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With the current exchange and communication between di�erent countries becoming more and more frequent, the language
conversion of di�erent countries has become a di�cult problem. �e analysis of a series of problems in cross-language discourse
conversion, the study of the discourse conversion path, and innovation motivation based on the deep learning theory of cross-
language transfer, it has theoretical and practical signi�cance. �is paper aims at the technical di�culties in speech conversion
methods to e�ectively utilize the local mode information of signal time spectrum and the long-term correlation of speech signal. A
discourse conversion method based on convolutional recurrent neural network model is proposed. In the model, the extended
convolutional neural network is used to model the long-term correlation of speech signals. In the part of speech fundamental
frequency estimation, the prosodic information generated by the decomposition of the fundamental frequency by continuous
wavelet transform is used as the training target of the fundamental frequency estimation model. �e experimental results show
that the speech transformation method based on the convolutional cyclic network model proposed in this paper has better quality
and intelligibility than the speech transformed by the contrast method.

1. Introduction

In the face of the diversity of social values and cultural
diversity, coupled with the development of new media
technology, traditional ideological and political education
discourse is facing inevitable challenges. In the process of
dealing with challenges, its disadvantages and problems are
constantly exposed. For example, most of the discourse
content is still con�ned to the propaganda of documentary
language and policy discourse, which lacks e�ective con-
nection with the daily life of the audience [1]. In the form of
discourse, one-way indoctrination is more than two-way
interaction; there are more grand narratives and less elab-
orate descriptions; more empirical life language, less rig-
orous academic discourse; and there are more referential
words but less original ones extracted from practice. �ere
are more empty and stale words than up-to-date ones; there
are many words of conformity, but few words of inde-
pendent thinking [2]; and the lack of ideological discourse
power in the �eld of network. In this discourse �eld,

therefore, how to use by educators to understand, trust, and
open discourse established the ideological and political
education position, the spread of the ideological and political
education content, �rmly grasp the ideological and political
education, in turn, say, raise new era the pertinence, ef-
fectiveness and validity of ideological and political educa-
tion, and ideological and political education has become the
key problem facing. [3–6].

With the rise of deep learning and arti�cial intelligence,
traditional speech conversion methods based on statistical
models can no longermeet the requirements of large amounts
of corpus data involved in training, and the performance of
traditional language conversionmodelsdeteriorates rapidly in
the case of large amounts of corpus data involved in training.
DNN [7] has strong data �tting ability and can better explain
various complex data features, which is very suitable for the
scenario where a large amount of corpus data participates in
training. Deep belief network (DBM) maps speakers’ spec-
trum features to higher order eigenspace, thus realizing the
transformation between speakers’ spectrum features.
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Based on dnnvc (deep bidirectional long-term and short-
term memory recursive neural network), it has recursive
neural network, Dblstm RNN) to construct the discourse
transformation model. Because dblstm-rnn can capture the
forward and backward time relationship of the speaker’s
speech spectrum characteristics, the performance of the
conversionmodel is significantly improved [8].'e proposal
of convolutional neural network (CNN) [9] is a milestone in
the field of deep neural network, which greatly promotes the
development of deep learning and artificial intelligence. 'e
depth generation network model based on convolutional
neural network has been proposed and applied to the field of
discourse conversion. Conditional variational automatic
encoder network (CVAE) is used to unlock the content and
timbre characteristics of the input speech spectrum [10].
Completely nonparallel many-to-many discourse transfor-
mation [11]. Star creative adversity network VC (stargan
VC) method makes use of the advantages of the cvae-vc
method and the cyclegan VC method, respectively. Multi-
speaker multi to multidiscourse conversion is realized by
using speaker identity tag thermal vector, which is the best in
the current nonparallel multi to multi discourse conversion
methods. 'e improved methods of VAE series and Gan
Series in deep generation neural network model have been
recognized and affirmed by many scholars, and a series of
novel methods have been proposed, such as vawgan VC [12],
vqvae-vc [13], cdvae VC [14], acvae-vc [15], adagan VC [15],
cyclegan-vc2 [16], and stargan-vc2 [17].

Based on the above research, this paper innovatively uses
the deep neural network model of cross-language transfer to
solve the discourse conversion problem. In order to solve the
problem that existing speech conversion methods cannot
effectively utilize the acoustic mode information in the
speech time spectrum, and it is difficult to effectively model
the long-term correlation of speech signals, a novel con-
volutional recurrent neural networks based on convolu-
tional recurrent neural networks is proposed. CRNN, which
uses extended convolutional network to describe the pattern
information of the discourse spectrum and model the long-
term correlation of signals, and BiLSTM conduct the time
sequence modeling. 'e performance of this method is
better than that of BiLSTM.

2. Model Theory

In order to effectively describe the acoustic pattern infor-
mation of speech in the time-frequency domain, model the
long-term correlation of signals, and improve the natural-
ness of translated speech, a convolutional recurrent neural
network with continuous wavelet transform is proposed in
this paper.'is CRNNmodel combined with the advantages
of neural network, signal processing theory, and depth can
use signal processing methods to obtain more suitable for
the acoustic characteristics of the task and to make full use of
the depth of the neural network nonlinear description ability
to the words the local characteristics of spectrum and long
correlation model, so as to achieve better performance of
discourse transformation [18].

2.1. Discourse Conversion Model of Convolution Recurrent
Neural Network with Continuous Wavelet Transform.
Continuous wavelet transform (CWT) is a commonly used
time-frequency analysis tool [19]. 'e traditional fixed-
window transform algorithm (such as Fourier transform)
determines the size and shape of the time-frequency window
after selecting the window function and has the same ability
to analyze both high and low frequencies. However, in
practical signal analysis, we usually expect the algorithm to
have different time-frequency resolution in different fre-
quency bands. Continuous wavelet transform is an algo-
rithm to solve this kind of problem, and its calculation
process is shown in formula (1):

WTf(a, τ) � ≺f(t),

ψa,τ(t)≻ � a
−1/2


R
f(t)ψ

(t − τ)

a
 dt.

(1)

In the formula, F(t) represents the original signal, A
represents the scale factor in the wavelet transform, τ
represents the translation factor, and the wavelet basis
function ψ increases with the increase of the scale factor, the
time window function also increases, and the frequency
resolution of the unit increases correspondingly, otherwise,
the time resolution increases. When the wavelet basis
function meets the admissible condition, the algorithm has
contravariant transformation, and the Morlet wavelet basis
satisfying the condition is adopted in this paper. 'e fun-
damental frequency component predicted by the model can
be reconstructed into the fundamental frequency feature by
inverse wavelet transform. 'e inverse wavelet transform
formula is as follows:
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X(t) represents the reconstructed signal, where the
calculation method of admissible conditions is given by
formula (3):

Cψ � 
∞

0

|ψ(aω)|

a
da≺∞. (3)

2.2. CNNModel. CNN is a commonly used neural network
structure. Different from fully connected networks, the
neurons of CNN are usually arranged in three dimensions.
In the field of audio processing, 2d convolutional neural
networks are usually used. In 2d convolutional kernels, the
height and width correspond to the size of the time-fre-
quency window of the convolution kernels, that is, the time-
frequency range of each convolution of the convolution
kernels. 'e depth of the convolution kernel corresponds to
the number of channels of features after convolution.
Usually, the depth of the convolution kernel used is grad-
ually increased at the beginning of the model to improve the
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fitting ability of the model, while the depth of the convo-
lution kernel is gradually reduced at the output end of the
model to map features to the target dimension. Figure 1
shows a schematic diagram of a two-dimensional convo-
lution kernel.

Assuming that the input feature of this example is Cl, the
eigenvalue of the output of the convolutional network is
Cl+ t, and the target feature is Cture, the convolution oper-
ation can be expressed by formula (4):

C
l+1

(i, j) � C
l ⊗w

l+1
 (i, j) + b

l+1
� 

Kl

k+1


f

x�1


f

y�1

C
l
k(s∗ i + x, s∗ j + y)∗w

l+1
(x, y)  + b

l+1
,

i, j ∈ 0, 1, . . . , Ll+1 , Ll+1 �
Ll + 2∗ z − f

s
+ 1 .

(4)

In the formula, w and B, respectively, represent the
weight matrix and bias of the convolution kernel; I and j
represent the number of pixels of the feature graph; f, z and s
correspond to the size, filling number, and step size of the
convolution kernel. 'e training of convolutional network
requires the setting of loss function, and the commonly used
MSE loss function can be expressed by formula (5):

MSE �
1
D



D

i�1

1
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C
ture

− C
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2

 ⎡⎣ ⎤⎦, (5)

where D represents the corresponding feature dimension.
'e extended convolutional neural network is a special

convolutional network whose filter is discontinuous. Studies
have found that such network structure with spacing be-
tween filters can make the convolution kernel have a large
receptive field with minimal precision loss. 'e following
figure shows the schematic diagram of the receptive field
range of an ordinary 3∗ 3 convolution kernel and an ex-
tended 3∗ 3 convolution kernel.

'e rectangular block in Figure 2 represents the feature
graph, and the deepened part represents the convolution
region of the convolution kernel filter. As can be seen from
the figure, in the case of the same convolution kernel size, the
receptive field of the extended convolutional network is
larger than that of the ordinary convolutional network. 'is
feature enables the model to have a larger receptive field
under the same conditions and enables the networkmodel to
be capable of modeling longer context information.

2.3. CRNN Model. CRNN is mainly used to recognize text
sequences of indeterminate length end-to-end, without
cutting a single text first, but transforming text recognition
into a sequence-dependent sequence learning problem,
which is image-based sequence recognition. Figure 3 shows
the structure diagram of the CRNNmodel used in this paper.
After the acoustic features of ear discourse are input into the
model, the feature extraction module is used to obtain the
local features of the discourse spectrum.

Feature extraction module is composed of two sets of
two-dimensional dilated convolution. One set of convolu-
tion layer uses a convolution kernel with a size of 3× 3. 'e
first dimension of the convolution kernel corresponds to the
time direction of the discourse feature sequence and makes
the convolution layer perform dilation in the time domain
direction, which is called the time domain dilated convo-
lution layer. Another set of convolution layers performs
frequency domain expansion using convolution kernels of
the same size.

'e characteristic graph output by the time-frequency
expansion module is connected and reconstructed into one-
dimensional features and then input into the time-domain
modeling module. 'e time-domain modeling module
consists of a group of time-domain expansion blocks, whose
structure is shown in Figure 3. Tomodel discourse long-term
correlation, one-dimensional dilated convolution was used
in each dilated block and Gated Linear Units (GLUs) were
used to improve the stability of the model during training.
'e calculation process of GLUs is shown in formula (6):

y � σ x∗W1 + b1( ⊗ x∗W2 + b2( , (6)

where W1 and W2 represent the weight of the convolution
layer, b1 and b2 represent the corresponding bias term, σ
represents the sigmoID activation function, and ⊗ repre-
sents the element-by-element multiplication symbol. 'e
calculation process of the MISH activation function used in
the expansion block can be expressed by formula (7):

MISH � x∗ (tanh(softplus(x))). (7)

In the formula, TANH and Softplus represent corre-
sponding activation functions, respectively, and the cal-
culation process of softPLu function is described in
formula (8).

input
features

convolution
kernel

output
characteristics

Figure 1: Schematic diagram of two-dimensional convolution
kernel.

Ordinary convolution Expansion of the convolution

Figure 2: Comparison of receptive fields of different convolution
structures. (a) Ordinary convolution, (b) Expansion of the
convolution.
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softplus � log 1 + e
x

( . (8)

It can be seen from formula (8) that the function has a
small number of negative intervals, which provides an ad-
ditional flow interval for the gradient flow, thus alleviating
the gradient problem of the network. 'e input of adjacent
time domain expansion block is the output A of the previous
expansion block, and the input of feature mapping module is
obtained by adding the output B of each expansion block
element by element.

'e output of the feature mapping module is calculated
by the two groups of memory cells with opposite directions,
and the calculation process can be expressed by the following
formula:

h
→

t � lstm xt( ,

h
←

t � lstm xt( ,

yt � W
h

→
y

h
→

t + W
h
←

y
h
←

t + by.

(9)

'e calculation process of LSTM in the above formula
can be expressed by the following formula:

it � σ Wxixt + Whiht−1 + Wcict−1 + biit( ,

ft � σ Wxfxt + Whfht−1 + Wcict−1 + bf ,

ct � ftct−1 + ittanh Wxcxt + Whcht−1bc( ,

ot � σ Wxoxt + Whoht−1 + Wcoc + bo( ,

ht � ottanh ct( .

(10)

In the above formula, I, F, O, and C correspond to the
input gate, forgetting gate, output gate, and cell state in the
cell structure, respectively. O represents the commonly used
SigmoID activation function, and W and B represent the
weights and bias items to be learned during network
training. Because the time-domain modeling module uses a

large number of extended convolutional neural networks,
the feature graph input by each neuron in the circular layer
of the feature mapping module contains the whole discourse
context information of the input model, which is beneficial
to the model to describe the long-term correlation of signals.

2.4. Proposed Ear Discourse Conversion. 'e proposed ear
discourse conversion method based on the CRNN model is
shown in Figure 4. During the model training, the
STRAIGHT model was used to extract the characteristic
parameters of the two kinds of discourse, respectively. As
mentioned above, the STRAIGHT model is a classical
parametric vocoder, which has been widely used in speech
analysis and synthesis tasks. After extracting relevant pa-
rameters, DTW algorithm is used to align feature sequences.
'en, the spectral envelope features are converted to MCC
features, and the normal speech fundamental frequency is
decomposed by continuous wavelet transform. Finally, the
MCC feature estimation model (CRNN_mcc) was trained
using MCC features of ear speech and normal speech.

In the transformation stage, the extracted ear speech
spectrum envelope is converted into MCC features, then the
MCC features are input to the two transformation models
after training to obtain the MCC features and nonperiodic
components estimated by the model, and then the MCC
features estimated by the model are input to the CRNN_f0
model to obtain the estimated fundamental frequency com-
ponents. 'en, the inverse of the estimated MCC feature is
transformed into a spectral envelope, and the obtained fun-
damental frequency component is reconstructed into the
speech fundamental frequency by inverse wavelet transform.
Finally, the spectral envelope, aperiodic component, and
fundamental frequency predicted by the model are recon-
structed into transformeddiscourseby theSTRAIGHTmodel.

Table 1 shows that the input and output parameters of
two-dimensional convolution are frame number, frequency
channel, and characteristic image channel in turn. 'e
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Figure 3: Structure of utterance conversion model based on CRNN.
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parameters of convolution layer represent the size, expansion
rate, and number of convolution kernels, respectively. 'e
input and output parameters of one-dimensional convolution
are tonnage and frequency channel in turn. 'e convolution
layer parameters have the same meaning as two-dimensional
convolution. In order to keep the temporal characteristics of
discourse unchanged, zeroing is applied to all convolution
layers to maintain the consistency of input and output di-
mensions. Only one set of time domain block parameters is

shown in the table, and three sets of time domain expansion
blocks with the same parameters are stacked in themodel.'e
TD block represents the time domain extension block. 'e
output of recurrent neural network is the symbiosis of the
output of two groups of neurons. 'erefore, this paper splices
the output of two groups of LSTM and uses the full con-
nection layer to map the feature map to the target dimension.

'is method uses the function shown in formula (11) as
the training error function in the training process:
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Figure 4: Flow chart of CRNN-based utterance conversion method.

Table 1: Parameter configuration of the CRNN utterance conversion model.

Network layer Input size Super parameter Output size
Expand (150× 30) — (150× 30×1)
Conv2d_1.1 (150× 30×1) (3× 3, (1, 1), 16) (150× 30×1)
Conv2da_1.2 (3× 3, (1, 1), 16) (150× 30×16)
Conv2d_2.1 (150× 30×16) (3× 3, (1, 1), 16) (150× 30×16)Conv2d_2.2 (3× 3, (1, 1), 16)
Conv2d_31 (150× 30×16) (3× 3, (2, 1), 32) (150× 30× 32)Conv2d_3.2 (3× 3, (1, 2), 32)
Conv2d_4.1 (150× 30× 32) (3× 3, (4, 1), 32) (150× 30× 32)Conv2d_4.2 (3× 3, (1, 4), 32)

Concatenate (150× 30× 32) — (150× 30× 64)(150× 30× 32)
Reshape (150× 30× 64) (150×1920)
Conv1d_1 (150×1920) (1, (1), 512) (150× 512)

TD block
(1, (1), 256)
(3, (1), 128)
(1, (1), 512)

TD block
(1, (1), 256)
(3, (2), 128)
(1, (1), 512)

TD block (150× 512)
(1, (1), 256)

(150× 512)(3, (4), 128)
(1, (1), 512)

TD block
(1, (1), 256)
(3, (8), 128)
(1, (1), 512)

TD block
(1, (1), 256)
(3, (16), 128)
(1, (1), 512)

BiLSTM (150× 512) (150×1024)
Dense (150×1024) (30/30/513) (150× 30/30/513)
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In the above formula, yi and yi represent target feature
and prediction feature, respectively.

3. Experimental Simulation and Result Analysis

3.1. ExperimentalData andEvaluation Indicators. To further
evaluate the performance of the proposed method in the
auditory speech conversion task, 348 auditory utterance and
corresponding target sounds from the wTIMIT discourse
database were selected as experimental data. 'e selected
corpus has a sampling rate of 8000Hz and is stored in 16 bit
PCM format. When extracting speech features, the frame
length is 40ms, the frame offset is 5ms, and 1024 point fast
Fourier transform is used for each frame of speech. In total,
313 auditory utterances and their corresponding normal
utterances were randomly selected as the training set, and
the other 35 corpora were used as the test set. 'e relevant
test set has strong adaptability.

All the above methods use the straight algorithm to
analyze the reconstructed discourse. 'e GMMmethod and
the DNN method in the comparison method are limited by
the model structure and cannot be modeled by using the
dynamic correlation between frames of discourse. In order
to improve the algorithm performance of the comparison
method and make the effectiveness of the proposed method
more convincing, the dynamic characteristics of speech
frames are taken as the training parameters of the two
methods.'e calculation formula of dynamic characteristics
is given by formula (12).

sp dyk �
−2∗ spk−2 − spk−1 + spk+1 + 2∗ spk+2( 

3
, (12)

sp dyk represents the corresponding dynamic feature.
'e specific parameter configuration of the comparison

method is described as follows: in the gMM-based ear speech
conversion method, three models, GMM_mcc, GMM_ap,
and GMM_f0, are, respectively, trained to estimate the MCC,
aperiodicity and fundamental frequency of normal sounds.
'e Gaussian component number of GMM MCC and
GMM_f0 is set to 32, and the Gaussian component number of
GMM_ap is set to 16. In the DNN ear speech conversion

method, three DNN models are trained to estimate the MCC
feature, nonperiodic component and fundamental frequency
of target speech.'e structure of THEDNNmodel is 30× 30-
900-1024-2048-1024-1024-900/7710/30. 'e Dropout tech-
nology is used for the hidden layers of the model to improve
the model and reduce overfitting. 'e Dropout parameter
value is set to 0.9, and the three dimensions of the output layer
correspond to the three different characteristics of the pre-
diction. For BiLSTM, three BiLSTM models are also trained,
respectively, to estimate the acoustic characteristics of
transformed discourse. 'e BiLSTM used contains two
hidden layers with 512 units. All comparison methods
adopted MSE objective function, and Adam algorithm was
used to optimize model parameters, with a learning rate of
0.0001.

3.2. Model Parameter Selection. In order to evaluate the
influence of extended convolution in the time-frequency
domain of the feature extraction module on the translated
speech quality, the traditional 3× 3 single-size convolution
kernel and the extended convolution in the time-frequency
domain used in this paper were used to conduct the speech
conversion experiment. It is obvious from Table 2 that the
time-frequency expansion convolution adopted in this paper
is conducive to improving the discourse conversion per-
formance of the model.'e specific comparison of discourse
quality after transformation is shown in Table 2.

In order to explore whether the time domain expansion
block in the time domain modeling module can effectively
improve the performance of the discourse conversion
method, the transformed discourse of CRNN discourse
conversionmethod in three cases is compared. Table 3 shows
the comparison of discourse quality after transformation
under the three conditions, where CRNN_nt represents the
CRNN model without time domain dilators and CRNN_ot
represents only one group of time domain dilators. As can be
seen from Table 3, the CRNN model without the time-
domain expansion block has the worst performance of
discourse conversion. 'e prediction accuracy of the CRNN
model that only uses a group of time-domain dilators is
lower than that of the method in this paper, because the
CRNN model that only contains a group of time-domain
dilators is difficult to use the context information of the

Table 2: Impact of time-frequency dilated convolution on model
performance.

Convolution kernels CD PESQ STOI
3× 3 4.5826 1.2679 0.6003
Time-frequency dilated convolution 4.5163 1.3201 0.6104

Table 3: Impact of time domain dilated block on model
performance.

Model CD PESQ STOI
CRNN_nt 4.6532 1.2895 0.5765
CRNN_ot 4.5885 1.3111 0.6004
'e model in this paper 4.5163 1.3201 0.6104

Table 4: Quality evaluation of converted speech by different
methods.

Transfer approach CD PESQ STOI
GMM 5.4415 1.0121 0.4603
DNN 5.1732 1.0901 0.5062
BiLSTM 4.8611 1.2523 0.5559
'e model in this paper 4.5163 1.3201 0.6104

Table 5: RMSEs of fundamental frequency of different methods.

Model GMM DNN BiLSTM CRNN 'e model in
this paper

RMSE（HZ） 121.09 88.76 81.14 69.27 66.93
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whole input discourse, and the model has a small receptive
field, which makes it impossible to effectively model the
long-term correlation of discourse. 'erefore, this paper
finally sets up three groups of time domain expansion blocks
in the CRNN network.

3.3. Comparative Analysis of Experimental Results. To
demonstrate the effect of CRNN discourse conversion
model, GMM, DNN, and BiLSTM are used as comparison
models. Table 4 shows the evaluation results of transformed
discourse. 'e performance of the GMM model is poor
because the modeling ability of GMM is weaker than that of
the neural network model. Although the DNN method can
well represent the nonlinear mapping relationship, it cannot
model the long-term correlation of discourse, and the effect
of discourse conversion is not ideal. Compared with the
DNN method, the BiLSTM method can make better use of
the interspeech correlation. When the time step is large, the
BiLSTMmethod can also model the long-term correlation of
discourse, so the conversion effect is better than the GMM
method and the DNNmethod. However, BiLSTM is difficult

to effectively utilize the local features in the time-frequency
domain of discourse, resulting in some spectral errors in the
transformed discourse. As can be seen from Table 4,
compared with the comparison method, the effect of the
CRNN speech conversion model under the quality assess-
ment of different conversion speech methods is 4.5163 s in
the disc time; 1.3201 s in the ticker; and 1.3201 s in the station
time 0.6104 s, the utterances transformed by this method in
this paper have the best inhomogeneous quality and
intelligibility.

Table 5 shows RMSE values of fundamental and target
tones predicted by four conversion methods, where, CRNN
indicates that CWT is not used to convert the discourse
fundamental frequency in the training process. As can be
seen from Table 5, GMM is difficult to accurately estimate
the fundamental frequency characteristics of utterances, and
BiLSTM has better fundamental frequency estimation
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Figure 5: Fundamental frequency curves obtained by different conversion methods. (a) Enter the words, (b) GMM, (c) DNN, (d) BiLSTM,
(e) CRNN.

Table 6: MOS of converted speech by different methods.

Model GMM DNN BiLSTM 'e model in this paper
MOS 2.35 2.51 2.82 2.90
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performance than DNN. In the process of model training,
CWTdecomposition of fundamental frequency can improve
the prediction accuracy of the model to a certain extent. A
horizontal comparison of the five methods shows that the
difference between the fundamental frequency predicted by
the proposed method and the target fundamental frequency
is the smallest, which proves that the proposed method has
higher fundamental frequency prediction accuracy com-
pared with the comparison method.

It can be seen from Figure 5 that the GMM speech
conversion method is difficult to fit the fundamental fre-
quency curve of target speech effectively, and the funda-
mental frequency of transformed speech is greatly different
from that of the target speech. 'e DNN method can only
estimate unvoiced speech conversion, but cannot accurately
predict the fundamental frequency curve. 'e fundamental
frequency curve estimated by the BiLSTM method has a
certain similarity with the target curve, but there is still a
great difference with the expected target in details such as
170–190 frames and 230–270 tons. However, the overall
trend of the speech fundamental frequency curve estimated
by the proposed method is close to that of the target fun-
damental frequency, which indicates that the proposed
method has better fundamental frequency estimation
performance.

Table 6 shows MOS scores of discourse obtained after
four methods of transformation. As can be seen from Ta-
ble 6, the comfort level of discourse listening sensation after
GMM conversion is poor, which is not suitable for discourse
conversion task. Because BiLSTM can effectively make use of
the dynamic interframe correlation of utterances, the
transformed utterances have stronger continuity and better
comprehensibility, thus achieving a better subjective score.
'e method in this paper can effectively use the acoustic
model information to establish a long-term correlation
model of utterances and use the prosodic features of ut-
terances as the learning objective of the model. 'erefore,
the naturalness of statements transformed by the method in
this paper is high, and the opinions are emotional, thus
achieving the highest subjective score.

In this paper, ABX test is used to further evaluate and
compare BiLSTM discourse conversion method with this
method, which has better subjective score. Figure 6 shows

the results of the ABX test method. After several rounds of
listening tests, the auditioners generally believe that the
transformed utterances in this paper are closer to the target
utterances.

4. Conclusion

'is paper mainly introduces the discourse conversion
method based on convolution recurrent neural network with
continuous wavelet transform. Compared with the existing
statistical model-based discourse conversion methods, the
following conclusions can be drawn:

(1) 'e existing discourse transformation methods
usually only consider the differences between dis-
course spectra and rarely consider the characteristics
of discourse itself from the perspective of the internal
characteristics of discourse. 'is paper uses the local
connection feature of CNN network to effectively
extract the local features of discourse.

(2) Discourse signals have long-term correlation, and
existing discourse conversion methods are limited by
model structure, so it is difficult to model the long-
term correlation of discourse. Inspired by the ex-
tended convolutional neural network in the task of
discourse synthesis, the method in this paper stacks
multiple one-dimensional extended convolutional
network layers in the model, so that the feature
mapping module of the model can use the whole
discourse context information for modeling, so as to
describe the long-term relevance of discourse more
effectively.

(3) Due to its special motivation source and vocal form,
the overall listening sensation of the utterance lacks of
tonal change and the naturalness of the listening
sensation of the utterance is poor. 'e converted
utterances have better listening comfort, and con-
tinuous wavelet transforms are used to decompose the
fundamental frequency features instead of the original
declarations when training the model. 'e decom-
posed fundamental frequency can represent the
prosodic characteristics of utterances. Taking the
decomposed essential frequency component as the
training target can give the transformed speech a
better subjective hearing evaluation. At the end of this
paper, a number of experimental results show that the
discourse conversion method proposed in this paper
has better discourse conversion performance com-
pared with the contrast method, and the transformed
discourse has better performance in both subjective
and objective evaluation.
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