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Heart failure is a chronic cardiac condition characterized by reduced supply of blood to the body due to impaired contractile
properties of the muscles of the heart. Like any other cardiac disorder, heart failure is a serious ailment limiting the activities and
curtailing the lifespan of the patient, most often resulting in death sooner or later. Detection of survival of patients with heart
failure is the path to effective intervention and good prognosis in terms of both treatment and quality of life of the patient. Machine
learning techniques can be critical in this regard since they can be used to predict the survival of patients with heart failure in
advance, allowing patients to receive appropriate treatment. Hence, six supervised machine learning algorithms have been studied
and applied to analyze a dataset of 299 individuals from the UCIMachine Learning Repository and predict their survivability from
heart failure. /ree distinct approaches have been followed using Decision Tree Classifier, Logistic Regression, Gaussian Näıve
Bayes, Random Forest Classifier, K-Nearest Neighbors, and Support VectorMachine algorithms. Data scaling has been performed
as a preprocessing step utilizing the standard and min–max scaling method. However, grid search cross-validation and random
search cross-validation techniques have been employed to optimize the hyperparameters. Additionally, the synthetic minority
oversampling technique and edited nearest neighbor (SMOTE-ENN) data resampling technique are utilized, and the perfor-
mances of all the approaches have been compared extensively. /e experimental results clearly indicate that Random Forest
Classifier (RFC) surpasses all other approaches with a test accuracy of 90% when used in combination with SMOTE-ENN and
standard scaling technique. /erefore, this comprehensive investigation portrays a vivid visualization of the applicability and
compatibility of different machine learning algorithms in such an imbalanced dataset and presents the role of the SMOTE-ENN
algorithm and hyperparameter optimization for enhancing the performances of the machine learning algorithms.

1. Introduction

Heart failure (HF) refers to the condition when the heart
cannot pump adequate blood throughout the body. According
to the WHO, it has emerged as one of the most lethal and
debilitating diseases, claiming approximately 18 million lives
each year [1]. Chronic conditions such as weak or damaged

heart muscles result in a decreased ejection fraction, which
eventually results in heart failure. However, it can also cause
severe damage to the body’s other vital organs and can strike
both children and adults. Age, family history, genetics, lifestyle
habits, cardiovascular diseases (CVD), and race or ethnic origin
are themajor risk factors for heart failure. It is equally prevalent
in men and women, but women develop it at a later age [2].
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Nevertheless, clinical detection of HF proves to be difficult as
patients predominantly present with dyspnea attributed to a
wide range of differential diagnoses [3, 4]./e American Heart
Association defined heart failure as a progressive dysfunction
of the heart where it fails to supply an adequate amount of
blood to meet the metabolic demand of the body [5]. In most
cases, it is a chronically deteriorating condition known as
chronic heart failure (CHF). However, the signs and symptoms
may also develop acutely within 24 hours, giving rise to acute
heart failure (AHF), which may present with pulmonary
edema, cardiogenic shock leading to hypotension, oliguria, and
other related features, and decompensating CHF [6]. However,
ischemic heart diseases are the most common cause of HF.
Cardiomyopathies and valvular heart diseases come next in the
line of etiologies [7]. Risk factors include hypertension, dia-
betes, hypercholesterolemia, obesity, smoking, congenital
cardiac diseases, arrhythmias, and family history [8]. More-
over, there is a scarcity of data from the developing nations
pertaining to heart diseases [9]./e disease is rare in the young,
whereas the incidence of HF increases along with the pro-
gression of age after the age of 50 years [10]. Heart failure is
among the diseases with high hospitalization rates. Estimates
from New Zealand, the USA, Sweden, Scotland, and Neth-
erland revealed that the age-adjusted rate of hospitalization had
risen gradually since the 1980s [11]. Furthermore, the disease is
responsible for the annual death of around 10%. Mortality due
to heart failure is mostly from sudden cardiac death [12]. In
spite of the advancement of medical science and associated
technologies, the rate of death within 5 years after the diagnosis
of HF is still 25% to 50% [13]. Cardiac diseases are the causes of
life-long morbidity and medication in the patients. /e
prognosis of any particular heart disease depends on the early
detection and rapid management of the condition, which goes
the same for heart failure [14]. Machine learning classification
techniques have the potential to significantly benefit the
medical field by enabling accurate and rapid disease diagnosis
[15–18]. In this alarming situation, recent technological ad-
vancements and the computerization of the health sector in
Bangladesh maymake it easier to implement machine learning
models for different disease prediction. Machine learning and
data mining have enormous potential for revealing hidden
patterns in clinical domain data sets [19–21]. /ese patterns
can be used to aid in medical diagnosis.

In this study, the main contribution would be carrying
out a rigorous investigative analysis in applying six super-
vised machine learning algorithms in a heart failure dataset
extracted from the UCI machine learning repository. For the
purpose of investigation, three approaches are undertaken,
which are as follows:

(i) Approach A: default hyperparameter and no data
preprocessing

(ii) Approach B: hyperparameter optimization and data
scaling

(iii) Approach C: data sampling by SMOTE-ENN al-
gorithm and hyperparameter optimization

Hence, a comparative analysis has been portrayed with a
view to evaluating the performance parameters obtained

from the simulation accomplished in Python programming
language. In addition, the performances have been com-
pared with other research works. To the best of our
knowledge, this dataset has not been investigated before in
such a manner that may provide new promising windows in
developing an intelligent computer-aided diagnosis system
so that timely and proper treatment can be ensured for
patients pertaining to heart diseases.

2. Related Works

Machine learning is on the trend in the health sector for a
variety of reasons, including disease prediction, medical
imaging diagnosis, and personalized medicine [22–25].
Numerous studies have been conducted on the use of data
mining techniques to predict heart disease in recent times
[26–28]. Several research articles have been studied related
to the prediction of heart failure patient’s survival using
machine learning techniques. Ahmad et al. conducted a
research where they performed statistical analysis (Cox
regression and Kaplan Meier Plot) to predict the survival
probability of heart disease. According to their study, the
main dominant features for predicting heart failure are age,
ejection fraction (EF), serum creatinine, serum sodium,
anemia, and blood pressure are [29]. However, Chicco and
Jurman applied several machine learning classifiers to both
predict the patient’s survival and rank the features corre-
sponding to the most important risk factors. /ey also used
traditional biostatistics methods and carried out a com-
parative analysis. From both feature rankings, serum cre-
atinine and ejection fraction are the most important
attributes for building a prediction model. Considering all
features, they achieved 74% accuracy, while with two fea-
tures (serum creatinine and ejection fraction), they obtained
an accuracy of 83.8% [30]. On the other hand, Oladimeji and
Olayanju proposed a machine learning-based integrated
method for the prediction of survival of heart failure pa-
tients. /e integrated method deals with the class imbalance
in the classification dataset by selecting significant predictive
features in order of their ranking. /e Random Forest al-
gorithm displayed the highest accuracy of 83.18% [31].
Moreover, Gürfidan and Ersoy implemented different
classification algorithms on the heart failure dataset, where
the Support Vector Machine (SVM) algorithm showed the
highest accuracy of 90% among all the algorithms [32].
Furthermore, Elyassami and Kaddour formed an incre-
mental deep learning model and used stochastic gradient
descent to train the model. To increase the performance of
the heart disease patient’s classification model, they
implemented the chi-square test and dropout regularization
into the model, and the model achieved a balanced accuracy
of 91.43% [33]. However, Rubini et al. presented a com-
parative analysis of machine learning techniques like Ran-
dom Forest Classifier (RFC), Logistic Regression (LR),
Support Vector Machine (SVM), and Naı̈ve Bayes (NB) in
the classification of cardiovascular disease. From their
comparative analysis, RFC and LR executed the highest
accuracies of 84.81% and 83.82%, respectively [34]. Ishaq

2 Scientific Programming



et al. employed nine classification models to predict heart
failure patients’ survival with the synthetic minority over-
sampling technique (SMOTE) to solve the problem of class
imbalance. /e experimental results showed that the Extra
Tree Classifier (ETC) outperformed the other models and
gained an accuracy of 92.62% with SMOTE [35]. On the
other hand, Rahayu et al. utilized RFC, DTC, KNN, SVM,
NB, and Artificial Neural Network (ANN) with resample
and SMOTE techniques where they achieved an accuracy of
94.31% and 85.82%, respectively [36]. Ali et al. developed a
feature-driven decision support system consisting of two
main stages to improve heart prediction accuracy. In the first
stage, the χ2 statistical model was employed to rank thirteen
heart failure features. Using forward best-first search, an
optimal subset of features has been formed. In the second
stage, Gaussian Näıve Bayes (GNB) classifier was applied as a
predictive model, and finally, the proposed method attained
a prediction accuracy of 93.33% [37]. While prior research
has demonstrated that various machine learning techniques
are proved to be quite effective in predicting the survival of
patients with heart failure, none of them has achieved an
accuracy greater than 95% to the best of our knowledge./is
research presents a comprehensive analysis consisting of
three approaches with six state-of-the-art machine learning
(ML) algorithms to predict the survival of patients with heart
failure. In order to enhance the performances of the clas-
sifiers, the SMOTE-ENN technique and hyperparameter
optimization are incorporated, and different data scaling
techniques are employed, which provides a rigorous in-
vestigation of this imbalanced dataset.

3. Methodology

3.1. Data Description. /is dataset has been extracted from
the UCI machine learning repository, which contains
medical information for 299 patients, gathered from the
Faisalabad Institute of Cardiology and the Allied Hospital in
Faisalabad (Punjab, Pakistan) [38]. It consists of information
on 105 females and 194 males with Left Ventricular Systolic
Dysfunction (LVSD) classified as stage 3 or stage 4 HF by the
New York Heart Association (NYHA). /e patients’ age
ranged from 40 to 95 years, and the follow-up time was
between 4 and 285 days. /e dataset contains 13 attributes
that have been assessed during the patients’ follow-up at the
hospital. Table 1 summarizes the characteristics. However,
seven of the thirteen traits are numeric, while the remaining
six are Boolean. /erefore, the statistical information of the
numerical attributes is tabulated in Table 2. Following that,
the dataset was imported into Jupyter Notebook and was
subjected to exploratory data analysis to ascertain its general
characteristics and validity. /en, a correlation heatmap was
developed, as depicted in Figure 1, to determine the degree
of correlation among the attributes.

3.2. Feature Scaling. /e term “feature scaling” refers to the
process of normalizing or standardizing independent fea-
tures or variables. /is is because machine learning algo-
rithms can give more weight to higher values and less weight

to lower values regardless of their units. Standardization
ensures that the values of specific attributes have a mean of
zero and a variance of one [39]. In this work, both min–max
and standard scalars are used for investigating the perfor-
mances of the MLmodels. /e mathematical expressions for
the scalars are depicted as follows:

Min − max Scaling, x′ �
x − min(x)

max(x) − min(x)
(1)

Standardization, x′ �
x − x

σ
, (2)

where mean, x � (1/N) 
N
i�1 xi and standard deviation,

σ �

�����������������

(1/N) 
N
i�1 (xi − x)2



.

3.3. Data Sampling. Synthetic Minority Oversampling
Technique and Edited Nearest Neighbor (SMOTE-ENN)
refers to a sampling technique that combines techniques of
over- and undersampling minority classes in an imbalanced
dataset. For instance, in this dataset, the number of deaths
and survival are 96 and 203, respectively (out of 299 pa-
tients). For the purpose of resampling this imbalanced
dataset, this algorithm has been utilized to balance the class
distributions. It has emerged to be an effective method when
there is an imbalance in the distribution of classes, as ma-
chine learning algorithms can be biased in favor of the
majority class in the presence of an imbalance [40,41].
SMOTE-ENN oversamples the minority class initially using
interpolation and then removes redundant samples using
the ENN method. Finally, it produces class balanced data
that can be used with machine learning algorithms to
achieve the desired performance.

3.4. Hyperparameter Optimization. Hyperparameters refer
to a collection of parameters that can control the learning
procedure of machine learning algorithms. Optimization of
hyperparameters has the potential to significantly impact the
outcome and performance of machine learning algorithms
[42]. /is study employs both random search cross vali-
dation (RSCV) and grid search cross validation (GSCV) to
govern the optimal hyperparameter combination. Grid
search is a parameter sweep technique that evaluates all
possible combinations of given parameters and returns the
optimal result based on previously defined performance
metrics. However, it appears to be expensive in terms of
consuming time and requires more resources. On the other
hand, random search chooses random combinations rather
than attempting all possible combinations. It is more time
and resource-efficient and is used when parameter influ-
ences on outcomes are minimal [43]. /e optimal values of
hyperparameters are then deployed to enhance the per-
formances of the ML models.

3.5. Workflow. /ree different approaches are taken into
consideration in order to inspect the performance of six
popularly used supervised ML models, namely, Decision
Tree Classifier (DTC), Logistic Regression (LR), Gaussian
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Näıve Bayes (GNB), Random Forest Classifier (RFC),
K-Nearest Neighbor (KNN), and Support Vector Machine
(SVM). /e approaches are highlighted below with their
corresponding workflow diagram.

3.5.1. Approach A: Default Hyperparameter and No Data
Preprocessing. Firstly, machine learning (ML) models have
been constructed, trained, and validated using the default
data distribution and no preprocessing. Hence, the

Table 2: Statistical information of numeric attributes.

Sl. no. Numeric attributes Maximum Minimum Mean Standard deviation
1 Age 95.0 40.0 60.83 11.89
2 Creatinine_phosphokinase 7861.0 23.0 581.84 970.29
3 Ejection_fraction 80.0 14.0 38.084 11.83
4 Platelets 850000.0 25100.0 263358.03 97804.24
5 Serum_creatinine 9.4 0.5 1.40 1.035
6 Serum_sodium 148.0 113.0 136.63 4.41
7 Time 285.0 4.0 130.26 77.61
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Figure 1: Correlation heatmap.

Table 1: Attribute of the dataset [30].

Sl. no. Attribute Data type Information
1 Age (years) Numeric Age of the patient
2 Anemia Boolean Decrease of red blood cells or hemoglobin
3 Creatinine_phosphokinase (Mcg/L) Numeric Level of creatine phosphokinase enzyme in blood
4 Diabetes Boolean If the patient has diabetes
5 Ejection_fraction (percentage) Numeric Volume of blood ejected from the left ventricle in each contraction
6 High_blood_pressure Boolean If the patient has high blood pressure
7 Platelets (kiloplatelets/mL) Numeric Platelets count in the blood
8 Serum_creatinine (Mg/dL) Numeric Level of creatinine in the blood
9 Serum_sodium (mEq/L) Numeric Level of sodium in the blood
10 Sex Boolean Man or woman
11 Smoking Boolean If the patient has a smoking habit
12 Time (days) Numeric Follow-up period
13 Death_event Boolean If the patient died during the follow-up period
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performance matrices have been evaluated using a 20% test
dataset. However, default hyperparameters are utilized in
this method. Figure 2 illustrates the workflow diagram of
Approach A.

3.5.2. Approach B: Hyperparameter Optimization and Data
Scaling. Secondly, hyperparameter optimization (HPO) has
been performed using grid search cross validation (GSCV)
and random search cross validation (RSCV). In this ap-
proach, data scaling has been accomplished by the use of
min–max and standard scalar methods, and the dataset is
not class balanced./en the dataset has been cross-validated
by 5-fold and 10-fold, and the optimal hyperparameters have
been identified and used to evaluate the ML models. /e
workflow diagram of Approach B is depicted in Figure 3.

3.5.3. Approach C: Data Sampling (SMOTE-ENN Algorithm)
and Hyperparameter Optimization. Finally, in Approach C,
the dataset has been resampled by employing SMOTE-ENN
to balance the class distributions, which was imbalanced.
/en, the dataset has been split into test and train sets and 5-
fold and 10-fold cross validations have been performed.
After scaling and class balancing the data, RSCV and GSCV
have been applied to achieve the optimal combination of
hyperparameters to improve the performance ofMLmodels.
/e workflow diagram of Approach C is presented in Fig-
ure 4, and the SMOTE-ENN algorithm is illustrated in
Figure 5.

3.6. Experiment Environment. /e experiment has been
conducted using Jupyter Notebook v6.1.4 (Python 3 version
3.8.5) and Anaconda distribution v4.10.3 on an Intel Core i5-

8300H CPU running at 2.30GHz, 8GB of RAM, and an
NVIDIA GTX 1050 Ti graphics unit with 4GB of dedicated
memory.

4. Experimental Results

4.1. Approach A. /e performance metrics such as accuracy,
precision, F1, recall, and ROC AUC have been recorded and
shown in Table 3. Here, Tables 4 to 9 illustrate the confusion
matrices for this approach, and Figure 6 shows the ROC curve.

4.2. Approach B. In this approach, Table 10 summarizes the
computational time required for both optimization methods
(GSCV and RSCV), where it is seen that GSCV takes more
time than RSCV in all algorithms. To prevent algorithms
from being biased toward higher values, two scaling
methods (standard scaler and min-max scaler) are utilized.
Table 11 represents all the eight experiments done with these
scaling and hyperparameter optimization methods. /e
receiver operating characteristic (ROC) curve for this
method is shown in Figure 7, and the confusion matrices are
included in Tables 12–17. /e performance metrics of all
mentioned algorithms are presented in Table 18, using the
test dataset after scaling and using the hyperparameters
obtained from hyperparameter optimization (HPO).

4.3. Approach C. Along with scaling and hyperparameter
optimization (HPO), SMOTE-ENN is incorporated into the
ML models in this experimental configuration which has
enhanced the performances of the classifiers. /e compar-
ison of computational time between GSCV and RSCV is
tabulated in Table 19. However, the investigation has been

Exploratory 
Data Analysis

UCI Repository Heart Failure Dataset Data Splitting

Result Analysis

ML Model

Train Set
80%

Test Set 
20%

Figure 2: Workflow diagram of Approach A.
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accomplished by using both 5 and 10-fold cross validation
with “standard scaler” and “min–max scaler.” /e eight
experiments are depicted in Table 20, where it is seen that
Support Vector Machine (SVM) with a value of 0.989 has
showcased the highest accuracy among all, which has been
obtained using Standard Scalar with a GSCV of 10-fold

technique. /e confusion matrices for the classifiers are
presented in Tables 21–26, and the ROC curves for all the
classifiers in our investigation are shown in Figure 8. By
comparing the True Positive and False Positive rates, the
ROC curve can determine the optimal classification model
and eliminate suboptimal models [38].

Exploratory 
Data Analysis

UCI Repository Heart Failure
Dataset

HPO
5 & 10 
fold CV

Data Splitting

Result Analysis

ML Model

Train Set
80%

Test Set
20% 

Best Scaling & 
Parameters Selection

Train 
Set

Validation
Set Data Scaling

Data ScalingBest Parameters

Figure 3: Workflow diagram of Approach B.

Best Parameters
Class Balancing by

SMOTE+ENN Method

Exploratory 
Data Analysis

UCI Repository Heart Failure
Dataset

HPO
5 & 10 
fold CV

Data Splitting

Train Set
80%

Best Scaling & 
Parameters Selection

Train 
Set

Validation
Set

Data Scaling

Result Analysis

ML Model

Test Set
20% 

Data Scaling

Figure 4: Overall workflow diagram for Approach C.
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5. Discussion

5.1. Approach A. In this approach, from the measured
performance metrics, evident in Table 9, it is seen that the
Random Forest Classifier (RFC) outperforms in the majority
of performance metrics with accuracy, recall, and
ROC_AUC values of 0.800,0.854, and 0.769, respectively.
However, precision is maximized by the GNB and SVM, and
the F1 score is measured highest using the LR algorithm./e
Decision Tree Classifier (DTC) has secured the second place

in terms of accuracy, scoring 0.733, while LR and RFC have
ranked first, scoring 0.800. In Figure 9, bar charts depict the
comparison of algorithms in terms of performance metrics.
/e LR and RFC algorithms are likewise well functioning in
this approach, as illustrated in Figure 9 and the ROC curve.

5.2. Approach B. In this approach, data scaling has been
performed as [44] shows that the high deviation between the
numeric values of the various characteristics can force ML
algorithms to bias toward large values. However, hyper-
parameter optimization can also improve the performance in
this type of case, as shown in [45–47]. As seen in Table 10,
RSCV takes significantly less time than GSCV since it attempts

Imbalanced
Training Dataset

Does Balancing Ratio
Satisfying?

No

Yes

Start

Stop

Identify k-nearest
neighbor of xi:kxi

Randomly Select xi in
minority classes

Generate
xnew = xi + (x⌃i - xi) * δ

Remove Noise Sample
using ENN

SM
O

TE
EN

N

Figure 5: SMOTE-ENN algorithm.

Table 3: Performance metrics of ML algorithms by Approach A

Algorithms Accuracy Precision F1 Recall ROC_AUC
DTC 0.733 0.756 0.795 0.838 0.720
LR 0.800 0.878 0.857 0.837 0.755
GNB 0.683 1.000 0.812 0.683 0.500
RFC 0.800 0.854 0.854 0.854 0.769
KNN 0.667 0.902 0.787 0.698 0.530
SVM 0.683 1.000 0.812 0.683 0.500

Table 4: Confusion matrix of Decision Tree Classifier.

Decision Tree Classifier
(DTC)

Predicted
Positive Negative

Actual True 31 13
False 10 6

Table 5: Confusion matrix of Logistic Regression.

Logistic Regression
(LR)

Predicted
Positive Negative

Actual True 36 12
False 5 7

Table 6: Confusion matrix of Gaussian Näıve Bayes.

Gaussian Näıve Bayes
(GNB)

Predicted
Positive Negative

Actual True 41 0
False 0 19

Table 7: Confusion matrix of Random Forest Classifier.

Random Forest
Classifier (RFC)

Predicted
Positive Negative

Actual True 35 13
False 6 6

Table 8: Confusion matrix of K-Nearest Neighbors.

K-Nearest Neighbors
(KNN)

Predicted
Positive Negative

Actual True 37 3
False 4 16

Table 9: Confusion matrix of Support Vector Machine.

Support Vector
Machine (SVM)

Predicted
Positive Negative

Actual True 41 0
False 0 19
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Figure 6: ROC curve for all the ML models for Approach A.
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Figure 7: ROC curve of all the ML models for Approach B.

Table 10: Comparison of computational time.

Algorithms Computation time Computation time
Grid search CV (sec) Random search CV (sec)

DTC 11.763 0.285
LR 4.207 0.244
GNB 0.140 0.140
RFC 88.745 6.175
KNN 4.160 0.598
SVM 3.955 1.011

Table 11: Highest accuracies of classifiers in conducted eight experiments.

Experiment no. Preprocessing method K fold CV Hyperparameter optimization Highest accuracy classifier Highest accuracyMethod
1 Standard scalar 5-fold Random search LR 0.845
2 Standard scalar 10-fold Random search RFC 0.854
3 Min–max scalar 5-fold Random search RFC 0.850
4 Min–max scalar 10-fold Random search RFC 0.858
5 Standard scalar 5-fold Grid search RFC 0.866
6 Standard scalar 10-fold Grid search RFC 0.870
7 Min–max scalar 5-fold Grid search RFC 0.862
8 Min–max scalar 10-fold Grid search RFC 0.866
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random combinations of hyperparameters rather than all
combinations as GSCV does. However, GSCV performed
better in terms of accuracy than RSCV. Figure 10 illustrates the
contrast of computational time using a bar plot. Table 11

summarizes the findings from our eight experiments. Eight
different combinations of scaling and cross-validationmethods
have been implemented, and the classifier with the highest
accuracy has been identified. It is clear from this table that the
GSCV and standard scaling techniques have provided the best
performance. Here, RFC produces the best result, with an
accuracy of 0.870, as determined by a 10-fold GSCV with
standard scaling. As a result, Table 18 evaluates all performance
measures using this combination. In this case, RFC exceeds all
other algorithms in terms of accuracy, recall, and ROC_AUC.
However, LR provides the highest F1 score and also accuracy.
/e precision is maximized by GNB in this approach./e best
accuracy here is 0.833, as determined by RFC and LR, and the
second highest is 0.800, as assessed by SVM. Figure 11 depicts a
comparison of all algorithms based on performance metrics.
/is strategy produces a result that is significantly better than
Approach A.

5.3. Approach C. /is approach adds a class balancing
technique called SMOTE-ENN as this dataset was highly
imbalanced, with a class ratio of 203 : 96, meaning one class
is nearly double that of the other./is kind of imbalance can
prevent machine learning algorithms from performing
correctly, and there is a tendency to prefer the majority class
in the prediction. To correct the imbalance and improve the
results, researchers used sampling techniques like SMOTE
and SMOTE-ENN to balance class in this type of dataset
[48,49]. SMOTE-ENN is used with scaling and hyper-
parameter optimization (HPO) in this study, yielding more
promising outcomes. In Table 19, the computing time for
this approach is compared, and it is clear that GSCV takes
longer than RSCV, but GSCV provides better accuracy,
which is graphically presented in Figure 12.

Following that, eight trials have been performed as
Approach B; the SVM provides the highest accuracy with a
value of 0.989, which is the best result of all three approaches
in terms of accuracy. /e best accuracy is currently found
with 10-fold GSCV and standard scalar. Table 20 depicts a
summary of the experiments. Following that, the perfor-
mance metrics for this Approach were evaluated using the
test dataset and parameters from standard scalar 10-fold
GSCV and presented in Table 27. /e RFC has the utmost
accuracy of 0.900, followed by DTC 0.867. And it also wins
in terms of F1 score, recall, and ROC_AUC. However, the
DTC has the highest precision value here. /e results ob-
tained in this approach are far better than those of the other
two approaches. Figure 13 shows a comparison of algo-
rithms using Approach C.

Table 12: Confusion matrix of Decision Tree Classifier.

Decision Tree Classifier
(DTC)

Predicted
Positive Negative

Actual True 37 9
False 4 10

Table 13: Confusion matrix of Logistic Regression.

Logistic Regression
(LR)

Predicted
Positive Negative

Actual True 38 12
False 3 7

Table 14: Confusion matrix of Gaussian Näıve Bayes.

Gaussian Naı̈ve Bayes
(GNB)

Predicted
Positive Negative

Actual True 41 0
False 0 19

Table 15: Confusion matrix of Random Forest Classifier.

Random Forest
Classifier (RFC)

Predicted
Positive Negative

Actual True 37 13
False 4 6

Table 16: Confusion matrix of K-Nearest Neighbors.

K-Nearest Neighbors
(KNN)

Predicted
Positive Negative

Actual True 33 9
False 8 10

Table 17: Confusion matrix of Support Vector Machine.

Support Vector
Machine (SVM)

Predicted
Positive Negative

Actual True 36 12
False 5 7

Table 18: Performance metrics of ML algorithms by Approach B.

Algorithms Accuracy Precision F1 Recall ROC_AUC
DTC 0.767 0.902 0.841 0.787 0.688
LR 0.833 0.927 0.884 0.844 0.779
GNB 0.683 1.000 0.812 0.683 0.500
RFC 0.833 0.902 0.881 0.860 0.793
KNN 0.700 0.805 0.786 0.767 0.639
SVM 0.800 0.878 0.857 0.837 0.755

Table 19: Comparison of computational time (Approach C).

Algorithms Computation time Computation time
Grid search CV (sec) Random search CV (sec)

DTC 11.428 0.310
LR 4.078 0.315
GNB 0.355 0.148
RFC 65.935 3.558
KNN 4.225 0.578
SVM 2.233 0.880
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In terms of all performance metrics, Approach C out-
performs all other experimental approaches. /e best ac-
curacy was found to be 80% in Approach A, 83.3% in
Approach B, and 90% in Approach C, indicating the models’
successive improvement. /e final Approach C performed
exceptionally well in predicting the survival of patients with
heart failure. Figures 14(a)–14(e) shows the comparison of
three approaches based on accuracy, precision, F1 score,
recall, and ROC_AUC.

Finally, a detailed comparative analysis has been por-
trayed in Table 28, where the best accuracies obtained by
different researchers have been presented. It is evident that
the proposed method (Approach C) depicted the highest

Table 20: Highest accuracies of classifiers in conducted eight experiments (Approach C).

Experiment no. Preprocessing
method K fold CV Hyperparameter optimization

method
Highest accuracy

classifier
Highest accuracy
(validation set)

1 Standard scalar 5-fold Random search SVM 0.970
2 Standard scalar 10-fold Random search SVM 0.970
3 Min–max scalar 5-fold Random search RFC 0.987
4 Min–max scalar 10-fold Random search RFC 0.980
5 Standard scalar 5-fold Grid search KNN 0.986
6 Standard scalar 10-fold Grid search SVM 0.989
7 Min–max scalar 5-fold Grid search RFC 0.981
8 Min–max scalar 10-fold Grid search KNN 0.983

Table 21: Confusion matrix of Decision Tree Classifier.

Decision Tree Classifier (DTC) Predicted
Positive Negative

Actual True 38 14
False 3 5

Table 22: Confusion matrix of Logistic Regression.

Logistic Regression (LR) Predicted
Positive Negative

Actual True 29 17
False 12 2

Table 23: Confusion matrix of Gaussian Näıve Bayes.

Gaussian Naı̈ve Bayes
(GNB)

Predicted
Positive Negative

Actual True 33 13
False 8 6

Table 24: Confusion matrix of Random Forest Classifier.

Random Forest
Classifier (RFC)

Predicted
Positive Negative

Actual True 36 18
False 5 1

Table 25: Confusion matrix of K-Nearest Neighbors.

K-Nearest Neighbors
(KNN)

Predicted
Positive Negative

Actual True 32 15
False 9 4

Table 26: Confusion matrix of Support Vector Machine.

Support Vector
Machine (SVM)

Predicted
Positive Negative

Actual True 31 16
False 10 3

ROC (Reciever Operating Characteristic Curve)
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Figure 8: ROC curve of all the ML models for Approach C.
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Figure 12: Comparison of computational time by Approach C.

Table 27: Performance metrics of ML algorithms with Approach C.

Algorithms Accuracy Precision F1 Recall ROC_AUC
DTC 0.867 0.927 0.905 0.884 0.832
LR 0.767 0.707 0.806 0.936 0.801
GNB 0.767 0.805 0.825 0.846 0.745
RFC 0.900 0.878 0.923 0.973 0.913
KNN 0.783 0.781 0.831 0.889 0.785
SVM 0.783 0.756 0.827 0.912 0.799
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validation accuracy of 98.9% and test accuracy of 90%.
/erefore, this approach can impose a significant contri-
bution in predicting the survival of patients with heart
failure in an efficient way.

6. Conclusion

As heart failure is extremely perilous and prevention is
critical, patients must seek the advice of healthcare pro-
fessionals in a regular fashion. However, healthcare pro-
fessionals should consider a variety of conditions and
parameters when advising or treating patients. On the other
hand, the diagnostic instruments and expert medical tech-
nologists are insufficient in many cases, and a prompt and
accurate diagnosis of the patient’s condition is quite chal-
lenging. /at is why vast amounts of data are collected and
analyzed for real-world patient scenarios to assist healthcare
professionals. Machine learning and data mining have
enormous potential for revealing hidden patterns in large
datasets from the clinical domain./ese patterns can be used
to assist physicians in diagnosing patients. It is a more ef-
ficient and advanced technique than statistics for analyzing
large amounts of data because it allows for prediction based
on prior cases and enables healthcare professionals to make
informed decisions. In this study, three different approaches
are undertaken to investigate the performances of the ML
models in predicting the survival of patients with heart
failure. It is observed that Approach C outperforms the other
two approaches significantly in terms of accuracy, F1 score,
recall, and ROC_AUC. /erefore, it is evident that SMOTE-
ENN and hyperparameter optimization have played a sig-
nificant role in enhancing the performances of the classifiers.
Approach C has the best test accuracy of 90%, followed by
approaches A and B with 80% and 83.33%. Additionally,
Approach C ranks on the top among other approaches in
terms of F1 score (0.923), recall (0.973), and ROC AUC
(0.913), respectively. On the other hand, Approaches A and
B have showcased the values of F1 score of 0.857 and 0.884,
recall values of 0.854 and 0.860, and ROC AUC values of
0.769 and 0.793 correspondingly./erefore, it is evident that

RFC (with SMOTE-ENN technique and hyperparameter
optimization) triumphs over all other approaches and ob-
tained 90% accuracy with the test dataset. Hence, this study
can make a notable contribution in predicting the survival of
patients with heart failure and can aid in developing an
automated computer-aided diagnosis system for e-health-
care applications.

Data Availability

Heart failure clinical records dataset from UCI Machine
Learning Repository was used in order to support this study
and is available at “https://archive.ics.uci.edu/ml/datasets/
Heart+failure+clinical+records”. /is prior study and
dataset are cited at relevant places within the text as ref-
erences [30,38].
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