proposed
method, the visualization results of some feature layers are
displayed in Figure 8. *e a is the original picture. *e b is
the visualization result of the C5 layer of FPN. *e c is the
visualization result of the C5 layer of FPN which introduces
the RFB module. *e d shows the visualization result of the

C5 layer which introduces the SE module and RFB module.
*e e is the visualization result of the P5 layer after spatial
adaptive fusion and balance mechanism. *e f is the visu-
alization result of our proposed methods. We can observe
that the proposed methods can lead the networks to pay
more attention to object features while ignoring the influ-
ence of background noise.

3.2. MS COCO Experiment Results. MS COCO 2017 dataset
is the authoritative dataset currently used to evaluate the
performance of target detection algorithms.*e data include
a total of 80 target objects, of which the training set contains
118287 pictures, the verification set contains 5000 pictures,
and the testing set contains 20288 pictures. In COCO, there
are more small objects than large objects, of which about
41% are small objects (area <322), 34% are medium objects
(322< area <962), and 24% are large objects (area >962).*e
measured area is the number of pixels in the segmentation

Table 1: PASCAL VOC 2007 test detection results.

Two-stage One-stage
Method Backbone mAP (%) FPS Method Backbone mAP (%) FPS
Faster R-CNN VGG-16 73.2 7 FA-SSD [24] ResNet50 78.1 30
Faster R-CNN ResNet-101 76.4 2.4 EFIPNet512 [25] VGG-16 81.8 28
ION VGG-16 76.5 1.25 SSD512 VGG-16 79.5 19
MR-CNN VGG-16 78.2 0.03 DSSD321 ResNet-101 78.6 9.5
Faster R-CNN∗ ResNet-50-FPN 79.4 19.1 DSSD512 ResNet-101 81.5 5.5
Faster R-CNN∗ ResNet-101-FPN 81.6 16.0 DFPR512 [26] VGG-16 81.1 34
R-FCN ResNet-101 80.5 9 RefineDet320 [27] VGG-16 80.0 40.3
CoupleNet[23] ResNet-101 82.7 8.2 RefineDet512 VGG-16 81.8 24.1
Ours ResNet-50-AFPN 82.2 16.8 RFB Net 300 VGG-16 80.5 83
Ours ResNet-101-AFPN 83.5 14.1 RFB Net 512 VGG-16 82.2 38

Fusion Feature
C×H×W
1×1 Conv

3×3 Conv,
Sigmoid

1×1 Conv

5C×H×W

5×(1×H×W)

5/4C×H×W

5×H×W

5C×H×W

P2 C×H×W P3 C×H×W P4 C×H×W P5 C×H×W P6 C×H×W

split

Concat

Concat

Multiply Separately

Figure 6: Spatial adaptive feature fusion mechanism.
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mask. *e corresponding evaluation indicators are divided
into APS, APM, and APL. AP0.5 and AP0.75, respectively,
represent the average detection accuracy of all categories
when the intersection ratio IoU is 0.5 and 0.75. AP repre-
sents all 10 IoU thresholds (0.5 to 0.95) and the average of all
80 categories, and it is considered the most important in-
dicator. We train the model on the COCO 2017 training,
testing the experimental results on val2017 and test2017-dev,
respectively.

*e stochastic gradient descent (SGD) method is used
for training, the momentum of which is set to 0.9, the weight
attenuation coefficient is set to 0.0005, the input image is
resized to 1333× 800, each GPU is assigned two images, and
the batch size is set to 8. *e maximum number of iterations
epoch is 12, and the initial learning rate is set to 0.01, which is
multiplied by 0.1 when the epoch is 8 and 11.

As shown in Table 4, on val2017, we choose three
backbones: ResNet-50, ResNet-101, and the more powerful
ResNeXt-101 [28](32 × 4d), which are compared with the
baseline. As we all know the same backbone, Faster R-CNN
combined with FPN only has advantages in small target
recognition compared to the original Faster R-CNN. *e
detection ability of medium and large targets will be re-
duced a lot. However, the detection accuracy of attention
FPN on objects of different sizes is all improved. As seen
from Table 5, on test2017-dev, the test results of the
proposed algorithm are also better than the baseline. *e
AP values of attention FPN of the three feature extraction
networks increased by 1.5%, 0.7%, and 0.2% respectively,
reaching 37.7%, 39.5%, and 40.6%. It is superior to algo-
rithms such as Mask R-CNN and CoupleNet which also use
ResNet-101.

Table 3: Effects on mAP using different modules.

RFB ARFB SE Deconv Fusion mAP
FPN (ResNet-50) 79.4

√ 80.7
√ 80.9

√ √ 81.3
√ √ √ 81.8
√ √ √ √ 81.9

Ours √ √ √ √ 82.2

Figure 7: Test result comparison on PASCAL VOC 2007 datasets.
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Table 4: COCO val 2017 detection results.

Backbone AP AP0.5 AP0.75 APS APM APL
Faster R-CNN∗ ResNet-50 36.6 58.5 39.2 20.7 40.5 47.9
Faster R-CNN∗ ResNet-101 38.8 60.5 42.3 23.3 43.1 50.3
Faster R-CNN∗ ResNet-50-FPN 36.4 58.4 39.1 21.5 40.0 46.6
Faster R-CNN∗ ResNet-101-FPN 38.5 60.3 41.6 22.3 43.0 49.8
Faster R-CNN∗ ResNeXt-101(32× 4d)-FPN 40.1 62.0 43.8 23.4 44.6 51.7
Ours ResNet-50-AFPN 37.5 59.9 40.5 22.3 41.5 48.1
Ours ResNet-101-AFPN 39.4 61.6 42.8 23.4 43.7 50.9
Ours ResNeXt-101(32 × 4d)-AFPN 40.3 63.4 43.7 24.1 44.8 52.6

Original picture
(a) (b) (c) (d) (e) (f)

FPN FPN+RFB FPN+RFB+SE FPN+RFB+SE+Fusion our

Figure 8: *e visualization results in different feature layers. (a) Original picture. (b) FPN. (c) FPN+RFB. (d) FPN+RFB+ SE.
(e) FPN+RFB+ SE+ Fusion four.

Table 5: COCO test 2017-dev detection results.

Backbone AP AP0.5 AP0.75 APS APM AP L

Faster R-CNN ResNet-101 34.9 55.7 37.4 15.6 38.7 50.9
Faster R-CNN ResNet-101-FPN 36.2 59.1 39.0 18.2 39.0 48.2
Faster R-CNN∗ ResNet-50-FPN 36.2 58.5 38.9 21.0 38.9 45.3
Faster R-CNN∗ ResNet-101-FPN 38.8 60.9 42.1 22.6 42.4 48.5
Faster R-CNN∗ ResNeXt-101(32× 4d)-FPN 40.4 62.2 43.6 24.0 43.8 50.3
Mask R-CNN ResNet-101-FPN 29.9 60.3 41.7 20.1 41.1 50.2
R-FCN ResNet-101 33.1 51.9 — 10.8 32.8 45.0
CoupleNet ResNet-101 37.7 53.5 35.4 11.6 36.3 50.1
YOLO v2 Darknet-19 21.6 44.0 19.0 5.2 22.4 35.5
YOLO v3 Darknet-53 33.0 57.9 34.4 18.3 35.4 41.9
SSD512 VGG-16 31.2 50.4 33.3 10.2 34.5 49.8
DSSD513 ResNet-101 33.2 53.3 35.2 13.0 35.4 51.1
RetinaNet ResNet-101-FPN 39.1 59.1 42.3 21.8 42.7 50.2
RFB Net512 VGG-16 33.8 54.2 35.9 16.2 37.1 47.4
M2Det [29] VGG-16 33.5 53.4 35.6 14.4 37.6 47.6
IBi-FPN [11] VGG-16 32 50.9 33.7 12 37 47.1
M2Det [29] ResNet-101 38.8 59.4 41.7 20.5 43.9 53.4
NETNet [30] ResNet-101 38.5 58.6 41.3 19.0 42.3 53.9
MREFP-Net [10] ResNet-101 39.3 60.1 43.1 20.6 43.9 52.0
MREFP-Net [10] VGG-16 38.5 59.1 41.1 18.6 42.9 49.4
Ours ResNet-50-AFPN 39.5 60.3 40.5 22.2 40.8 46.5
Ours ResNet-101-AFPN 40.6 62.1 42.9 23.1 43.0 49.5
Ours ResNeXt-101(32 × 4d)-AFPN 41.8 64.1 44.1 24.1 44.2 51.4
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4. Conclusion

*is paper proposes a target detection algorithm based on
the improved feature pyramid network, called attention FPN.
In the attention FPN, the improved receptive field module is
used to obtain the global and local context information; the
channel attention module is added to the transverse con-
nection to enhance the characteristics that contribute greatly
to the key information.We also used deconvolution instead of
nearest neighbor interpolation to reduce information loss in
the up-down up-sampling method. Finally, the spatial at-
tention style is used to weigh the integration of the various
characteristic layers. *e mAP of our improved algorithm on
the PASCAL VOC 2007 test set reached 83.5% and the AP on
COCO test 2017-dev reached 40.6%; the results show that our
algorithm is better than the original algorithm and some
mainstream algorithms with a considerable speed.

Nevertheless, there are certain limitations in our proposed
algorithm. Compared to the original algorithm, the number of
parameters of our proposed algorithm has increased by 10%. In
addition, a small amount of background noise still exists, which
affects the detection efficiency. In the future, we will reduce the
number of parameters of the network and study a more ef-
fective mechanism to identify target features. Furthermore, we
will combine the proposed algorithmwith practical application.
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